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Abstract – We propose to start the analysis of complex systems by systematically identifying the feedback circuits
that govern their dynamics. These circuits can be identified without any ambiguity by examining the Jacobian matrix
of the system. They provide precious information regarding the number and nature of steady states. Logical
descriptions use variables and functions that can take only a limited number of discrete values (in simple cases, only
two, 0 or 1). We developed an asynchronous method with continuous time, generalised by using variables with more
than two levels and logical parameters. Reverse logics is a synthetic, inductive method. It aims at proceeding
rationally from the experimental facts towards models rather than from models to predictions.To cite this article:
R. Thomas, C. R. Biologies 325 (2002) 505–514. © 2002 Académie des sciences / Éditions scientifiques et médicales
Elsevier SAS

feedback circuits / Jacobian matrix / asynchronous logical description / reverse logics

Résumé – Outils conceptuels pour l’intégration des données. Nous proposons d’aborder l’étude de systèmes
complexes par l’identification systématique des circuits de rétroaction (feedback) qui gouvernent leur dynamique. Ces
circuits peuvent être identifiés et caractérisés sans ambiguïté par l’examen de la matrice jacobienne du système et
fournissent une information précieuse concernant le nombre et la nature des états stationnaires. La description logique
des systèmes utilise des variables et fonctions qui ne peuvent prendre qu’un nombre limité de valeurs discrètes (dans
les cas simples, deux seulement : 0 ou 1). Nous avons développé une description asynchrone à temps continu,
généralisée par l’emploi de variables à plusieurs niveaux, lorsque cela s’avère nécessaire, et de paramètres logiques.
La logique inverse est une approche synthétique, inductive. Elle tend à procéder de manière rationnelle des faits
expérimentaux vers les modèles, plutôt que des modèles vers les prédictions.Pour citer cet article : R. Thomas, C. R.
Biologies 325 (2002) 505–514. © 2002 Académie des sciences / Éditions scientifiques et médicales Elsevier SAS
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Version abrégée

Dans bien des domaines, la recherche souffre d’un
excès de données. Intégrer ces données est devenu un
problème majeur, qui revient à comprendre davantage
plutôt que de savoir davantage. Il est certes utile de
connaître tous les éléments d’un système. Encore faut-il
pouvoir discerner lesquels jouent un rôle crucial, et
comment ceux-ci interagissent.

Nous décrivons dans ce texte trois outils conceptuels,
dont l’usage s’est révélé fécond, d’abord dans le
domaine des régulations biologiques, puis, plus récem-
ment, dans le domaine plus général de la dynamique
non linéaire.

1. Lorsque des variables d’un système interagissent
entre elles de manière bouclée, on dit qu’elles forment
un circuit de rétroaction (feedback en Anglais). Un

*Correspondence and reprints.
E-mail address: rthomas@dbm.ulb.ac.be (R. Thomas).
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système complexe peut comporter plusieurs, voire de
nombreux circuits imbriqués ; chaque circuit garde
néanmoins son identité, même si la présence d’autres
circuits interfère avec son action. On distingue deux
types de circuits : ou chaque élément du circuit exerce
sur sa propre évolution (via les autres éléments du
circuit) une action positive, ou chaque élément exerce
sur sa propre évolution une action négative. Tout
naturellement, on qualifie ces deux types de circuit de
positifs et négatifs, respectivement. On sait maintenant
que la présence d’un circuit positif est une condition
nécessaire à la multistationnarité, comme la présence
d’un circuit négatif l’est à une périodicité stable. Tout
circuit peut être identifié et caractérisé sans ambiguïté
par l’examen de la matrice jacobienne du système : en
fait, si une séquence de termes de la matrice forme un
circuit, les séquences des indices de ligne [i] et de
colonne (j) sont des permutations circulaires l’une de
l’autre. Ceux des circuits (ou unions de circuits dis-
joints) qui concernent toutes les variables du système
jouent un rôle privilégié. Nous les appelons « circuits
pleins ». La liste des circuits pleins d’un système n’est
autre que la liste des éléments non nuls du déterminant
de la matrice jacobienne. Dans un système non linéaire,
la valeur, et même le signe, d’un élément de la matrice
jacobienne peut dépendre de la localisation dans l’espace
des phases. Il en est de même pour les circuits : un
même circuit peut être positif ou négatif selon la
localisation. On parle dans ce cas d’un circuit ambigu.
Notre texte donne quelques indications sur la « circuit-
erie » requise pour obtenir divers processus non trivi-
aux (multistationnarité, périodicité stable, chaos déter-
ministe).

2. Quoique nous utilisions surtout, actuellement, la
description différentielle, nous sommes convaincus
qu’une description pleinement quantitative d’un système
complexe gagne souvent à être préparée par une descrip-
tion préalable qui fasse ressortir l’« essentiel qualita-
tif ». Ce résultat peut être obtenu par une description
logique, dans laquelle les variables ne peuvent prendre
qu’un nombre limité de valeurs discrètes, à savoir deux
seulement (0 ou 1) dans les cas les plus simples
(description binaire, ou booléenne). Nous insistons sur
le fait que cette description logique doit être asyn-
chrone si l’on veut que le modèle puisse rendre compte
d’évolutions multiples, tout en évitant les attracteurs
« artefactuels ». L’emploi, lorsque cela s’avère néces-
saire, de variables et de fonctions logiques à plusieurs
niveaux et l’ introduction, cruciale, de paramètres
logiques [20] rend l’outil logique extrêmement perfor-
mant. L’ image est qualitativement très proche de celle

que fournit la description différentielle, tout au moins
lorsque les interactions principales sont de type sig-
moïde ou à seuil. Dans la description continue, le
balayage de l’espace des paramètres est une entreprise
redoutable. Dans la description logique, chaque
paramètre ne peut prendre qu’un nombre fini (et
généralement petit) de valeurs. L’espace des paramètres
est donc constitué d’un nombre fini de pavés, dont
chacun correspond à un comportement qualitatif.
L’analyse du comportement de chacun de ces pavés
donne donc une image complète des comportements
qualitatifs possibles au sein d’un modèle. Le plus
souvent, cependant, cette analyse exhaustive peut être
remplacée par l’ identification, bien moins laborieuse,
des conditions de fonctionnalité des différents circuits.
Les conditions de fonctionnalité d’un ensemble de
circuits est la simple intersection des conditions de
fonctionnalité des circuits individuels considérés.

3. Le plus souvent, la démarche du concepteur
consiste à élaborer un modèle par allers-retours succes-
sifs (feedback !) entre les données expérimentales et
des considérations rationnelles. Il se préoccupe ensuite
des prévisions du modèle, vérifie s’ il rend bien compte
des données connues et tente d’ identifier d’éventuelles
prévisions intéressantes. Cette démarche fait appel, non
seulement au raisonnement, mais aussi à l’ intuition, et
il est heureux qu’ il en soit ainsi. On peut cependant
rêver d’une approche qui partirait d’un ensemble de
faits expérimentaux et tenterait de bâtir des modèles de
manière entièrement rationnelle. Cette approche syn-
thétique, inductive, est en quelque sorte une « logique
inverse ». Un élément crucial de cette démarche est
l’établissement d’une liste de contraintes qui doivent
absolument être satisfaites pour que le système puisse
suivre le comportement observé. Même lorsqu’on
s’adresse à une classe bien délimitée de modèles
(comme, par exemple, la description d’un élément du
système nerveux en termes de neurones, traités chacun
comme une simple variable logique, et de leurs inter-
actions), on voit aussitôt que, dans la plupart des cas,
plusieurs et, bien souvent, de nombreux modèles seront
compatibles avec les données expérimentales. Se pose
dès lors le problème d’ identification de ceux de ces
modèles qui peuvent présenter un intérêt. L’un des
critères est la recherches des modèles les plus simples.
Une autre approche peut consister à reconsidérer un
modèle préexistant, partiellement mais incomplètement
satisfaisant, et à vérifier quelles spécificités du modèle
sont en contradiction avec les contraintes mises en
évidence par la méthode « inverse ». Les techniques
appropriées à cette démarche sont classiques.
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1. Introduction

More than twenty years ago, the complete sequence
of the DNA of bacteriophage λ was published. Since,
longer and longer sequences were deciphered, includ-
ing those of such higher organisms as drosophila and
man. My impression is that a world of important
concepts could have been derived from a thorough
analysis of simple genomes, and that instead one is
engaged in a race for establishing more and more long
sequences. The accumulation of data is terrifying, and
the situation is reminiscent of Ionesco’s play Amédée
ou comment s’en débarrasser ? A major problem now
is to integrate knowledge and to try understanding
more, rather than knowing more. It is fine to have a list
of the elements of a system, but even more to know
which elements are essential and how they interact.

In this paper, I will briefly discuss some conceptual
tools that might help in this task. I will deal only with
tools of which I have a direct knowledge, namely those
involved in the understanding of the global operation of
complex systems. This means that I will not deal at all
with such extremely important items as the research of
sequence homologies etc., of which I have no personal
experience.

2. Circuits, the wheels of regulatory
processes

Interactions between the elements of a system are
commonly represented by arrows. These arrows refer to
very different processes according to the case. An arrow
A →+ B can mean that substance A is converted into
substance B, but as well that it activates the synthesis of
B, etc. What is common to these diverse modalities is
that A takes part in the production of B, exerts a
positive action on the synthesis of B, whatever the
detailed mechanism.

A →− B means that A exerts on the contrary a
negative action on B, because it prevents its synthesis
or promotes its decay, or... In biochemical and physi-
ological books or papers, one finds very often long
chains of interactions in which A exerts an action on B
via a number of intermediate substances. However, for
many purposes, in spite of the interest of the detailed
pathway, the important point for the general operation
of the system is whether A eventually exerts a positive
or a negative action on B. This depends only on the
parity of the number of negative interactions in the
chain. If even, the effect of A on B is positive; if odd,
it is negative. This already provides a way to integrate
abundant data, just by provisionally compacting them
into shorter chains, carefully taking into account the
global signs.

Surprisingly, if cascades of elements are very fre-
quent in biochemical descriptions, one finds quite
seldom closed chains of interactions (‘circuits’ ), with
the notable exception of the Krebs cycle. Yet, as we will
see, circuits are so essential to the dynamics of systems,
that even the fundamental possibility of having defined
steady state(s) requires their presence.

The concept of feedback circuits’ (for short, circuits)
was developed long ago by ecologists and biologists as
closed sets of oriented interactions—the word ‘ feed-
back loop’ is more frequently used by biologists; we
prefer use ‘ feedback circuit’ , because in graph theory
‘ loop’ is only used for one-element circuits. If x1 acts
on x2, which acts on x3, which in turn acts on x1, one
says that there is a circuit x1 → x2 → x3 → x1. In a
circuit, each element exerts a direct action on the next
element, but also an indirect action on the other
elements, including itself. More concretely, the present
level of an element exerts, via the other elements of the
circuit, an influence on the rate of production of this
element, and hence on its future level.

There are two types of feedback circuits. Either each
element of a circuit exerts a positive action (activation)
on its own future evolution, or each element exerts a
negative action (repression) on this evolution. Accord-
ingly, one speaks of a positive or of a negative circuit,
respectively. Whether a circuit is positive or negative
depends simply on the parity of the number of negative
interactions in the circuit: a circuit with an even number
of negative interactions is positive, while if this number
is odd the circuit is negative. We call ‘n-circuit’ a circuit
of n elements, whatever its sign.

The properties of the two types of feedback circuits
are strikingly different. As a matter of fact, they are
responsible, respectively, for two types of regulation. A
negative circuit can function like a thermostat and
generate homeostasis, with or without oscillations.
Positive circuits can force a system to choose lastingly
between two or more states of regime; they generate
multistationarity (or multistability). This contrasted
behaviour of the two types of circuits can be justified
without any difficulty if one formalises the systems in
terms of ordinary differential equations or by ‘ logical’
methods [1, 2].

We just mentioned that positive circuits are involved
in multistationarity and negative circuits in homeosta-
sis. However, it has progressively become apparent that
one can be much more precise. It was conjectured by
Thomas [3] that (i) a positive circuit is a necessary
condition for multistationarity and (ii) a negative
circuit is a necessary condition for stable periodicity.
These statements were further analysed and subjected
to formal demonstrations [4–6]; see also [7, 8].
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We would like to stress here that, rather than consid-
ering each one of the elements of a circuit as a separate
entity, we prefer to see it as a part of the circuits to
which it may belong. To use a metaphor, rather than
analysing separately each individual tooth of clock-
work, we prefer to reason at the level of the wheels that
carry these teeth. This does not mean that we consider
the circuits themselves as isolated entities. Rather, we
consider explicitly the interactions between different
circuits in the same spirit as we did when analysing the
interactions between the elements of each circuit.

The description just given is purely verbal, not to say
somewhat vague. It is fortunately possible to define
circuits in a much more rigorous way (see for example
[4, 8, 9]). The idea of describing the interactions in
complex systems in terms of the signs of the terms of
the Jacobian matrix had been described already long
ago by the economists Quirck and Ruppert [10], with-
out, however, explicit reference to feedback circuits,
and by May [11] and Tyson [12].

Consider the Jacobian matrix of a system of ordinary
differential equations (ODE’s). If term aij = (�fi/�xj) is
non-zero, it means that the variations of variable j
influence the time derivative of variable i. In this case,
we say for short that variable j acts on variable i and we
write: xj → xi. This action is defined as positive or
negative according to the sign of aij. Consider now a
sequence of non-zero terms of the Jacobian matrix,
such as a13, a21, a32, in which the i (row) indices 1, 2,
3 and the j (column) indices 3, 1, 2 are circular
permutations of each other. Non-zero a13 means
x3 → x1, non-zero a21 means x1 → x2 and non-zero a32

means x2 → x3; thus, we have the three-element circuit
x1 → x2 → x3 → x1. In this way, all the circuits that are
present in a system can be read on its Jacobian matrix.
Fig. 1 shows the circuits that are possible for a three-
variable system.

Note that the matricial and graph descriptions of
circuits are dual of each other: a non-zero element of
the matrix corresponds to an arrow (not a vertex) of the
graph. The circuit itself can be symbolised either by the
graph or by the product of the relevant terms of the
matrix.

Unions of disjoint circuits are sets of circuits that fail
to share any variable. For example, if terms a12, a21 and
a33 are non-zero, we have two disjoint circuits: a
two-element circuit between variables x1 and x2 and a
one-element circuit involving variable x3. A general and
elegant definition suggested by M. Cahen (personal
communication) applies both to circuits and unions of
disjoint circuits. A circuit or union of disjoint circuits
can be identified by the existence of a set of non-zero
terms of the matrix, such that the sets of their i (row)

and j (column) indices are equal. The equality of the
two sets of indices can be checked, for example, for the
sets of terms: a12 a23 a31 (a three-element circuit),
a12 a21 (a two-element circuit), a11 (a one-element
circuit), or a12 a21 a33 (a union of two disjoint circuits).

Fig. 1. The circuits in three-variable systems.
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Those circuits and unions of disjoint circuits that
involve all the variables of the system play a special
role in the generation of steady states. For this reason,
we show them here (Fig. 2) in the case of three-variable
systems. For the sake of brevity, we will call them full
circuits, irrespective of whether they are circuits or
unions of disjoint circuits. In fact, there is a very simple
algorithm for extracting all the full circuits from the
Jacobian matrix: it simply consists of computing the
analytical form of the determinant of the Jacobian
matrix. This determinant is a sum of products, of which
each one corresponds to one of the ‘ full circuits’ of the
system. For example, for a two-variable system, the
determinant of the Jacobian matrix is (a11 a22 – a12 a21)
and the two full circuits are the two-element circuits
symbolised by the product a12 a21 and the union of two
one-element circuits symbolised by the product a11 a22.

Note that a system that has no full circuit has no
isolated steady state (see also [8, 10]). For example, the
three-variable system:

ẋ = − y

ẏ = x + y − z

ż = − y

which comprises a one-element circuit on y and two
two-element circuit (one in xy and one in yz), has a
steady line of neutral stability, but no isolated steady
state.

3. The relation between circuits
and steady states

All the circuits of a system (and not only the ‘ full
circuits’ ) are present in the analytic expression of the

characteristic equation of the Jacobian matrix. Con-
versely, by definition of the characteristic equation of a
matrix, it is easy to see that only those terms of the
Jacobian matrix that belong to a circuit are found in its
characteristic equation. The terms that do not take part
in a circuit belong to products that vanish, because they
contain one or more zero terms. Thus, the coefficients
of the characteristic equation depend explicitly only on
the circuits of the system.

The off-circuit terms of the Jacobian matrix provide
a one-directional connection between otherwise dis-
joint circuits; as a result, they may influence the
steady-state values of the variables. Although they are
not present in the Jacobian matrix, constant terms in the
ODE’s also influence the location of the steady states.
Thus, both off-circuit terms of the Jacobian matrix and
constant terms in the ODE’s may play a role in the
system’s dynamics. However, their role is only indirect
via their effect on the location of the steady states: we
would like to emphasise the fact that the eigenvalues of
the Jacobian matrix at any given location in phase
space depend only on those terms that belong to one or
more circuit.

How the coefficients of the characteristic equation
determine the stability properties of steady states has
been studied for many years. Our main contribution is
the recognition of the fact that all the circuits of a
system, and only them, are present in the characteristic
equation, as products of elements of the Jacobian
matrix. This provides a basis for the notion that there is
a tight relation between the ‘ logical structure’ of a
system (i.e., its feedback circuits) and the stability
properties of its steady states (for more information on
this subject, see Thomas and Kaufman [13]).

Fig. 2. The full-circuits (circuits or unions of
disjoint circuits involving all the variables of a
system) in three-variable systems.
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4. Circuits and non-trivial behaviour

After showing that positive circuits are necessary
conditions for multistationarity, and that negative cir-
cuits are necessary conditions for lasting oscillations, it
was natural to try identifying which constraints on the
circuits have to be fulfilled in order to have a chaotic
dynamics. As far as we can tell from many examples,
one needs two or more periodicities that are coupled,
yet distinct in this sense that they evolve around distinct
steady states. For this, one needs a positive circuit to
ensure (if only partial) multistationarity and a negative
circuit to generate lasting oscillations.

Here follows a qualitative analysis of a very simple
three-element system that displays a chaotic dynamics
(see Fig. 3):

ẋ = a x − z

ẏ = − x − y

ż = x3 + y

The Jacobian matrix �
+ a 0 − 1

− 1 − 1 0

+ 3 x2 + 1 0 � (a positive)

displays a positive 3-circuit that accounts for multista-
tionarity and a negative 2-circuit that accounts for the
oscillations. Let us reason in terms of full-circuits. One
can see that they are two:

– (I) if isolated, the positive 3-circuit would generate a
saddle focus of type +/– –;
– (II) if isolated, the union of a negative 2-circuit in xz
(destabilised by the positive diagonal term in x) and of
a negative 1-circuit in y, would generate a saddle-focus
of type –/+ +.

In view of the odd character of the non-linearity used
(x3), there are three steady states, two of which, (–1, 1,
–0.5) and (1, –1, 0.5), symmetrical vs the ‘ trivial’ one
(0, 0, 0). But which one of the steady states will be of
type +/– –, which one of type –/+ +? (In our
notation, +/– – means that there is one real, positive,
eigenvalue and a pair of complex conjugated eigenval-
ues with negative real parts, etc.) A look at the Jacobian
matrix shows that, at the trivial steady state, full circuit
II is non-existent. This steady state is thus expected to
be generated by full circuit I, and thus to be of
type +/– –. It is indeed the case, as shown by the
eigenvalues (+1, –0.75 ± 0.66 i). In contrast, at the two
other steady states, the product representative of full
circuit II is dominant and the steady states are both of
type –/+ +. As a matter of fact, they have the same
eigenvalues: (–0.74, +0.12 ± 1.63 i) for obvious rea-
sons of symmetry.

This system was chosen (and in fact synthesised) in
order to show that the two distinct periodicities required
for a chaotic dynamics can be generated by the same
negative circuit (here, the negative 2-circuit in xz). This
is the reason why we have used x3 as the non-linearity:
the corresponding term of the Jacobian matrix is 3 x2,

Fig. 3. Chaotic attractor generated by system (1) for a = 0.54. Stereoscopic view: look at the couple of images from 50 cm or so with
ample lighting. Squeeze slightly in order to see a third image between the two ‘ real’ images. Once you have succeeded in focusing on
the third image, you see clearly the trajectory in three dimensions.
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which is always positive. If we had used, for example,
x2 instead of x3, the corresponding term of the Jacobian
matrix would have been 2 x, whose sign depends on the
sign of x, and the 2-circuit would have been positive or
negative, depending on the sign of x. (This would not
have prevented the system from displaying a chaotic
dynamics for appropriate parameter values, but it would
not have been possible to show that a single negative
circuit can be sufficient.)

In the example just described, we have avoided the
use of an ambiguous circuit in order to better unravel
the respective roles of the positive and negative cir-
cuits. In contrast, we will now exploit the properties of
ambiguous circuits as follows. Since in non-linear
systems a circuit can be positive or negative according
to its location in phase space, it was tempting to check
whether a system with a single circuit can generate
chaos, provided it is ambiguous. It was found to be
indeed the case [14].

Finally, we would like to show here a case in which
the mere inspection of the signs of the interactions
gives precious information about the dynamical possi-
bilities of the system. Consider the matrix:

�
− − 0

+ − −
− 0 −

�
This matrix comprises three full-circuits: a negative

3-circuit, the union of a negative 2-circuit in xy and of
a negative 1-circuit in z and the union of three 1-circuits
(the diagonal terms). This indicates the possibility of
three types of steady states: a saddle focus of type
–/+ +, a steady state of type – – – or – / – – depending
on the parameter values, and a stable node (– – –).
However, the absence of any individual positive circuit
precludes any multistationarity. Consequently, in this
system, one can have either of theses three types of
steady states, depending on parameter values, but they
cannot coexist.

5. Logical description of dynamical
systems

Complex systems almost invariably comprise non-
linear interactions. This is not only the case in biology,
but in other fields too, like economics, and probably in
general. In fact, the presence of non-linearities is an
essential ingredient of so-called ‘non-trivial behav-
iour’ , such as multistationarity, stable periodicity or
deterministic chaos [15].

This complicates the analysis of the behaviour of
systems, because in general systems of non-linear

differential equations have no analytical solution. In
order to simplify the treatment, one may be tempted to
idealise the description. The most obvious idealisation
is the linear ‘caricature’ . It is well known that this
idealisation is disastrous, except in close vicinity of a
steady state, which in addition has to be unique. In
practice, the non-linear interactions very often display a
sigmoid shape. For example, the fixation of oxygen by
haemoglobin is insignificant for low partial pressures of
the gas; it increases rapidly within a rather narrow
range of the pressure, and soon saturates for higher
values. The shape of the interactions can be described
by the well-known ‘Hill function’ , but as well by the
hyperbolic tangent. More generally, sigmoids can be
described as curves with two horizontal boundaries and
a single inflection point. It is tempting to caricature
steep sigmoids by step functions, and this is why it has
been repeatedly proposed to use a logical description of
systems comprising sigmoid interactions. In spite of its
apparent brutality, the assimilation of (sufficiently steep)
sigmoids to step functions keeps all the essential
features of the dynamics, including the number and
nature of the steady states (see the beautiful papers by
Glass and Kauffman [16, 17], and also Kaufman and
Thomas [18]). It is often objected that in biochemistry
and elsewhere not all interactions are sigmoid and that
many of them are linear. As a matter of fact, it was
realised that sigmoids ‘compose’ (except in quite ‘patho-
logical’ cases), that is, if F1(x), F2(x) and F3(x) are
sigmoids, F1(F2(F3(x))) itself has a sigmoid shape as
defined above (Reignier et al., in preparation). They
compose also with linear functions. The resultant sig-
moid is increasing or decreasing, depending on whether
an even or an odd number of decreasing sigmoids is
involved in the composition, and the steepness of the
resultant curve increases with the number of sigmoids
involved. It results that a chain comprising not only
sigmoids but also linear interactions can be caricatured
by a step function, provided the resultant sigmoid is
sufficiently steep. Using step functions amounts to
reason as if an element was absent below a certain
threshold and present above this threshold.

6. Logical description: asynchronous vs
synchronous

In the logical description of systems, to each relevant
element is ascribed a logical variable that has only two
values (0 or 1) in simple cases. The state of a system
can thus be described as a logical vector. Classically,
time is included in the description by giving the state
vector at time t + l as a function of the state vector at
time t. In this so-called ‘synchronous’ description, each
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state has one, and only one possible successor, without
any possibility of choice. In addition, if a state and its
successor differ by the values of more than one vari-
able, the description implies that the values of two or
more variables change in exact simultaneity, a quite
unrealistic issue. For example, in the system

xt + 1 = yflt (1)

yt + 1 = xflt

the next state of 00 is 11 and the next state of 11 is 00.
According to this description, in addition to two stable
states, 01 and 10, the system would have a periodic
attractor oscillating between 00 and 11, which is
perfectly unrealistic.

For this type of reasons, instead of comparing the
state at time t with the state at time t + l, we consider (at
any time) a state and its image for the logical functions
of the system. Thus, instead of writing (1), we write:

X = yfl (2)

Y = xfl

Here, the image of state 00 is 11, but this does not
mean that the next state of 00 will be 11. Rather,
variables x and y have both a command to switch from
0 to 1, but there in no reason whatsoever for these
commands to be executed simultaneously; if variable x
switches first, the sequence is 00 → 10; if variable y
switches first, the sequence is 00 → 01. Thus, from
state 00, the system can proceed to states 10 or 01; the
exactly simultaneous change of both variables is not
excluded, but considered marginal. In our description,
the choice between the transition 00 → 10 and the
transition 00 → 01 depends on the relative lengths of
two time delays tx and ty, and on the choice between the
transitions 11 → 0 1 and 11 → 10 on the time delays txfl
and tyfl.

This is the ‘asynchronous’ description, of which the
synchronous description is a particular, marginal, case.
In spite of a superficial similarity, the synchronous and
asynchronous descriptions are deeply different, and
give extremely different predictions. Without entering
into details, let us mention that the elaborate versions of
the asynchronous description fit admirably with the
differential description (provided the interactions
involved in the ODE’s are step functions or sufficiently
steep sigmoids), whereas the synchronous description
predicts artefactual attractors.

7. Generalised logical description

It was felt obvious from the beginning that a purely
Boolean description, using 0 and 1 as the only possible

values for the logical variables, would be too primitive
in many cases. A first improvement consisted of using
‘multivaluate’ logical variables whenever required. In
agreement with the views of Van Ham [19], we do not
use multivaluate variables systematically to improve
the resolution of the description. Rather, we use them
only when there is a qualitative reason for it. In fact,
whenever a variable acts on more than one function, the
threshold above which it is active may be different
according to the function considered. Consequently,
when a variable acts on n functions, we associate up to
n thresholds to this variable, which can thus have up to
n + 1 logical levels. This can be formalised with a
multivaluate variable or an appropriate set of Boolean
variables.

Another crucial, additional sophistication was ensured
by the introduction of logical parameters by Snoussi [1,
2, 20]. For short, to each interaction i can be ascribed a
characteristic weight, described by a real value Ki. This
leads to ‘semi-logical’ functions comprising both Bool-
ean variables and real parameters. These functions are
subject to operators of discretisation, which convert
their real values into discrete values, according to a
scale characteristic of each variable. Without entering
into details, state tables now contain logical parameters
K, each of which can take any of the logical values
permitted to the corresponding variable. Depending on
the values ascribed to the logical parameters, one has
several state tables, which correspond to a variety of
dynamical behaviour. This results in a considerable
extension both of the subtlety and of the generality of
the description.

Classically, logical descriptions fail to recognise
those steady states located on one or more threshold
value. The simple reason is that when a real variable x
is discretised into a logical variable x, one states that
x = 0 if x is below a threshold value, x = 1 if x is above
this threshold value, but the limit case x = 0 is not
considered. In order to be able to identify all steady
states (and in particular unstable steady states) in
logical terms, one has to introduce the threshold values
into the scale of the logical values. The scale 0, 1, 2, ...
thus becomes 0, sl, 1, s2, 2, ... and we have to
distinguish regular states, in which all the variables
have integer values, from ‘singular’ states, in which one
or more variable is located on a threshold. We call
characteristic state of a circuit (or union of disjoint
circuit) the state located at the thresholds involved in
the circuit. For example, if x, above its second thresh-
old, influences the production of y, which, above its
third threshold, influences z, which in turn, above its
first threshold, influences x, the characteristic state of
the circuit is s2 s3 s1.
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At first view, one might fear that the logical descrip-
tion has lost its genuine simplicity, if only because the
number of conceivable states of the system has become
considerable. However, as described by Thomas [2]
and shown by Snoussi and Thomas [21], only those
states that are characteristic of a circuit (or union of
disjoint circuits) can be steady and, reciprocally, if a
state is characteristic of a circuit, there exist parameter
values such that this state is steady.

Thus, it is not necessary to scan all the (often many)
possible states of a system to check their stationarity.
One can simply identify the circuits and unions of
disjoint circuits, note for each of them the characteristic
state, and compute the combinations of values of the
logical parameters for which it is steady. In this way,
the space of the logical parameters is partitioned
into a finite (and often quite small) number of boxes
within each of which the qualitative behaviour is
uniform. This permits to have a general view of the
various dynamical possibilities of a system. Once the
interesting ranges of values of the logical parameters
have been identified, it is always possible, if required,
to build a system of differential equations (with sig-
moid or step interactions) that behaves in the same
qualitative way as the logical system.

8. Reverse logical approach

Even though the logical approach was initially thought
of as a tool for a deductive, analytical approach, it can
also be used ‘backwards’ , in an inductive, synthetic
way (‘ reverse logic’ ): from facts to models rather than
from model to predictions. This synthetic type of
approach was used already long ago (e.g., [22]) for
conceiving logical machines and adapted since to our
logical approach [1, 23–26].

It must be clear right away that even where the type
of models considered is well defined (for example, the
description of a circuit of neurones in terms of asyn-

chronous automata), a given behaviour is usually con-
sistent with several, or even many specific models.
Essentially, one starts from an empty state-table and
fills only the image values that correspond to the
desiderata. The other image values are replaced by
dashes, which mean that their value is undetermined; in
a Boolean system, each dash of such a partial-state
table can be replaced indifferently by a ‘0’ or a ‘1’
without affecting the desired behaviour. Well-established
methods permit to derive the simplest systems of
logical equations that fit the desiderata. Alternatively,
one can compare the state table of a pre-existing model
that is not entirely satisfactory with the requirements of
the partial table, and modify any value of the model that
would not fit the requirements.

9. To summarise

Among the tools that may help finding the essential
qualitative features of complex dynamical systems, we
propose the systematic identification of the (feedback)
circuits that govern the behaviour of these systems.
Whenever a network is described under the form of
differential equations, the circuits can be identified
without any ambiguity from the Jacobian matrix of the
system. Once characterised, the circuits may be used as
described above to short-circuit more classical
approaches and yet get a global idea of the possible
dynamics of the system.

As regards the logical description, it must be made
clear that its scope is less general than that of the
approach based on the circuits. It can be viewed as an
independent method for those systems that afford being
caricatured in terms of step functions. Alternatively, the
logical method can be used in symbiosis with the
classical description as sets of differential equations.
However, a satisfactory fit between the two descriptions
can be expected only if the dominant interactions are
step or sigmoid in shape. For recent detailed papers on
the logical method, see [25] or (in French) [26].
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