Plan
Comptes Rendus

Medical sciences / Sciences médicales
Skeletal muscle progenitor cells and the role of Pax genes
Comptes Rendus. Biologies, Thérapie cellulaire régénérative / Regenerative cell therapy, Volume 330 (2007) no. 6-7, pp. 530-533.

Résumé

Satellite cells, which lie under the basal lamina of muscle fibres, are marked by the expression of Pax7, and in many muscles of Pax3 also. A pure population of satellite cells, isolated from a Pax3GFP/+ mouse line by flow cytometry, contribute very efficiently to skeletal muscle regeneration and also self-renew, thus demonstrating their role as muscle stem cells. Pax3/7 regulates the entry of these cells into the myogenic programme via the activation of the myogenic determination gene, MyoD. Pax7 is also essential for the survival of satellite cells. This dual role underlines the importance of ensuring that a tissue stem cell that has lost its myogenic instruction should not be left to run amok, with the potential risk of tissue deregulation and cancer. A somite-derived population of Pax3/Pax7 positive cells is responsible for muscle growth during development and gives rise to the satellite cells of postnatal muscles. In the absence of both Pax3 and Pax7, these cells die or assume other cell fates. Pax3/7 lies genetically upstream of both MyoD and Myf5, which determine the skeletal muscle fate of these cells.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crvi.2007.03.015
Keywords: Skeletal muscle, Satellite cells, Pax3 and Pax7, Myogenic fate, Cell survival

Margaret Buckingham 1

1 Département de biologie du développement, CNRS–URA 2578, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15, France
@article{CRBIOL_2007__330_6-7_530_0,
     author = {Margaret Buckingham},
     title = {Skeletal muscle progenitor cells and the role of {\protect\emph{Pax}} genes},
     journal = {Comptes Rendus. Biologies},
     pages = {530--533},
     publisher = {Elsevier},
     volume = {330},
     number = {6-7},
     year = {2007},
     doi = {10.1016/j.crvi.2007.03.015},
     language = {en},
}
TY  - JOUR
AU  - Margaret Buckingham
TI  - Skeletal muscle progenitor cells and the role of Pax genes
JO  - Comptes Rendus. Biologies
PY  - 2007
SP  - 530
EP  - 533
VL  - 330
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crvi.2007.03.015
LA  - en
ID  - CRBIOL_2007__330_6-7_530_0
ER  - 
%0 Journal Article
%A Margaret Buckingham
%T Skeletal muscle progenitor cells and the role of Pax genes
%J Comptes Rendus. Biologies
%D 2007
%P 530-533
%V 330
%N 6-7
%I Elsevier
%R 10.1016/j.crvi.2007.03.015
%G en
%F CRBIOL_2007__330_6-7_530_0
Margaret Buckingham. Skeletal muscle progenitor cells and the role of Pax genes. Comptes Rendus. Biologies, Thérapie cellulaire régénérative / Regenerative cell therapy, Volume 330 (2007) no. 6-7, pp. 530-533. doi : 10.1016/j.crvi.2007.03.015. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2007.03.015/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Satellite cells in the repair of skeletal muscle

Skeletal muscle undergoes regeneration in response to injury. Mononucleated cells, known as satellite cells, are located under the basal lamina of the multinucleated muscle fibre. When the fibre is damaged these cells become activated, replicate, and then differentiate to form new fibres, thus permitting muscle repair (Fig. 1) [1]. However, in recent years, the role of muscle-derived satellite cells in this process has been challenged and it has been proposed that cells from other sources such as bone marrow may be contributors of adult muscle stem cells [2]. It has now become clear that this is not the case [3] and experiments with purified satellite cells have demonstrated their efficiency in muscle repair as well as their capacity to self renew [4,5]. Satellite cells are marked by the expression of Pax7, and also in many muscles of its paralogue, Pax3. We targeted the mouse Pax3 gene with a GFP reporter sequence, which permitted us to isolate satellite cells by flow cytometry [5]. Clonal analysis demonstrated their myogenicity in culture. Grafting experiments into mdx nude mice, that lack dystrophin and undergo continuous regeneration in an attempt to repair the muscle damage which this entails, resulted in the reconstitution of dystrophin positive fibres. Quantitative estimation of grafting efficiency showed that this was much more efficient than with previously used crude muscle cell preparations (×100) or with purified satellite cells that had been expanded in culture prior to grafting (×10). Furthermore, the presence of GFP positive satellite cells demonstrated the reconstitution of the progenitor cell population.

Fig. 1

The role of Pax3 and Pax7 in directing skeletal muscle progenitor cells into the myogenic programme and in ensuring progenitor cell survival. Myf5 and MyoD are myogenic determination genes.

2 Pax function in satellite cells

In Pax7 mutant mice, satellite cells are lost and regeneration is compromised. This was first thought to be due to a failure of satellite cell specification [6]. However, some satellite cells are present [7], and we have shown that there is progressive loss of satellite cells after birth, such that at postnatal day two, 80% of the normal number is present whereas by day ten this has fallen to 10% [8]. Postnatal muscle growth is affected, as well as regeneration. Satellite cells undergo apoptosis already at birth, as evidenced by labelling with an antibody to activated caspase 3 on sections of mutant skeletal muscle. Mutant satellite cells in culture also show cell cycle perturbations. The anti-apoptotic role of Pax7 is confirmed by experiments in which a dominant negative form is introduced into normal satellite cells. We had previously shown that Pax3 functions as a transcriptional activator during myogenesis by replacing Pax3 with a PAX3-FKHR allele that encodes the DNA binding domain of Pax3, fused to the strong transcriptional activation domain of FKHR (Foxo1a); this fusion protein saves the myogenic phenotype of the mutant [9]. Furthermore, replacement of Pax3 by a Pax7 coding sequence shows that Pax7 also functions as an activator [10]. We therefore used a sequence encoding a fusion protein with the DNA binding domains of Pax7 or Pax3, followed by the transcriptional repression domain of Engrailed, to produce dominant negative forms of these factors (Pax7-DN, Pax3-DN). These sequences were introduced into adenoviral vectors with a GFP reporter. Infected satellite cells were separated by flow cytometry and tested for propidium iodide uptake as an indicator of cell death. Pax7-DN had a marked apoptotic effect, whereas Pax3-DN did not. This is consistent with the apoptosis of satellite cells in the Pax7 mutant, where expression of Pax3 does not save the phenotype [8].

In contrast, Pax3 and Pax7 have similar targets in the context of myogenesis. These factors are key upstream regulators of the myogenic programme (see [11]). Introduction of Pax3-DN or Pax7-DN into satellite cells prevents expression of the myogenic determination gene, MyoD. The other key myogenic determination gene, Myf5, which is already transcribed at a low level in quiescent satellite cells [12], continues to be expressed. This permits activation of myogenin encoding the member of this transcription factor family that controls muscle differentiation, leading to the formation of multinucleated fibres. In satellite cells from Myf5GFP/GFP mutant mice [13], myogenesis occurs, but if they are infected with Pax3/7-DN, myogenin is not expressed and there is no differentiation, confirming that this requires Myf5 or MyoD. This series of experiments [8] leads to the conclusion that in adult satellite cells, Pax3 and Pax7 regulate myogenesis through MyoD (see below).

3 The origin of satellite cells: the formation of skeletal muscle

3.1 The onset of myogenesis in the embryo

The skeletal muscles of the trunk and limbs are derived from somites, segments of paraxial mesoderm that form on either side of the axial structures in the vertebrate embryo (see [14]). As somites mature, the dorsal part retains an epithelial structure, known as the dermomyotome, which is the source of myogenic progenitor cells. Initially these cells delaminate from the edges of the dermomyotome to form the first skeletal muscle, the myotome, immediately under the epithelium, or migrate to more distant sites of myogenesis, such as the developing limbs. The latter process is Pax3 dependent in mammals, while the initial formation of the myotome is orchestrated by Pax3 and the myogenic regulatory genes, Myf5 and Mrf4 [13,15]. These are activated by signalling from the surrounding tissues, as exemplified by Wnt and Shh signalling that directly regulate Myf5 in the epaxial somite [16]. Recently, we have shown that Pax3 directly activates Myf5 in the hypaxial somite and limb buds [17].

3.2 Pax3/Pax7 positive progenitor cells in developing skeletal muscle

As development proceeds, the epithelial structure of the central dermomyotome disintegrates and cells that express Pax3 and Pax7, already present in this domain, enter the myotome [18,19]. Such Pax positive cells are present in all developing skeletal muscle masses at late embryonic and foetal stages [19–22]. Most of these cells are proliferating and do not express skeletal muscle markers. However, chase experiments show that they can enter the myogenic programme, with activation of the myogenic determination genes Myf5 and MyoD, followed by their incorporation into skeletal muscle fibres. Lineage tracing experiments, and notably grafts of quail somites into the chick embryo, demonstrate that all these cells in the trunk and limbs derive from somites. Furthermore, as previously suggested [23], the Pax positive satellite cells of postnatal muscle also come from this source [19,22].

In Pax3/Pax7 double-mutant mouse embryos, which lack both Pax3 and Pax7, there is a major deficit in skeletal muscle; only the early myotome and its derivatives are formed [20]. The Pax3/Pax7 positive population of cells do not activate Myf5 or MyoD and fail to enter the myogenic programme. They die, or they become incorporated into other tissues. In this major population of skeletal muscle progenitor cells, prior to birth, Pax3 and Pax7 regulate both myogenic determination genes, and Pax3 as well as Pax7 ensures cell survival.

In the perinatal period, these cells take up a satellite cell position under the basal lamina, which begins to form around muscle fibres. At this stage, many of such quiescent progenitor cells transcribe the Myf5 gene, suggesting that activated, Pax positive-, cells that had begun to enter the myogenic programme revert to a more progenitor-like state, as quiescent satellite cells (Fig. 2). In these cells, Myf5 expression is no longer under Pax control. Furthermore, the anti-apoptotic function of Pax7 compared to Pax3 is now predominant, again perhaps reflecting the shift in progenitor cell status. At earlier stages, the Pax positive cells either self-renew as stem cells or make muscle. The postnatal satellite cells efficiently repair normal damage, but progressively fail to do so when confronted with the degenerative diseases of skeletal muscle. This may reflect the preponderance of progenitor cells that have lost some stem cell like properties, as a result of partial myogenic engagement.

Fig. 2

Schematic representation of progenitor cell self-renewal, and myogenic differentiation in the embryo and the adult.

3.3 Regulation of survival and tissue determination in stem cells

Finally, it is important to underline the significance of the regulation of stem cells' survival by the same factors that control the entry of these cells into a tissue differentiation programme. In the absence of such factors, undirected stem cells present a danger for the organism, and this is prevented by their death.

Acknowledgements

The author thanks the members of her laboratory for their contributions to the work discussed here. Work on skeletal muscle in M.B.'s laboratory is supported by the ‘Institut Pasteur’, CNRS, AFM, and the EuroStemCell, Cells into Organs and MYORES integrated projects, and networks of excellence of the E.U.


Bibliographie

[1] S.B. Charge; M.A. Rudnicki Cellular and molecular regulation of muscle regeneration, Physiol. Rev., Volume 84 (2004), pp. 209-238

[2] M.A. LaBarge; H.M. Blau Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury, Cell, Volume 111 (2002), pp. 589-601

[3] R.I. Sherwood; J.L. Christensen; I.M. Conboy; M.J. Conboy; T.A. Rando; I.L. Weissman; A.J. Wagers Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle, Cell, Volume 119 (2004), pp. 543-554

[4] C.A. Collins; I. Olsen; P.S. Zammit; L. Heslop; A. Petrie; T.A. Partridge; J.E. Morgan Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche, Cell, Volume 122 (2005), pp. 289-301

[5] D. Montarras; J. Morgan; C. Collins; F. Relaix; A. Cumano; T. Partridge; M. Buckingham Direct isolation of muscle satellite cells demonstrates their major role in skeletal muscle self renewal, Science, Volume 309 (2005), pp. 2064-2067

[6] P. Seale; S.A. Sabourin; A. Girgis-Gabardo; A. Mansouri; P. Gruss; M.A. Rudnicki Pax7 is required for the specification of myogenic satellite cells, Cell, Volume 102 (2000), pp. 777-786

[7] S. Oustanina; G. Hause; T. Braun Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification, EMBO J., Volume 23 (2004), pp. 3430-3439

[8] F. Relaix; D. Montarras; S. Zaffran; B. Gayraud-Morel; D. Rocancourt; S. Tajbakhsh; A. Mansouri; A. Cumano; M. Buckingham Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, J. Cell Biol., Volume 172 (2006), pp. 91-102

[9] F. Relaix; M. Polimeni; D. Rocancourt; C. Ponzetto; B.W. Schäfer; M. Buckingham The transcriptional activator PAX3-FKHR rescues the Pax3 mutant phenotype and induces a gain of function phenotype with ligand-independent activation of Met signaling, Genes Dev., Volume 17 (2003), pp. 2950-2965

[10] F. Relaix; D. Rocancourt; M. Mansouri; M. Buckingham Divergent functions of murine Pax3 and Pax7 in limb muscle development, Genes Dev., Volume 18 (2004), pp. 1088-1105

[11] M. Buckingham Myogenic progenitor cells and skeletal myogenesis in vertebrates, Curr. Opin. Genet. Dev., Volume 16 (2006), pp. 525-532

[12] J.R. Beauchamp; L. Heslop; D.S.W. Yu; R.G. Kelly; T. Tajbakhsh; M.E. Buckingham; T.A. Partridge; P.S. Zammit Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells, J. Cell Biol., Volume 151 (2000), pp. 1221-1233

[13] L. Kassar-Duchossoy; B. Gayraud-Morel; D. Gomès; D. Rocancourt; M. Buckingham; V. Shinin; S. Tajbakhsh Mrf4 directs skeletal muscle identity in Myf5: MyoD double mutant mice, Nature, Volume 431 (2004), pp. 466-471

[14] S. Tajbakhsh; M. Buckingham The birth of muscle progenitor cells in the mouse: spatiotemporal considerations (C.P. Ordahl, ed.), Current Topics in Developmental Biology, Somitogenesis, vol. 47, Academic Press, 2000, pp. 225-268

[15] S. Tajbakhsh; D. Rocancourt; G. Cossu; M. Buckingham Redefining the genetic hierarchies controlling skeletal myogenesis: Pax3 and Myf-5 act upstream of MyoD, Cell, Volume 89 (1997), pp. 127-138

[16] U. Borello; B. Berarducci; P. Murphy; L. Bajard; V. Buffa; S. Piccolo; M. Buckingham; G. Cossu The Wnt/β-catenin pathway regulates the Shh-mediated Myf5 activation during somitogenesis, Development, Volume 133 (2006), pp. 3723-3732

[17] L. Bajard; F. Relaix; M. Lagha; D. Rocancourt; P. Daubas; M.E. Buckingham A distinct genetic hierarchy controls hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb, Genes Dev., Volume 20 (2006), pp. 2450-2464

[18] R. Ben-Yair; C. Kalcheim Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates, Development, Volume 132 (2005), pp. 689-701

[19] J. Gros; M. Manceau; V. Thomé; C. Marcelle A common somitic origin for embryonic muscle progenitors and satellite cells, Nature, Volume 435 (2005), pp. 954-958

[20] F. Relaix; D. Rocancourt; A. Mansouri; M.A. Buckingham A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, Volume 435 (2005), pp. 948-953

[21] L. Kassar-Duchossoy; E. Giacone; B. Gayraud-Morel; A. Jory; D. Gomes; S. Tajbakhsh Pax3/Pax7 mark a novel population of primitive myogenic cells during development, Genes Dev., Volume 19 (2005), pp. 1426-1431

[22] J. Schienda; K.A. Engleka; S. Jun; M.S. Hansen; J.A. Epstein; C.J. Tabin; L.M. Kunkel; G. Kardon Somitic origin of limb muscle satellite and side population cells, Proc. Natl Acad. Sci. USA, Volume 103 (2006), pp. 945-950

[23] O. Armand; A.M. Boutineau; A. Mauger; M.P. Pantou; M. Kieny Arch. Anat. Microsc. Morphol. Exp., 72 (1983), pp. 163-181


Cité par

  • Yangyang Meng; Wei Zeng; Xin Zhu; Lingsheng Bao; Yaxiong Pan; Honghui Li; Jianshe Zhang; Lusha Liu; Zexia Gao; Zhenyu Du; Wuying Chu The Role of Twist2 in Myoblast Proliferation, Fusion, and Its Impact on Muscle Structure During the Growth of Chinese Perch (Siniperca chuatsi), Animals, Volume 15 (2025) no. 8, p. 1177 | DOI:10.3390/ani15081177
  • Elisa Duranti The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis: State of the Art 2025, Muscles, Volume 4 (2025) no. 3, p. 22 | DOI:10.3390/muscles4030022
  • Juan M. Fernández-Costa; Xiomara Fernández-Garibay; Javier Ramón-Azcón; Ainoa Tejedera-Villafranca Fundamentals and mechanisms, Multiscale Cell-Biomaterials Interplay in Musculoskeletal Tissue Engineering and Regenerative Medicine (2024), p. 1 | DOI:10.1016/b978-0-323-91821-3.00018-9
  • Yue Lu; Tezin Walji; Benjamin Ravaux; Pratima Pandey; Changsong Yang; Bing Li; Delgermaa Luvsanjav; Kevin H. Lam; Ruihui Zhang; Zhou Luo; Chuanli Zhou; Christa W. Habela; Scott B. Snapper; Rong Li; David J. Goldhamer; David W. Schmidtke; Duojia Pan; Tatyana M. Svitkina; Elizabeth H. Chen Spatiotemporal coordination of actin regulators generates invasive protrusions in cell–cell fusion, Nature Cell Biology, Volume 26 (2024) no. 11, p. 1860 | DOI:10.1038/s41556-024-01541-5
  • Qingjie Zeng; Zhi‐Qiang Du Advances in the discovery of genetic elements underlying longissimus dorsi muscle growth and development in the pig, Animal Genetics, Volume 54 (2023) no. 6, p. 709 | DOI:10.1111/age.13365
  • Honghao Zhao; Jasmine Chong; Dapeng Li; Jianguo Xia Integrated multiple-omics reveals the regulatory mechanism underlying the effects of artificial feed and grass feeding on growth and muscle quality of grass carp (Ctenopharyngodon idellus), Aquaculture, Volume 562 (2023), p. 738808 | DOI:10.1016/j.aquaculture.2022.738808
  • Juliana Afonso; Woo Jun Shim; Mikael Boden; Marina Rufino Salinas Fortes; Wellison Jarles da Silva Diniz; Andressa Oliveira de Lima; Marina Ibelli Pereira Rocha; Tainã Figueiredo Cardoso; Jennifer Jessica Bruscadin; Caio Fernando Gromboni; Ana Rita Araujo Nogueira; Gerson Barreto Mourão; Adhemar Zerlotini; Luiz Lehmann Coutinho; Luciana Correia de Almeida Regitano Repressive epigenetic mechanisms, such as the H3K27me3 histone modification, were predicted to affect muscle gene expression and its mineral content in Nelore cattle, Biochemistry and Biophysics Reports, Volume 33 (2023), p. 101420 | DOI:10.1016/j.bbrep.2023.101420
  • Elisa Duranti; Chiara Villa Muscle Involvement in Amyotrophic Lateral Sclerosis: Understanding the Pathogenesis and Advancing Therapeutics, Biomolecules, Volume 13 (2023) no. 11, p. 1582 | DOI:10.3390/biom13111582
  • Raphael Blain; Gérard Couly; Eimad Shotar; Joséphine Blévinal; Maryne Toupin; Anais Favre; Ali Abjaghou; Megumi Inoue; Edwin Hernández-Garzón; Frédéric Clarençon; Frédéric Chalmel; Séverine Mazaud-Guittot; Paolo Giacobini; Yorick Gitton; Alain Chédotal A tridimensional atlas of the developing human head, Cell, Volume 186 (2023) no. 26, p. 5910 | DOI:10.1016/j.cell.2023.11.013
  • Priti S. Atmakuru; Jyotsna Dhawan The cilium–centrosome axis in coupling cell cycle exit and cell fate, Journal of Cell Science, Volume 136 (2023) no. 9 | DOI:10.1242/jcs.260454
  • Mark Baguma-Nibasheka; Boris Kablar Mechanics of Lung Development, Roles of Skeletal Muscle in Organ Development, Volume 236 (2023), p. 131 | DOI:10.1007/978-3-031-38215-4_6
  • Mingming Lei; Xiaolu Qu; Zichun Dai; Rong Chen; Huanxi Zhu; Zhendan Shi Effects of Caponization on Growth Performance and Carcass Composition of Yangzhou Ganders, Animals, Volume 12 (2022) no. 11, p. 1364 | DOI:10.3390/ani12111364
  • George Philipp Franz; Katrin Tönißen; Alexander Rebl; Philipp Lutze; Bianka Grunow The expression of myogenic gene markers during the embryo‐larval‐transition in Pikeperch ( Sander lucioperca ), Aquaculture Research, Volume 53 (2022) no. 13, p. 4767 | DOI:10.1111/are.15969
  • Xiaomei Sun; Yan Kang; Mingxun Li; Yongjun Li; Jiuzhou Song The emerging regulatory mechanisms and biological function of circular RNAs in skeletal muscle development, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, Volume 1865 (2022) no. 8, p. 194888 | DOI:10.1016/j.bbagrm.2022.194888
  • Rokas Mikšiūnas; Siegfried Labeit; Daiva Bironaitė The Effect of Heat Shock on Myogenic Differentiation of Human Skeletal-Muscle-Derived Mesenchymal Stem/Stromal Cells, Cells, Volume 11 (2022) no. 20, p. 3209 | DOI:10.3390/cells11203209
  • Elisabeth Pechriggl; Michael Blumer; R. Shane Tubbs; Łukasz Olewnik; Marko Konschake; René Fortélny; Hannes Stofferin; Hanne Rose Honis; Sara Quinones; Eva Maranillo; José Sanudo Embryology of the Abdominal Wall and Associated Malformations—A Review, Frontiers in Surgery, Volume 9 (2022) | DOI:10.3389/fsurg.2022.891896
  • Laura Yedigaryan; Maurilio Sampaolesi Skeletal Muscle–Extricated Extracellular Vesicles: Facilitators of Repair and Regeneration, Handbook of Stem Cell Therapy (2022), p. 1 | DOI:10.1007/978-981-16-6016-0_49-1
  • Laura Yedigaryan; Maurilio Sampaolesi Skeletal Muscle–Extricated Extracellular Vesicles: Facilitators of Repair and Regeneration, Handbook of Stem Cell Therapy (2022), p. 1097 | DOI:10.1007/978-981-19-2655-6_49
  • Zhe Chen; Xiaolu Qu; Chungang Feng; Binbin Guo; Huanxi Zhu; Leyan Yan Monochromatic Green Light Stimulation during Incubation Alters Hepatic Glucose Metabolism That Improves Embryonic Development in Yangzhou Goose Eggs, International Journal of Molecular Sciences, Volume 24 (2022) no. 1, p. 405 | DOI:10.3390/ijms24010405
  • Muhamad Azhar; Bantari Wisynu Kusuma Wardhani; Editha Renesteen The regenerative potential of Pax3/Pax7 on skeletal muscle injury, Journal of Genetic Engineering and Biotechnology, Volume 20 (2022) no. 1, p. 143 | DOI:10.1186/s43141-022-00429-x
  • Mohamed I. Elashry; Mebrie Kinde; Michele C. Klymiuk; Asmaa Eldaey; Sabine Wenisch; Stefan Arnhold The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice, Stem Cell Research Therapy, Volume 13 (2022) no. 1 | DOI:10.1186/s13287-022-02730-5
  • Sami H. A. Sultan; Carlene Dyer; Robert D. Knight Notch Signaling Regulates Muscle Stem Cell Homeostasis and Regeneration in a Teleost Fish, Frontiers in Cell and Developmental Biology, Volume 9 (2021) | DOI:10.3389/fcell.2021.726281
  • Thomas Cahill; Henry Cope; Joseph J. Bass; Eliah G. Overbey; Rachel Gilbert; Willian Abraham da Silveira; Amber M. Paul; Tejaswini Mishra; Raúl Herranz; Sigrid S. Reinsch; Sylvain V. Costes; Gary Hardiman; Nathaniel J. Szewczyk; Candice G. T. Tahimic Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight, International Journal of Molecular Sciences, Volume 22 (2021) no. 17, p. 9470 | DOI:10.3390/ijms22179470
  • Mengya Wang; Weihao Song; Chaofan Jin; Kejia Huang; Qianwen Yu; Jie Qi; Quanqi Zhang; Yan He Pax3 and Pax7 Exhibit Distinct and Overlapping Functions in Marking Muscle Satellite Cells and Muscle Repair in a Marine Teleost, Sebastes schlegelii, International Journal of Molecular Sciences, Volume 22 (2021) no. 7, p. 3769 | DOI:10.3390/ijms22073769
  • Juan M. Fernández-Costa; Xiomara Fernández-Garibay; Ferran Velasco-Mallorquí; Javier Ramón-Azcón Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies, Journal of Tissue Engineering, Volume 12 (2021) | DOI:10.1177/2041731420981339
  • P.M. Som; P.J. Taub; B.N. Delman Revisiting the Embryology of the Facial Muscles, the Superficial Musculoaponeurotic System, and the Facial Nerve, Neurographics, Volume 11 (2021) no. 3, p. 200 | DOI:10.3174/ng.1900035
  • Kirankumar B. Gudagudi; Kathryn H. Myburgh Methods to MimicIn VivoMuscle Cell Biology in Primary Human Myoblasts Using Quiescence as a Guidepost in Regenerative Medicine Research, OMICS: A Journal of Integrative Biology, Volume 25 (2021) no. 3, p. 176 | DOI:10.1089/omi.2020.0211
  • B.B. Guo; Z.C. Dai; Y.H. Ren; H.X. Zhu; X.B. Shao; A.D. Sun; Z.D. Shi Improvement of goose embryonic and muscular developments by wider angle egg turning during incubation and the regulatory mechanisms, Poultry Science, Volume 100 (2021) no. 12, p. 101477 | DOI:10.1016/j.psj.2021.101477
  • F. K. Jones; O. Kehoe; A. Daroszewska; R. J. van’t Hof; A. Pisconti Syndecan-3: A Signaling Conductor in the Musculoskeletal System, Proteoglycans in Stem Cells, Volume 9 (2021), p. 153 | DOI:10.1007/978-3-030-73453-4_7
  • Fan Li; Cong Yin; Zewei Ma; Kelin Yang; Lijuan Sun; Chen Duan; Tao Wang; Abdelaziz Hussein; Lina Wang; Xiaotong Zhu; Ping Gao; Qianyun Xi; Yongliang Zhang; Gang Shu; Songbo Wang; Qingyan Jiang PHD3 mediates denervation skeletal muscle atrophy through Nf‐κB signal pathway, The FASEB Journal, Volume 35 (2021) no. 4 | DOI:10.1096/fj.202002049r
  • Kaitlin Weskamp; Bradley B. Olwin; Roy Parker Post-Transcriptional Regulation in Skeletal Muscle Development, Repair, and Disease, Trends in Molecular Medicine, Volume 27 (2021) no. 5, p. 469 | DOI:10.1016/j.molmed.2020.12.002
  • Rui Chen; Si Lei; Ting Jiang; Jie Zeng; Shanyao Zhou; Yanling She Roles of lncRNAs and circRNAs in regulating skeletal muscle development, Acta Physiologica, Volume 228 (2020) no. 2 | DOI:10.1111/apha.13356
  • Chuang-Yu Lin; Chun-Yin Hou; Chung-Min Tsai; Hsi Chang Muscle Type from which Satellite Cells are Derived Plays a Role in their Damage Response, Chinese Journal of Physiology, Volume 63 (2020) no. 3, p. 113 | DOI:10.4103/cjp.cjp_98_19
  • Konstantinos Papanikolaou; Aristidis S. Veskoukis; Dimitrios Draganidis; Ioannis Baloyiannis; Chariklia K. Deli; Athanasios Poulios; Athanasios Z. Jamurtas; Ioannis G. Fatouros Redox-dependent regulation of satellite cells following aseptic muscle trauma: Implications for sports performance and nutrition, Free Radical Biology and Medicine, Volume 161 (2020), p. 125 | DOI:10.1016/j.freeradbiomed.2020.10.001
  • Dathe Z. Benissan-Messan; Hua Zhu; Weina Zhong; Tao Tan; Jianjie Ma; Peter H. U. Lee Multi-Cellular Functions of MG53 in Muscle Calcium Signaling and Regeneration, Frontiers in Physiology, Volume 11 (2020) | DOI:10.3389/fphys.2020.583393
  • Namakkal S. Rajasekaran; Sandeep Balu Shelar; Dean P. Jones; John R. Hoidal Reductive stress impairs myogenic differentiation, Redox Biology, Volume 34 (2020), p. 101492 | DOI:10.1016/j.redox.2020.101492
  • Xinyue Wang; Tianpei Shi; Zhida Zhao; Haobin Hou; Li Zhang Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-58349-0
  • Anita Florkowska; Igor Meszka; Magdalena Zawada; Diana Legutko; Tomasz J. Proszynski; Katarzyna Janczyk-Ilach; Wladyslawa Streminska; Maria A. Ciemerych; Iwona Grabowska Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas, Stem Cell Research Therapy, Volume 11 (2020) no. 1 | DOI:10.1186/s13287-020-01742-3
  • Kavitha Mukund; Shankar Subramaniam Skeletal muscle: A review of molecular structure and function, in health and disease, WIREs Systems Biology and Medicine, Volume 12 (2020) no. 1 | DOI:10.1002/wsbm.1462
  • Damian Lewandowski; Magda Dubińska-Magiera; Arnold Garbiec; Małgorzata Daczewska Primary myogenesis in the sand lizard (Lacerta agilis) limb bud, Development Genes and Evolution, Volume 229 (2019) no. 5-6, p. 147 | DOI:10.1007/s00427-019-00635-7
  • Dhananjay Huilgol; Prabhadevi Venkataramani; Saikat Nandi; Sonali Bhattacharjee Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer, Genes, Volume 10 (2019) no. 10, p. 794 | DOI:10.3390/genes10100794
  • Jane Y. Song; Kyriel M. Pineault; Deneen M. Wellik Development, repair, and regeneration of the limb musculoskeletal system, Organ Development, Volume 132 (2019), p. 451 | DOI:10.1016/bs.ctdb.2018.12.011
  • Doaa Aboalola; Victor K. M. Han Insulin-Like Growth Factor Binding Protein-6 Promotes the Differentiation of Placental Mesenchymal Stem Cells into Skeletal Muscle Independent of Insulin-Like Growth Factor Receptor-1 and Insulin Receptor, Stem Cells International, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/9245938
  • Fengyuan Chen; Jiajian Zhou; Yuying Li; Yu Zhao; Jie Yuan; Yang Cao; Lijun Wang; Zongkang Zhang; Baoting Zhang; Chi Chiu Wang; Tom H Cheung; Zhenguo Wu; Carmen Chak‐Lui Wong; Hao Sun; Huating Wang YY 1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells, The EMBO Journal, Volume 38 (2019) no. 10 | DOI:10.15252/embj.201899727
  • Karolina Archacka; Edyta Brzoska; Maria A. Ciemerych; Areta M. Czerwinska; Iwona Grabowska; Kamil K. Kowalski; Malgorzata Zimowska Pluripotent and Mesenchymal Stem Cells—Challenging Sources for Derivation of Myoblast, Cardiac Cell Culture Technologies (2018), p. 109 | DOI:10.1007/978-3-319-70685-6_6
  • Mélanie Pélisse; Audrey Der Vartanian; Agnès Germot; Abderrahman Maftah Protein O-Glucosyltransferase 1 Expression Influences Formation of Differentiated Myotubes in C2C12 Cell Line, DNA and Cell Biology, Volume 37 (2018) no. 4, p. 359 | DOI:10.1089/dna.2017.4052
  • Jacob L. Brown; David E. Lee; Megan E. Rosa‐Caldwell; Lemuel A. Brown; Richard A. Perry; Wesley S. Haynie; Kendra Huseman; Kavithalakshmi Sataranatarajan; Holly Van Remmen; Tyrone A. Washington; Michael P. Wiggs; Nicholas P. Greene Protein imbalance in the development of skeletal muscle wasting in tumour‐bearing mice, Journal of Cachexia, Sarcopenia and Muscle, Volume 9 (2018) no. 5, p. 987 | DOI:10.1002/jcsm.12354
  • Leah E. Worton; Edith M. Gardiner; Ronald Y. Kwon; Leah M. Downey; Brandon J. Ausk; Steven D. Bain; Ted S. Gross; Aldrin V. Gomes Botulinum toxin A-induced muscle paralysis stimulates Hdac4 and differential miRNA expression, PLOS ONE, Volume 13 (2018) no. 11, p. e0207354 | DOI:10.1371/journal.pone.0207354
  • Séverine Lamon; Evelyn Zacharewicz; Lauren C. Butchart; Liliana Orellana; Jasmine Mikovic; Miranda D. Grounds; Aaron P. Russell MicroRNA expression patterns in post-natal mouse skeletal muscle development, BMC Genomics, Volume 18 (2017) no. 1 | DOI:10.1186/s12864-016-3399-2
  • Kamila Delaney; Paulina Kasprzycka; Maria Anna Ciemerych; Malgorzata Zimowska The role of TGF‐β1 during skeletal muscle regeneration, Cell Biology International, Volume 41 (2017) no. 7, p. 706 | DOI:10.1002/cbin.10725
  • Nuredin Bakhtiari URSOLIC ACID INDUCES NEOMYOGENESIS THROUGH HYPERPLASIA AND INCREASING OF SATELLITE CELLS NUMBER IN MICE SKELETAL MUSCLE, Journal of Stem cell Regenerative Biology, Volume 3 (2017) no. 1, p. 1 | DOI:10.15436/2471-0598.16.015
  • Christopher R. S. Banerji; Maryna Panamarova; Husam Hebaishi; Robert B. White; Frédéric Relaix; Simone Severini; Peter S. Zammit PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle, Nature Communications, Volume 8 (2017) no. 1 | DOI:10.1038/s41467-017-01200-4
  • Rabeea Hazim Mohammed; Helen Anderton; John Michael Brameld; Dylan Sweetman; Michael Schubert Effects of insulin like growth factors on early embryonic chick limb myogenesis, PLOS ONE, Volume 12 (2017) no. 10, p. e0185775 | DOI:10.1371/journal.pone.0185775
  • Doaa Aboalola; Victor K. M. Han Insulin-Like Growth Factor Binding Protein-6 Alters Skeletal Muscle Differentiation of Human Mesenchymal Stem Cells, Stem Cells International, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/2348485
  • Doaa Aboalola; Victor K. M. Han Different Effects of Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-2 on Myogenic Differentiation of Human Mesenchymal Stem Cells, Stem Cells International, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/8286248
  • Nuredin Bakhtiari; Saman Hosseinkhani; Masoud Soleimani; Roohullah Hemmati; Ali Noori-Zadeh; Mohammad Javan; Amin Tashakor Short-term ursolic acid promotes skeletal muscle rejuvenation through enhancing of SIRT1 expression and satellite cells proliferation, Biomedicine Pharmacotherapy, Volume 78 (2016), p. 185 | DOI:10.1016/j.biopha.2016.01.010
  • M. Asaduzzaman; A.K. Shakur Ahammad; S. Asakawa; S. Kinoshita; S. Watabe 5′-flanking sequences of zebrafish fast myosin heavy chain genes regulate unique expression in the anterior, medial subsection and posterior tail somites of the skeletal muscle, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 191 (2016), p. 1 | DOI:10.1016/j.cbpb.2015.08.009
  • Clémence Martinet; Paul Monnier; Yann Louault; Matthieu Benard; Anne Gabory; Luisa Dandolo H19 controls reactivation of the imprinted gene network during muscle regeneration, Development, Volume 143 (2016) no. 6, p. 962 | DOI:10.1242/dev.131771
  • Sheida Azizi; Mohammad Ali Nematollahi; Bagher Mojazi Amiri; Emilio J. Vélez; Cristina Salmerón; Shu Jin Chan; Isabel Navarro; Encarnación Capilla; Joaquim Gutiérrez IGF-I and IGF-II effects on local IGF system and signaling pathways in gilthead sea bream (Sparus aurata) cultured myocytes, General and Comparative Endocrinology, Volume 232 (2016), p. 7 | DOI:10.1016/j.ygcen.2015.11.011
  • Yang Dai; Yi Min Wang; Wei Ran Zhang; Xin Feng Liu; Xin Li; Xiang Bin Ding; Hong Guo The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells, In Vitro Cellular Developmental Biology - Animal, Volume 52 (2016) no. 1, p. 27 | DOI:10.1007/s11626-015-9953-4
  • K. D. Sinclair; K. M. D. Rutherford; J. M. Wallace; J. M. Brameld; R. Stöger; R. Alberio; D. Sweetman; D. S. Gardner; V. E. A. Perry; C. L. Adam; C. J. Ashworth; J. E. Robinson; C. M. Dwyer Epigenetics and developmental programming of welfare and production traits in farm animals, Reproduction, Fertility and Development, Volume 28 (2016) no. 10, p. 1443 | DOI:10.1071/rd16102
  • Stéphane Biacchesi; Grégory Jouvion; Emilie Mérour; Abdelhak Boukadiri; Marion Desdouits; Simona Ozden; Michel Huerre; Pierre-Emmanuel Ceccaldi; Michel Brémont Rainbow trout (Oncorhynchus mykiss) muscle satellite cells are targets of salmonid alphavirus infection, Veterinary Research, Volume 47 (2016) no. 1 | DOI:10.1186/s13567-015-0301-1
  • Minli Yu; Huan Wang; Yali Xu; Debing Yu; Dongfeng Li; Xiuhong Liu; Wenxing Du Insulin‐like growth factor‐1 (IGF‐1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway, Cell Biology International, Volume 39 (2015) no. 8, p. 910 | DOI:10.1002/cbin.10466
  • Ryo Ogawa; Yuran Ma; Masahiko Yamaguchi; Takahito Ito; Yoko Watanabe; Takuji Ohtani; Satoshi Murakami; Shizuka Uchida; Piera De Gaspari; Akiyoshi Uezumi; Miki Nakamura; Yuko Miyagoe-Suzuki; Kazutake Tsujikawa; Naohiro Hashimoto; Thomas Braun; Teruyuki Tanaka; Shin'ichi Takeda; Hiroshi Yamamoto; So-ichiro Fukada Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration, Development, Volume 142 (2015) no. 1, p. 51 | DOI:10.1242/dev.112557
  • Nuredin Bakhtiari; Saman Hosseinkhani; Amin Tashakor; Roohullah Hemmati Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation, Medical Hypotheses, Volume 85 (2015) no. 1, p. 1 | DOI:10.1016/j.mehy.2015.02.014
  • Audrey Der Vartanian; Aymeric Audfray; Bilal Al Jaam; Mathilde Janot; Sébastien Legardinier; Abderrahman Maftah; Agnès Germot Protein O-Fucosyltransferase 1 Expression Impacts Myogenic C2C12 Cell Commitment via the Notch Signaling Pathway, Molecular and Cellular Biology, Volume 35 (2015) no. 2, p. 391 | DOI:10.1128/mcb.00890-14
  • Qin Pu; Ketan Patel; Ruijin Huang The Lateral Plate Mesoderm: A Novel Source of Skeletal Muscle, Vertebrate Myogenesis, Volume 56 (2015), p. 143 | DOI:10.1007/978-3-662-44608-9_7
  • Ning Liu; Rhonda Bassel-Duby Regulation of Skeletal Muscle Development and Disease by microRNAs, Vertebrate Myogenesis, Volume 56 (2015), p. 165 | DOI:10.1007/978-3-662-44608-9_8
  • Wang Li‐Li; Peng Zhao‐Hong; Fan Yang; Li Lian‐Yong; Wu Di; Zhang Yi; Miao Jia‐Ning; Bai Yu‐Zuo; Yuan Zheng‐Wei; Wang Wei‐Lin; Sun Kai‐Lai Dynamic expression of molecules that control limb muscle development including Fhl1 in hind limbs of different gestational age, APMIS, Volume 122 (2014) no. 9, p. 766 | DOI:10.1111/apm.12217
  • Antonio Musarò The Basis of Muscle Regeneration, Advances in Biology, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/612471
  • Dong Chen; Zhiyong Chen; Yuning Zhang; Chanyoung Park; Ahmed Al-Omari; Gilbert W. Moeckel Role of medullary progenitor cells in epithelial cell migration and proliferation, American Journal of Physiology-Renal Physiology, Volume 307 (2014) no. 1, p. F64 | DOI:10.1152/ajprenal.00547.2013
  • S. Zhang; R.L. Han; Z.Y. Gao; S.K. Zhu; Y.D. Tian; G.R. Sun; X.T. Kang A novel 31-bp indel in thepaired box 7(PAX7) gene is associated with chicken performance traits, British Poultry Science, Volume 55 (2014) no. 1, p. 31 | DOI:10.1080/00071668.2013.860215
  • Irene Marchesi; Antonio Giordano; Luigi Bagella Roles of enhancer of zeste homolog 2: From skeletal muscle differentiation to rhabdomyosarcoma carcinogenesis, Cell Cycle, Volume 13 (2014) no. 4, p. 516 | DOI:10.4161/cc.27921
  • M G Dionyssiou; S Ehyai; E Avrutin; M K Connor; J C McDermott Glycogen synthase kinase 3β represses MYOGENIN function in alveolar rhabdomyosarcoma, Cell Death Disease, Volume 5 (2014) no. 2, p. e1094 | DOI:10.1038/cddis.2014.58
  • Sumit K. Dey; Shekhar Saha; Provas Das; Mahua R. Das; Siddhartha S. Jana Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes, Experimental Cell Research, Volume 326 (2014) no. 1, p. 68 | DOI:10.1016/j.yexcr.2014.05.015
  • Danielle Markle Price; Felicia L. Lane; Jocelyn B. Craig; Gabriel Nistor; Saba Motakef; Quynh-Ahn Pham; Hans Keirstead The Effect of Age and Medical Comorbidities on In Vitro Myoblast Expansion in Women With and Without Pelvic Organ Prolapse, Female Pelvic Medicine Reconstructive Surgery, Volume 20 (2014) no. 5, p. 281 | DOI:10.1097/spv.0000000000000064
  • O. Pansarasa; D. Rossi; A. Berardinelli; C. Cereda Amyotrophic Lateral Sclerosis and Skeletal Muscle: An Update, Molecular Neurobiology, Volume 49 (2014) no. 2, p. 984 | DOI:10.1007/s12035-013-8578-4
  • Toshiaki Takahashi; Florian Friedmacher; Hiromizu Takahashi; Alejandro Daniel Hofmann; Prem Puri Myogenin gene expression is not altered in the developing diaphragm of nitrofen-induced congenital diaphragmatic hernia, Pediatric Surgery International, Volume 30 (2014) no. 9, p. 901 | DOI:10.1007/s00383-014-3557-z
  • Thanh Nguyen; Jeff M. Baker; Joyce Obeid; Sandeep Raha; Gianni Parise; Linda Pedder; Brian W. Timmons The effects of resting and exercise serum from children with cystic fibrosis on C2C12 myoblast proliferation in vitro, Physiological Reports, Volume 2 (2014) no. 6, p. e12042 | DOI:10.14814/phy2.12042
  • Jaap G. Neels; Paul A. Grimaldi Physiological Functions of Peroxisome Proliferator-Activated Receptor β, Physiological Reviews, Volume 94 (2014) no. 3, p. 795 | DOI:10.1152/physrev.00027.2013
  • Michael Shelton; Jeff Metz; Jun Liu; Richard L. Carpenedo; Simon-Pierre Demers; William L. Stanford; Ilona S. Skerjanc Derivation and Expansion of PAX7-Positive Muscle Progenitors from Human and Mouse Embryonic Stem Cells, Stem Cell Reports, Volume 3 (2014) no. 3, p. 516 | DOI:10.1016/j.stemcr.2014.07.001
  • Lucia Guerrero; Pedro Villar; Lidia Martínez; Claudio Badia‐Careaga; Juan J. Arredondo; Margarita Cervera In vivo cell tracking of mouse embryonic myoblasts and fast fibers during development, genesis, Volume 52 (2014) no. 9, p. 793 | DOI:10.1002/dvg.22796
  • Laura Barberi; Bianca Maria Scicchitano; Manuela De Rossi; Anne Bigot; Stephanie Duguez; Aurore Wielgosik; Claire Stewart; Jamie McPhee; Maria Conte; Marco Narici; Claudio Franceschi; Vincent Mouly; Gillian Butler-Browne; Antonio Musarò Age-dependent alteration in muscle regeneration: the critical role of tissue niche, Biogerontology, Volume 14 (2013) no. 3, p. 273 | DOI:10.1007/s10522-013-9429-4
  • Nadège Zanou; Philippe Gailly Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways, Cellular and Molecular Life Sciences, Volume 70 (2013) no. 21, p. 4117 | DOI:10.1007/s00018-013-1330-4
  • Maud Borensztein; Paul Monnier; Franck Court; Yann Louault; Marie-Anne Ripoche; Laurent Tiret; Zizhen Yao; Stephen J. Tapscott; Thierry Forné; Didier Montarras; Luisa Dandolo Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse, Development, Volume 140 (2013) no. 6, p. 1231 | DOI:10.1242/dev.084665
  • Anna Pistocchi; Germano Gaudenzi; Efrem Foglia; Stefania Monteverde; Artal Moreno-Fortuny; Alessia Pianca; Giulio Cossu; Franco Cotelli; Graziella Messina Conserved and divergent functions of Nfix in skeletal muscle development during vertebrate evolution, Development, Volume 140 (2013) no. 7, p. 1528 | DOI:10.1242/dev.076315
  • Cyril A. Picard; Christophe Marcelle Two distinct muscle progenitor populations coexist throughout amniote development, Developmental Biology, Volume 373 (2013) no. 1, p. 141 | DOI:10.1016/j.ydbio.2012.10.018
  • Drew Kuraitis; Maria Grazia Berardinelli; Erik J. Suuronen; Antonio Musarò A necrotic stimulus is required to maximize matrix-mediated myogenesis in mice, Disease Models Mechanisms (2013) | DOI:10.1242/dmm.011072
  • Hitomi Yamane; Akio Nishikawa Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation, In Vitro Cellular Developmental Biology - Animal, Volume 49 (2013) no. 7, p. 524 | DOI:10.1007/s11626-013-9635-z
  • Mark A. Hornsey; Steven H. Laval; Rita Barresi; Hanns Lochmüller; Kate Bushby Muscular dystrophy in dysferlin-deficient mouse models, Neuromuscular Disorders, Volume 23 (2013) no. 5, p. 377 | DOI:10.1016/j.nmd.2013.02.004
  • Marta Przewoźniak; Iwona Czaplicka; Areta M. Czerwińska; Agnieszka Markowska-Zagrajek; Jerzy Moraczewski; Władysława Stremińska; Katarzyna Jańczyk-Ilach; Maria A. Ciemerych; Edyta Brzoska; Atsushi Asakura Adhesion Proteins - An Impact on Skeletal Myoblast Differentiation, PLoS ONE, Volume 8 (2013) no. 5, p. e61760 | DOI:10.1371/journal.pone.0061760
  • Norma Beatriz Romero; Monica Mezmezian; Anna Fidziańska Main steps of skeletal muscle development in the human, Pediatric Neurology Part III, Volume 113 (2013), p. 1299 | DOI:10.1016/b978-0-444-59565-2.00002-2
  • Allyson J. Merrell; Gabrielle Kardon Development of the diaphragm – a skeletal muscle essential for mammalian respiration, The FEBS Journal, Volume 280 (2013) no. 17, p. 4026 | DOI:10.1111/febs.12274
  • Akatsuki Kubota; Jun Shimizu; Atsushi Iwata; Shoji Tsuji Aberrant expression of myogenin in inclusion body myositis: Immunohistochemical studies of transcription factors regulating myogenesis in inflammatory myopathies, Clinical and Experimental Neuroimmunology, Volume 3 (2012) no. 3, p. 129 | DOI:10.1111/cen3.12000
  • Helen P. Makarenkova; Robyn Meech Barx Homeobox Family in Muscle Development and Regeneration, International Review of Cell and Molecular Biology Volume 297, Volume 297 (2012), p. 117 | DOI:10.1016/b978-0-12-394308-8.00004-2
  • Sara L. Al-Musawi; Neil C. Stickland; Stéphanie A. M. Bayol In ovotemperature manipulation differentially influences limb musculoskeletal development in two lines of chick embryos selected for divergent growth rates, Journal of Experimental Biology, Volume 215 (2012) no. 9, p. 1594 | DOI:10.1242/jeb.068791
  • Clara De Palma; Emilio Clementi Nitric Oxide in Myogenesis and Therapeutic Muscle Repair, Molecular Neurobiology, Volume 46 (2012) no. 3, p. 682 | DOI:10.1007/s12035-012-8311-8
  • Ning Liu; Rhonda Bassel-Duby Regulation of Skeletal Muscle Development and Function by microRNAs, Muscle (2012), p. 871 | DOI:10.1016/b978-0-12-381510-1.00061-2
  • Raquel Manzano; Janne M. Toivonen; Ana Cristina Calvo; Sara Oliván; Pilar Zaragoza; Maria Jesús Muñoz; Didier Montarras; Rosario Osta Quantity and Activation of Myofiber-Associated Satellite Cells in a Mouse Model of Amyotrophic Lateral Sclerosis, Stem Cell Reviews and Reports, Volume 8 (2012) no. 1, p. 279 | DOI:10.1007/s12015-011-9268-0
  • Roberta Buono; Chiara Vantaggiato; Viviana Pisa; Emanuele Azzoni; Maria Teresa Bassi; Silvia Brunelli; Clara Sciorati; Emilio Clementi Nitric Oxide Sustains Long-Term Skeletal Muscle Regeneration by Regulating Fate of Satellite Cells Via Signaling Pathways Requiring Vangl2 and Cyclic GMP, Stem Cells, Volume 30 (2012) no. 2, p. 197 | DOI:10.1002/stem.783
  • Robyn Meech; Katie N. Gonzalez; Marietta Barro; Anastasia Gromova; Lizhe Zhuang; Julie-Ann Hulin; Helen P. Makarenkova Barx2 Is Expressed in Satellite Cells and Is Required for Normal Muscle Growth and Regeneration, Stem Cells, Volume 30 (2012) no. 2, p. 253 | DOI:10.1002/stem.777
  • Jin-Ming Tee; Maria A. Sartori da Silva; Agnieszka M. Rygiel; Vanesa Muncan; Robert Bink; Gijs R. van den Brink; Paula van Tijn; Danica Zivkovic; Liudmila L. Kodach; Daniele Guardavaccaro; Sander H. Diks; Maikel P. Peppelenbosch asb11Is a Regulator of Embryonic and Adult Regenerative Myogenesis, Stem Cells and Development, Volume 21 (2012) no. 17, p. 3091 | DOI:10.1089/scd.2012.0123
  • Gia-Ming Hong; Lisa J. Bain Arsenic Exposure Inhibits Myogenesis and Neurogenesis in P19 Stem Cells Through Repression of the β-Catenin Signaling Pathway, Toxicological Sciences, Volume 129 (2012) no. 1, p. 146 | DOI:10.1093/toxsci/kfs186
  • Kurtis T. Sobush; Keitaro Matsumoto; Huaiyong Chen; Barry R. Stripp Lineage Tracing of Tissue-Specific Stem Cells In Vivo, Adult Stem Cells (2011), p. 135 | DOI:10.1007/978-1-61779-002-7_6
  • Silvia Carosio; Maria Grazia Berardinelli; Michela Aucello; Antonio Musarò Impact of ageing on muscle cell regeneration, Ageing Research Reviews, Volume 10 (2011) no. 1, p. 35 | DOI:10.1016/j.arr.2009.08.001
  • Fang Xiao; Haixia Wang; Xinrong Fu; Yanfeng Li; Kewei Ma; Luguo Sun; Xiang Gao; Zhenguo Wu Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration, Cell Research, Volume 21 (2011) no. 2, p. 350 | DOI:10.1038/cr.2010.144
  • Pier Lorenzo Puri; Vittorio Sartorelli Epigenetic Basis of Skeletal Muscle Regeneration, Handbook of Epigenetics (2011), p. 329 | DOI:10.1016/b978-0-12-375709-8.00020-4
  • Raquel Manzano; Janne M. Toivonen; Ana C. Calvo; Francisco J. Miana-Mena; Pilar Zaragoza; María J. Muñoz; Didier Montarras; Rosario Osta Sex, fiber-type, and age dependent in vitro proliferation of mouse muscle satellite cells, Journal of Cellular Biochemistry, Volume 112 (2011) no. 10, p. 2825 | DOI:10.1002/jcb.23197
  • Malea Murphy; Gabrielle Kardon Origin of Vertebrate Limb Muscle, Myogenesis, Volume 96 (2011), p. 1 | DOI:10.1016/b978-0-12-385940-2.00001-2
  • Vittorio Sartorelli; Aster H. Juan Sculpting Chromatin Beyond the Double Helix, Myogenesis, Volume 96 (2011), p. 57 | DOI:10.1016/b978-0-12-385940-2.00003-6
  • J. M. Zmuda; L. M. Yerges-Armstrong; S. P. Moffett; L. Klei; C. M. Kammerer; K. Roeder; J. A. Cauley; A. Kuipers; K. E. Ensrud; C. S. Nestlerode; A. R. Hoffman; C. E. Lewis; T. F. Lang; E. Barrett-Connor; R. E. Ferrell; E. S. Orwoll Genetic analysis of vertebral trabecular bone density and cross-sectional area in older men, Osteoporosis International, Volume 22 (2011) no. 4, p. 1079 | DOI:10.1007/s00198-010-1296-0
  • Yongxin Chen; Jonathan Gelfond; Linda M. McManus; Paula K. Shireman Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682, Physiological Genomics, Volume 43 (2011) no. 10, p. 621 | DOI:10.1152/physiolgenomics.00136.2010
  • Gi Fay Mok; Dylan Sweetman Many routes to the same destination: lessons from skeletal muscle development, REPRODUCTION, Volume 141 (2011) no. 3, p. 301 | DOI:10.1530/rep-10-0394
  • Shuichi Watanabe; Hiroyuki Hirai; Yoko Asakura; Christopher Tastad; Mayank Verma; Charles Keller; James R. Dutton; Atsushi Asakura MyoD Gene Suppression by Oct4 Is Required for Reprogramming in Myoblasts to Produce Induced Pluripotent Stem Cells, Stem Cells, Volume 29 (2011) no. 3, p. 505 | DOI:10.1002/stem.598
  • Mattia Quattrocelli; Giacomo Palazzolo; Giuseppe Floris; Patrick Schöffski; Luigi Anastasia; Aldo Orlacchio; Thierry Vandendriessche; Marinee KL Chuah; Giulio Cossu; Catherine Verfaillie; Maurilio Sampaolesi Intrinsic cell memory reinforces myogenic commitment of pericyte‐derived iPSCs, The Journal of Pathology, Volume 223 (2011) no. 5, p. 593 | DOI:10.1002/path.2845
  • M. Bonnet; I. Cassar-Malek; Y. Chilliard; B. Picard Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species, Animal, Volume 4 (2010) no. 7, p. 1093 | DOI:10.1017/s1751731110000601
  • O. V. Balan; S. V. Belov; Yu. K. Danileiko; T. K. Dubovaya; Yu. V. Markitantova; V. V. Osiko; V. A. Salyuk; V. S. Suhorukov; N. D. Ozernnyuk Activation of reconstructive processes in rat tissues under the action of radiofrequency current with a periodic impulse mode of modulation, Biology Bulletin, Volume 37 (2010) no. 6, p. 551 | DOI:10.1134/s1062359010060014
  • Liang Cao; Yunkai Yu; Sven Bilke; Robert L. Walker; Linnia H. Mayeenuddin; David O. Azorsa; Fan Yang; Marbin Pineda; Lee J. Helman; Paul S. Meltzer Genome-Wide Identification of PAX3-FKHR Binding Sites in Rhabdomyosarcoma Reveals Candidate Target Genes Important for Development and Cancer, Cancer Research, Volume 70 (2010) no. 16, p. 6497 | DOI:10.1158/0008-5472.can-10-0582
  • Daniela Palacios; Chiara Mozzetta; Silvia Consalvi; Giuseppina Caretti; Valentina Saccone; Valentina Proserpio; Victor E. Marquez; Sergio Valente; Antonello Mai; Sonia V. Forcales; Vittorio Sartorelli; Pier Lorenzo Puri TNF/p38α/Polycomb Signaling to Pax7 Locus in Satellite Cells Links Inflammation to the Epigenetic Control of Muscle Regeneration, Cell Stem Cell, Volume 7 (2010) no. 4, p. 455 | DOI:10.1016/j.stem.2010.08.013
  • Josée Savage; Anastassia Voronova; Virja Mehta; Flavia Sendi-Mukasa; Ilona S. Skerjanc Canonical Wnt signaling regulates Foxc1/2 expression in P19 cells, Differentiation, Volume 79 (2010) no. 1, p. 31 | DOI:10.1016/j.diff.2009.08.008
  • Pascal Stuelsatz; Frédéric Pouzoulet; Yann Lamarre; Elise Dargelos; Sylvie Poussard; Serge Leibovitch; Patrick Cottin; Philippe Veschambre Down-regulation of MyoD by Calpain 3 Promotes Generation of Reserve Cells in C2C12 Myoblasts, Journal of Biological Chemistry, Volume 285 (2010) no. 17, p. 12670 | DOI:10.1074/jbc.m109.063966
  • Keman Zhang; Jingfeng Sha; Marian L. Harter Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells, Journal of Cell Biology, Volume 188 (2010) no. 1, p. 39 | DOI:10.1083/jcb.200904144
  • Jian-Fu Chen; Yazhong Tao; Juan Li; Zhongliang Deng; Zhen Yan; Xiao Xiao; Da-Zhi Wang microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7, Journal of Cell Biology, Volume 190 (2010) no. 5, p. 867 | DOI:10.1083/jcb.200911036
  • Daphne Selvaggia Cabianca; Davide Gabellini FSHD: copy number variations on the theme of muscular dystrophy, Journal of Cell Biology, Volume 191 (2010) no. 6, p. 1049 | DOI:10.1083/jcb.201007028
  • Robyn Meech; Mariana Gomez; Christopher Woolley; Marietta Barro; Julie-Ann Hulin; Elisabeth C. Walcott; Jary Delgado; Helen P. Makarenkova; Saverio Bellusci The Homeobox Transcription Factor Barx2 Regulates Plasticity of Young Primary Myofibers, PLoS ONE, Volume 5 (2010) no. 7, p. e11612 | DOI:10.1371/journal.pone.0011612
  • Li-Li Wang; Guang-Rong Qiu; Wei-Neng Fu; Zheng-Wei Yuan; Kai-Lai Sun Transcriptional regulation of Fhl1 by estradiol in rat myoblastocytes, Steroids, Volume 75 (2010) no. 4-5, p. 368 | DOI:10.1016/j.steroids.2010.01.021
  • O. V. Balan; N. S. Myuge; N. D. Ozernyuk Analysis of expression of heavy myosin chains during in vitro differentiation of satellite cells and myoblasts derived from rat skeletal muscles, Biology Bulletin, Volume 36 (2009) no. 3, p. 213 | DOI:10.1134/s1062359009030017
  • Matthew S. O'Connor; Morgan E. Carlson; Irina M. Conboy Differentiation rather than aging of muscle stem cells abolishes their telomerase activity, Biotechnology Progress, Volume 25 (2009) no. 4, p. 1130 | DOI:10.1002/btpr.223
  • Edyta Brzóska; Marta Przewoźniak; Iwona Grabowska; Katarzyna Jańczyk‐Ilach; Jerzy Moraczewski Pax3 and Pax7 expression during myoblast differentiation in vitro and fast and slow muscle regeneration in vivo, Cell Biology International, Volume 33 (2009) no. 4, p. 483 | DOI:10.1016/j.cellbi.2008.11.015
  • Bradley Pawlikowski; Laimeng Lee; Jianhong Zuo; Randall H. Kramer Analysis of human muscle stem cells reveals a differentiation‐resistant progenitor cell population expressing Pax7 capable of self‐renewal, Developmental Dynamics, Volume 238 (2009) no. 1, p. 138 | DOI:10.1002/dvdy.21833
  • Jürgen Wörl; Christian Breuer; Winfried L. Neuhuber Deletion of Pax7 changes the tunica muscularis of the mouse esophagus from an entirely striated into a mixed phenotype, Developmental Dynamics, Volume 238 (2009) no. 4, p. 864 | DOI:10.1002/dvdy.21898
  • Clement C. Zai; Arun K. Tiwari; Vincenzo De Luca; Daniel J. Müller; Natalie Bulgin; Rudi Hwang; Gwyneth C. Zai; Nicole King; Aristotle N. Voineskos; Herbert Y. Meltzer; Jeffrey A. Lieberman; Steven G. Potkin; Gary Remington; James L. Kennedy Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia, European Neuropsychopharmacology, Volume 19 (2009) no. 5, p. 317 | DOI:10.1016/j.euroneuro.2009.01.001
  • David A. Hutcheson; Jia Zhao; Allyson Merrell; Malay Haldar; Gabrielle Kardon Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for β-catenin, Genes Development, Volume 23 (2009) no. 8, p. 997 | DOI:10.1101/gad.1769009
  • R. S. Lindoso; K. S. Verdoorn; M. Einicker-Lamas Renal recovery after injury: the role of Pax-2, Nephrology Dialysis Transplantation, Volume 24 (2009) no. 9, p. 2628 | DOI:10.1093/ndt/gfp307
  • Eugénie Ansseau; Dalila Laoudj-Chenivesse; Aline Marcowycz; Alexandra Tassin; Céline Vanderplanck; Sébastien Sauvage; Marietta Barro; Isabelle Mahieu; Axelle Leroy; India Leclercq; Véronique Mainfroid; Denise Figlewicz; Vincent Mouly; Gillian Butler-Browne; Alexandra Belayew; Frédérique Coppée; Patrick Callaerts DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation, PLoS ONE, Volume 4 (2009) no. 10, p. e7482 | DOI:10.1371/journal.pone.0007482
  • Darko Bosnakovski; Randy S. Daughters; Zhaohui Xu; Jonathan M. W. Slack; Michael Kyba; Joanna Mary Bridger Biphasic Myopathic Phenotype of Mouse DUX, an ORF within Conserved FSHD-Related Repeats, PLoS ONE, Volume 4 (2009) no. 9, p. e7003 | DOI:10.1371/journal.pone.0007003
  • Stone Elworthy; Murray Hargrave; Robert Knight; Katharina Mebus; Philip W. Ingham Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity, Development, Volume 135 (2008) no. 12, p. 2115 | DOI:10.1242/dev.015719
  • Pär G Engström; David Fredman; Boris Lenhard Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes, Genome Biology, Volume 9 (2008) no. 2 | DOI:10.1186/gb-2008-9-2-r34
  • Karlijn J. Wilschut; Sridevi Jaksani; Juliette Van Den Dolder; Henk P. Haagsman; Bernard A.J. Roelen Isolation and characterization of porcine adult muscle‐derived progenitor cells, Journal of Cellular Biochemistry, Volume 105 (2008) no. 5, p. 1228 | DOI:10.1002/jcb.21921
  • Qiuyu Wang; Wen‐Hui Fang; Jerzy Krupinski; Shant Kumar; Mark Slevin; Patricia Kumar Paxgenes in embryogenesis and oncogenesis, Journal of Cellular and Molecular Medicine, Volume 12 (2008) no. 6a, p. 2281 | DOI:10.1111/j.1582-4934.2008.00427.x
  • Y. H. Chen; H. J. Tsai Myogenic regulatory factors Myf5 and Mrf4 of fish: current status and perspective, Journal of Fish Biology, Volume 73 (2008) no. 8, p. 1872 | DOI:10.1111/j.1095-8649.2008.01991.x
  • David Hollemann; Herbert Budka; Wolfgang N. Löscher; Genya Yanagida; Michael B. Fischer; Julia V. Wanschitz Endothelial and Myogenic Differentiation of Hematopoietic Progenitor Cells in Inflammatory Myopathies, Journal of Neuropathology and Experimental Neurology, Volume 67 (2008) no. 7, p. 711 | DOI:10.1097/nen.0b013e31817d8064
  • Zhiliang Wu; Lj Sofronic-Milosavljevic; Isao Nagano; Yuzo Takahashi Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair, Parasites Vectors, Volume 1 (2008) no. 1 | DOI:10.1186/1756-3305-1-27

Cité par 143 documents. Sources : Crossref


Commentaires - Politique