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Abstract – We describe an algorithm to position a rigid surface so as to make its cross-section by a given plane match
a given curve in that plane, a problem relevant to model-based medical imaging. After building an atlas of
cross-sections of the surface and searching it for a best position to start from, each iteration of the algorithm (1)
determines a vector field along the intersection curve that will improve its matching with the target curve, and (2)
computes and applies a small displacement of the surface whose effect on the intersection will approximate best the
required vector field. Computations use least-square techniques, an exponential formula for Lie groups of
transformations, and generic properties of cross-sections. Experiments with an implementation are reported and
theoretical tools for justifying and improving the algorithm, some of them based on Catastrophe Theory, are outlined.
To cite this article: Y.L. Kergosien, C. R. Biologies 325 (2002) 355–365. © 2002 Académie des sciences / Éditions
scientifiques et médicales Elsevier SAS
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Résumé – L’appariement d’une surface à une de ses sections planes. Nous décrivons un algorithme qui trouve
une position d’une surface rigide telle que son intersection avec un plan donné coïncide avec une de ses courbes
sectionnelles donnée à l’avance dans ce plan, en vue d’applications à l’imagerie médicale. Après avoir construit un
atlas sectionnel et y avoir cherché la meilleure position de départ, chaque itération de l’algorithme (1) détermine un
champ de vecteurs dans le plan le long de la courbe d’intersection qui améliore l’appariement de cette courbe avec
la courbe cible et (2) calcule et applique un petit déplacement de la surface dont l’effet sur l’intersection approche au
mieux ce champ. On utilise des techniques de moindres carrés et une formule pour l’exponentielle dans le groupe de
Lie des déplacements, ainsi que des propriétés génériques des intersections. Une implantation est expérimentée et on
introduit quelques outils en vue de la justification et l’amélioration de l’algorithme, certains fondés sur la théorie des
catastrophes. Pour citer cet article : Y.L. Kergosien, C. R. Biologies 325 (2002) 355–365. © 2002 Académie des
sciences / Éditions scientifiques et médicales Elsevier SAS
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Version abrégée

Nous décrivons un algorithme permettant, étant donné
une surface, un plan et une courbe obtenue par inter-
section du plan avec cette surface, de retrouver une
position de la surface faisant coïncider avec la courbe

son intersection avec le plan. Ce problème se pose en
imagerie médicale lorsqu’on veut fusionner une image
sectionnelle avec des données volumiques déjà acquises
dans une autre modalité, comme au cours de la biopsie
sous échographie d’une masse après étude tomodensi-
tométrique. L’acquisition des données profite donc ici
d’un modèle anatomique préexistant.

*Correspondence and reprints. 196, rue des Rabats, 92160 Antony.
E-mail address: yannick.kergosien@libertysurf.fr (Y.L. Kergosien).
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L’algorithme est détaillé pour des surfaces
polyédrales triangulées et comporte deux parties. La
deuxième partie, ou phase locale, finale, consiste en la
recherche itérative d’une position adéquate à partir
d’une position suffisamment proche d’une solution.
Une courbe d’intersection cible est donnée, correspon-
dant à une position inconnue de la surface. À chaque
étape, la surface est dans une certaine position, pour
laquelle on calcule sa courbe d’intersection, que l’on
compare à la courbe cible pour calculer une petite
transformation de la surface qui rapproche l’intersection
actuelle de la courbe cible. On montre tout d’abord
comment, étant donné un champ de déplacement le
long d’une courbe d’intersection, il est possible de
trouver un déplacement rigide de la surface dont l’effet
sur la courbe d’intersection avec le plan approche au
mieux le champ de déplacements spécifié. Une tech-
nique de moindres carrés est utilisée pour obtenir, en la
position actuelle de la surface, un vecteur tangent à
l’espace des déplacements rigides dans �

3 et dont
l’effet approche le champ de déplacement requis. Ce
vecteur tangent est un élément de l’algèbre de Lie du
groupe des déplacements ; on calcule un vrai déplace-
ment qui l’approche à l’aide d’une formule exacte
connue pour l’exponentielle de ce classique groupe de
Lie. Le champ de déplacement à approcher le long de la
courbe d’intersection est calculé après un appariement,
fondé sur les courbures, entre l’intersection actuelle et
la cible : il est choisi proportionnel, en chaque sommet

du polygone d’intersection, au segment joignant ce
sommet au point correspondant de la courbe cible.

La première partie de l’algorithme, ou phase globale,
initiale, consiste à trouver une position de départ
suffisamment proche d’une solution pour assurer le
succès de la phase de recherche locale. À cette fin, on
construit pour la surface un atlas sectionnel consistant
en un tableau de couples (position de la surface, courbe
d’intersection correspondante avec le plan fixe). Une
recherche de l’indice donnant le meilleur appariement
permet de trouver une meilleure position de départ.
L’atlas sectionnel est dit valide si cette procédure mène
à une solution quelle que soit la position de départ et la
courbe cible. Une condition suffisante de validité est dis-
cutée brièvement, ainsi que l’intérêt pour une étude plus
approfondie du problème de l’existence d’atlas valides
de méthodes de généricité. L’évolution de la position de
la surface sous l’influence de l’algorithme est celle de
l’état d’un système dynamique, mais ce système dépend
de la courbe cible, situation semblable à celle de la
Théorie des catastrophes, pour laquelle des hypothèses
de généricité apportent de nombreux résultats.

La recherche d’atlas valides minimaux devrait
présenter un intérêt, non seulement pour diminuer la
complexité des calculs, mais aussi pour comprendre les
relations entre la structure du système dynamique sur la
position et les caractéristiques géométriques de la
surface. L’algorithme programmé est expérimenté sur
un modèle d’omoplate reconstruit à partir de données
tomodensitométriques.

1. Introduction

1.1. The need for fitting surfaces to sections

It becomes common that a three-dimensional (3D)
model of some of a patient’s anatomy is available
before a few sectional images of the same anatomical
region are to be acquired again, possibly in a different
imaging modality. For instance, after a patient had a
C.T. scan showing a tumor, one can use sonographic
sections of the same anatomic region to perform a
biopsy. It can then be of interest, given a single
sectional image, to locate its plane within the formerly
acquired volumic dataset and perform data fusion. As
the imaging modalities are different, one is often left
with only the simplest clues, like organ or vessel
boundaries, to perform the matching.

In this paper we describe an algorithm which, given
a surface model and one of its oblique cross-sectional
curves, retrieves a plane that cuts the surface along the
same curve. We define the problem as of fitting the

surface to one of its planar cross-sectional curves: we
fix a plane with a sectional curve in it, and we want to
compute a rigid transform in space that will bring the
surface from a position of reference to a position where
its intersection with the fixed plane coincides with the
given curve.

The algorithm permits exploring to what extent the
fusion of the two datasets can rely on merely recogn-
ising a surface in the 3D scene and a curve in the
sectional image. As we assume the surface to be rigid,
the algorithm is not always applicable to the clinical
problem first mentioned. Some methods like gating or
cyclic volume acquisition may however adapt it to
more general cases.

We shall distinguish two parts in the problem. The
local problem solves the final part of the search where
the state is close enough to the solution to require only
small steps, which permits using techniques of differ-
ential calculus on manifolds and a Lie group formula.
We avoid using a distance function to be minimised,
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instead directly requiring a certain deformation to be
obtained for the intersection, which we represent by a
vector field along the intersection curve (Fig. 1). It is
from that vector field that one computes a vector
(element of a Lie algebra) tangent to a satifactory
displacement of the surface, and then a true displace-
ment using a classical closed formula for the exponen-
tial of the Lie group of rotations.

The global problem is that of choosing a starting
position for the surface such that the local search will
lead to a solution, escaping local minima. We first build
a sectional atlas, i.e. a catalog of cross-sections of the
model surface in different positions, then we query it,
comparing the intersection for the starting position to
the sections recorded in the atlas in order to find a best
match and start from the corresponding position. Justi-
fying that procedure and looking for optimised atlas
calls for definitions and some formalism that we briefly
outline to sketch our research prospects. The complex-
ity of the problem calls for contemporary mathematical
techniques such as genericity methods and Catastrophe
Theory, which we also use to simplify the algorithmics
of plane intersections.

Notice that there is in general no unicity in the
solution. This is trivially true for the tangential sections
of the surface, several of which are unique points
obtained for different plane positions. Excluding these
cases obviously still leaves the possibility of multiple
solutions, but whether unicity holds generically seems
to be an open problem.

1.2. Other approaches to searching: generic signs
for humans

Let us put in a more general perspective this problem
of searching for a position parameter (here the unknown
transform) in view of a controlled image (here the
target intersection curve). It is common in medical
imaging to deal with families of images. For instance,
a sonographic image is controlled by such parameters
as the direction and position of the probe, the contrast
parameters, the position and breathing of the patient. A
convenient mathematical formalism is that of mapping
controls [1, 2]: each image is modelled by a differen-
tiable mapping within a continuous family depending
on the coordinates in a control space. Exploring a
patient is then a kind of navigation in control space
where one tries to obtain certain images in the family,
or to prove that they are not present. Most imaging
modalities involve families of projections or families of
sections of surfaces, and for these a theory has been
evolved from the methods of differential topology [3, 4]
to show how some of the usual radiologic inferences
are valid [2]. Important sign systems used in medical
imaging rely on genericity assumptions [5]. Roughly
speaking (see below), this means that there are excep-
tions to the rules used, but that the exceptions are so
rare that reliable inference is possible.

For instance, in the case of standard projection
radiographs, the lines extracted by the radiologist’s
eyes on the image are formed on the film where the
projecting X-ray hitting the film has been tangential to
a contrast surface in the patient’s body (a situation
associated to a singularity of the projection of the
surface on the film along the rays). A generic sign
system for the interpretation of radiologic projection
images is made of three signs: a line comes from a fold
of the contrast surface, two crossing lines come from
the superposition of two folds (this accounts for what is
known in Radiology as the “silhouette sign”), and a
cusp comes from a pleated contrast surface. Counter-
examples to these rules can easily be constructed
mathematically (Fig. 2), and seem to prove the impos-
sibility of making interesting inferences about the
surface from the lines on its projection, but they are
unstable and rare and so do not prevent the use of the
sign system in practice.

Such sign system is justified in the absence of a
precise control on the angles of projection, but in case
one precisely monitors and controls the angles it is
possible to stabilise special positions and make new
image patterns appear. One of them is the “swallow-
tail” described in Catastrophe Theory, which can generi-
cally be stabilised (this notion of genericity takes the
control into account) when observing tangentially a

Fig. 1. The surface, the fixed horizontal cutting plane, and the
effect of a displacement of the surface on the shape and position
of the sectional curve: the moves of the intersection points are
accounted for by a vector field along the intersection curve. The
problem addressed in this article is to find a position of the
surface so as to match the intersection with a curve already given
in the plane.
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piece of surface with a negative curvature and turning
it around an axis normal to it (Fig. 3). There is a sign
system for surfaces under one-parameter control,
another one for two-dimensional control. Seeing a
swallow-tail pattern on an image permits predicting in
practice what rotations will increase it or make it
disappear.

The problem we address in this paper is to be solved
with numerical methods using computers. Let us remem-

ber however what alternative methods are used by
human experts to navigate families of images: some
images include special patterns that can be recognised
and used to guide the search. For instance, in the case
of radiograghic projections, a swallow-tail pattern
generically indicates an axis around which to rotate the
patient in order to either increase it or remove it (a
standard clue when imaging the digestive tract, espe-
cially when examining the stomach or the colon). In the
case of sectional imaging, a cross-section generically
displays only regular curves, but controlling one param-
eter such as the level of the section generically stabi-
lises two new patterns: an isolated point is associated to
either the birth or the disappearance of a curve, and a
crossing corresponds to the merging of two curves or to
the splitting of a curve. Here again, one can use these
signs as hints to the control when searching for certain
images. For instance the crossing pattern is ‘announced’
by some ‘attraction’ of two contours, i.e. detecting that
a move of the sonographic probe pulls two curves
towards each other is a good clue when looking for a
crossing.

In all of these instances, the search is guided by the
qualitative recognition of some local or regional pat-
terns, as opposed to the global averaging to be per-
formed by the algorithm we are about to describe.
Merging these two approaches might be proposed as a
direction for future research.

2. The local problem

2.1. Setting and notations

Let us call � the set of displacements in �
3. Each

element of � can be described as a couple � T, R � ,
where T is a translation and R a rotation, or, using
projective transforms, as a 4 × 4 matrix:

�R T

0 I � = �
r1, 1 r1, 2 r1, 3 u

r2, 1 r2, 2 r2, 3 v

r3, 1 r3, 2 r3, 3 w

0 0 0 1
�

The surface S we shall consider will be a finite
triangulated polyhedron coded in a standard ‘.polyh’
file format. Let us consider the plane
P = � � x, y, z � ∈ �

3 : z = 0 � : it generically cuts only
edges of S and no vertex of it. We call tube of the cross
section the set of the vertices of the edges of S which
are cut by P (Fig. 4). Let tub be the current tube. Of
course tub is recorded within a proper data structure,
e.g., to relate it to the data structure recording the
cross-sectional curve CS = S ∩ P . To compute CS , one

Fig. 2. Ambiguity arises from some experimental settings, since
different sets of contrast surfaces may lead to the same projection
image. This seems to prevent any rigorous interpretation proce-
dure for projection imaging. However, the ambiguous configu-
rations are unstable (here, perturbing the surfaces would almost
certainly separate their images) and rare enough to be neglected
in practice, which is mathematically justified using genericity.

Fig. 3. Some local signs indicate how to move the patient to
modify the image in a certain way. Here a swallow-tail pattern
seen on a projection of a portion of a tube (the right image
displays it unfolded into a stable image combining two cusps and
one crossing) indicates an axis around which to rotate the patient
and cancel the pattern. In this figure, the film is equivalently
rotated around the patient. The left image is also stable, the
middle one (unstable) is a transition.
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needs only know the coordinates of the elements of tub.
We assume these to be an element of a 6n-manifold
Tubes, with n the number of vertices of CS, allowing
some redondency for coding convenience. Computing
CS maps Tubes to some 2n-manifold E representing the
embeddings of polyhedral curves into P.

We shall assume here that we are given a distance
function d � CS, Ct � evaluating for each position of S
how close CS is to the fixed target curve Ct given in P.
We wish to find a position (unique or not) of S in space
which minimises that distance to Ct. For the time being,
we shall aim at approximating some vector field V
along CS (in P) proportional to the gradient of d.

Each element of � acts on S in 3-space, and thus on
tub, then on CS, and eventually on d� CS, Ct �:

� →
f Tubes →

g E →
d � ., Ct � R

� R, T � → tub → CS → d� CS, Ct �

To carry an infinitesimal approach, we shall consider
the tangent spaces T �, T Tubes, T E , to these spaces
and compute the Jacobian Jh of the mapping h = gCf
from � to E. This Jacobian not being invertible, we
shall use a least-square approach to find an element X of
T � generalized solution to the equation Jh X = V,
where V will be a displacement of the curve CS
improving its fit to Ct. We then need to find an element
of � close to X to be able to perform a true displace-
ment the effect of which on Ct will approximate V. To
do so we use the Lie group structure of � and an exact
formula for the exponential from T � (its Lie algebra,
a product of the space of antisymmetric 3 × 3 matrices
and translations) to �. The distance from CS to Ct is
iteratively decreased, taking into account some require-
ment of smallness of the steps so that the non-linear
computations involved in the tube intersection remain
well approximated by this linear approach.

2.2. Implementation

Recall that X is the element of T � which we are
looking for. X and its transforms by TId f and Ttub h can
be represented by matrices:

Matrix X is only a vector presentation of the same
element of T � usually viewed as the matrix of a linear
mapping, where � is the antisymmetric matrix of the
linear mapping tangent to the rotation R which is the
first component of the element � R, T � :

�� T

0 I � = �
0 − c b u

c 0 − a v

− b a 0 w

0 0 0 1
�

The tangent mappings TId f and Ttub h have matrices:

Jtub h = �
J1

J2

¢

Jn

�

Fig. 4. The discrete tube around the plane intersection of a
triangulated polyhedral surface: knowing the circled vertices is
enough to compute the intersection curve.
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where:

As a consequence, the equation to be solved i.e.,
M X = V , develops as

More precisely, the matrix we build is:

M = �
M1

.

.

.
Mn

�
with (beware that we show the transpose of Mi to fit in
this page):

Matrix M has no inverse but equation M X = V has a
generalised solution, i.e., using Euclidean norm, the
minimal norm vector field among those the effect of
which approximates best the required vector field [6]. It
is computed using standard numerical procedures [7,
8].

To find a true displacement � R, T � close to the
antisymmetric matrix � associated to X, we use the
exponential mapping from T � to � for which there is
an exact formula:

R = exp � � � = cos � h � I3 +
sin � h �

h � +
1 − cos � h �

h2 �

with

� = �
a

b

c
� ⋅ � a b c �

and

h = ± �a2 + b2 + c2

Finaly, the matrix of the transform to be performed
on surface S is:

�
u

R v

w

0 0 0 1
�

Each loop of the algorithm consists of the following
steps:
1) compute the intersection of Swith the given plane P,
2) form matrices M, V, and find a generalized solution
to M X = V,
3) compute the displacement � R, T � and apply it to S.

At each step 1), the genericity of the intersection is
checked (it is necessary for keeping simple of the
intersection algorithm and the data structure for the
tubes). If some vertex of the polyhedron is found in P,
a small transformation is performed on the surface and
the loop is resumed at the point of entry of the
intersection algorithm (see below for the justification of
this simple algorithm using genericity).

2.3. Choosing the vector field along
the intersection

The former section showed how to compute an
infinitesimal displacement of the surface that will
produce a given deformation of the intersection curve.
We now have to specify the required deformation. That
deformation is a sort of vector field along the intersec-
tion curve, i.e. in the present case of a polyhedral
surface, a mapping associating to each vertex of the
intersection polygon a vector in �

2 figuring the trans-
lation to be applied to that vertex. We want the
successive applications of such required vector fields to
bring the intersection curve to the target curve. A vector
field along a curve can be seen as a vector tangent to the
space of curves at the given curve, and such tangent
vector can be the gradient of a functional defined in the
space of curves. Taking as the functional a distance
from any curve to the target curve, following the
gradient will lead a curve towards the target curve as
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desired, at least starting from a neighbourhood of the
target curve. Some of the natural distances on the space
of curves, such as geodesic distances deduced from a
scalar product on vector fields along curves, are diffi-
cult to compute, and a gradient has to be output. We
have some latitude in the choice of a distance, and also
in the vector field, which only needs to contribute a
decrease in distance, not necessarily being its gradient.

Defining a distance between curves and then com-
puting its gradient at a particular element in a space of
curves is conveniently replaced by constructing directly
a vector field along the curve to be altered (here the
cross-section of the model surface to be displaced),
which we know, or declare, to improve the match. To
that effect, for each pair made of the cross-section curve
(or s-curve, s standing for source) and the target curve
(or t-curve), we first compute a matching correspon-
dence between the points of the two curves, i.e., in the
case where both curves have the same number of
connected components, a homomorphism between the
two curves, with some regularity required (we chose to
preserve orientation and ratios of curvilinear abcissas,
and then search the best phase either to match curvature
or to minimize the sum of squared distances between
corresponding points). This enables, for a simple
instance, the construction of the “mapping cylinder”
made of all the segments from one point of the s-curve
to its image on the t-curve (Fig. 5). The vector field
chosen along the s-curve is a field of vectors propor-
tional to the segments oriented towards the target curve:
moving the s-curve along that vector field improves the
match. A matching correspondence that we experi-
mented used smoothed versions of the polygonal curves
and relied on local curvature with some blurring of it.
Rarely it may be required to build a correspondence
between two curves with different numbers of con-
nected components. That problem can be solved just as
in surface reconstruction from parallel cross-sections
and beneficiates from genericity considerations and
Morse Theory (see below).

To justify the former construction, one can build a
functional on the space of curves using the mapping
cylinder towards the target curve, define it as the sum of
the squared lengths of the segments and retrieve the
former vector fields as the gradient of it a particular
curve. Such functional does not always satisfy the
triangle inequality needed for a distance, especially
when there exist several best matchings, but it does
under certain conditions, such as among curves for
which, noting φ � C1, C2, x � the image in C2 of x ∈ C1
by the computed mapping cylinder from C1 to C2 ,
for any three curves C1, C2, C3 and any
x ∈ C1, φ� C2, C3, φ� C1, C2, x � � = φ� C1, C3, x �. The

inequality holds for the minimal sum of squared dis-
tances criterion. We shall use that functional after some
rigid curve registration as a matching score against the
elements of a sectional atlas to choose the best surface
position for starting the local search.

3. The global problem: using sectional
atlases

3.1. Sectional atlases: operations, definitions,
validity

At the onset of the algorithm, a sectional atlas of the
model surface is computed. In our implementation, it
holds about 500 sections of the surface, the planes
being regularly distributed among those which intersect
the surface. A search is then performed to find the best
match between the target curve and the curves of the
atlas, thus retrieving a best first position for the surface
to start (not too far from a solution). The operations to
optimise the match among a number of 2D curve pairs,
include 2D displacements minimizing the sum of
squared distances between corresponding points before
evaluating the matching scores formerly described.

More precisely, a sectional atlas consists in an array
of pairs � pi, Ci �. Each pair holds a surface position pi
as its first element and the corresponding sectional
curve Ci as its second element. Given a target sectional
curve, one searches the atlas for a pair whose second
element matches best the target curve. The first element
of the pair is then taken as a starting surface position for
the local evolution formerly described.

Fig. 5. Once a one-to-one correspondence has been computed
between the two curves (the present intersection polygon, on the
left, and the target polygon, on the right), the discrete mapping
cylinder is drawn and used for specifying the displacement field
along the intersection to be approximated by the effect of moving
the surface in space. Notice that the image of a vertex is not
necessarily of the left polygon is not necessarily a vertex of the
right polygon.
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Some questions naturally arise about using such a
sectional atlas. Is it necessary to use one? Does using
one guarantee convergence to a global minimum? Can
it be optimally built? It is easy to find instances of
surfaces and starting surface positions where the search
is stuck in local minima and thus to answer affirma-
tively the first question: using only a local search does
not in general lead to a plane that generates the target
curve. To formulate more precisely the other questions,
let us define an atlas to be valid if, for any target curve,
performing the local search after using the atlas leads to
a true solution. One can now ask whether a valid atlas
exists for any surface, or for a particular surface. One
can also look for minimal valid atlases for a given
surface and compare them.

3.2. Search, controlled dynamical systems,
Catastrophe Theory

Let us outline a mathematical setting to reformulate
the questions and orient future work. Given a target
curve, the local search is driven by a dynamical system
towards an attractor. Assuming the existence of a
distance function between curves simplifies the dynam-
ics to that of a gradient dynamical system on the space
of surface positions, which reduces the complexity of
the analysis. Distance from a sectional curve CS to the
target curve Ct can be viewed as a potential on the set
of sectional curves. Now such dynamical system
depends on the target curve and the whole picture fits in
the formalism of Elementary Catastrophe Theory [9].
To ensure that the dynamics depends regularly enough
on the target curve, only notice that one can parameter-
ise the family of potentials using coordinates of the
sectional plane of the target curve instead of the target
curve itself, the number of connected components of
which may vary. A second metric space has to be
considered: each sectional curve Ci of the atlas is the
best match for a certain set B � Ci � of sectional curves,
which we call Ci’s territory. In order for an atlas to be
valid, it is enough that for any sectional curve Ci of it,
for any element C of the territory B � Ci �, Ci is in the
basin of attraction of the dynamical system with C as
target curve.

A sufficient condition for this would be the existence
of a strictly positive diameter d such that, for any
dynamical system in the family, the basin of attraction
of the target curve contains a ball of diameter d. But
such condition does not hold in general. Consider the
case of a cylinder and a cross-section by a plane
perpendicular to its axis: in first approximation no
non-trivial horizontal displacement of the cross section
can be obtained by tilting or tossing the plane. Parallel
planes are fixed points for the dynamical system with

this plane as a target, which shows that the lower bound
for the maximal diameter of attracting balls around
targets is zero.

3.3. Genericity

To disentangle difficulties coming from very special
artificial cases, some of them not likely to occur in
anatomical shapes, from more serious obstacles, it is
now classical to use genericity methods. Such methods
are the basis of Catastrophe Theory [9] and they were
also used to the justify of the geometric arguments used
in some deductive methods of diagnostic imaging [2,
5]. Mathematically, given a property relative to objects
that can be considered as points of a topological space
X, one says that the property holds generically in X, or
is generic in X, if the subset of the points for which it
is true is residual, i.e. a denumerable intersection of
open dense sets of X [4, 9, 10].

For instance, in a cube, three points are generically
not aligned. Notice that in that case, using a non-
singular probability measure on the cube, it is easy to
transform the genericity argument in a probabilistic
one: “for a triple of points randomly drawn from the
cube, it is almost sure that they are not on a same line”,
and then use it in Bayesian inference. However, such
equivalence does not hold in general. Moreover, even
when it holds, constructing probability measures is
often difficult and it is convenient to avoid it and stay in
a topological framework: just consider the case of three
points in unbounded space where a probabilistic for-
mulation already calls for some care. Using probabili-
ties would be too awkward as a first approach for the
differential geometry of smooth mappings. As an
instance of generic properties of smooth surfaces, a
smooth surface generically has no plane parts nor
symmetries. Other generic properties of smooth sur-
faces have been proved about their sets of parabolic
points [11] (which generically have a simple structure),
and about their projections and cross-sections, from
which one understands how some deductions of pro-
jection radiology and cross-sectional imaging have
been possible [1, 12].

In the present problem, one is led to study the
catastrophe points of the parameterised dynamical sys-
tem that we described, and the corresponding configu-
rations of the surface in the neighbourhood of the
cutting plane. The objectives of further studies along
these lines could be to describe classes of surfaces for
which valid atlases exist, or to evolve numerical meth-
ods to check whether an atlas is valid for a particular
surface, and to provide a rational construction of
efficient atlases.
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3.4. Using genericity to simplify geometric
algorithms

Using generic properties also brings some simplifi-
cation to the design of geometric algorithms, as shown
by our algorithm to compute the cross-section of the
surface by a plane. Let us prove that, given a finite
polyhedron S in �

3, it is a generic property for planes
(call it property A) not to cross any vertex of it: for a
given vertex V, the set of planes that cross V is a
hyperplane HV in the set of planes. The planes that do
not cross V form the complementary set H√V, which is
open and dense in the set of all planes. The set of planes
that do not cross any vertex of S is the (finite)
intersection of all such H√V for V any vertex of S: it is
open and dense, meaning that for any plane P, there is
a plane P ′ with property A and as close to P as we wish.
But having property A means that the intersection of P
with a triangulated polyhedron S is very easy to
compute: it is a finite set of polygons, each vertex of
which comes from a transversal intersection of an edge
of S with P ′. We thus get rid of all the very complex
cases of intersection that can arise in non-generic cases
and that would take much time to analyse and code.

Here it is easy to convert the argument into a
probabilistic one. For instance, to draw a random plane
crossing S, we can use uniform distributions, first
drawing a random direction, then drawing a random
plane among those that cross S and have that direction.
The property is then almost sure, since the probability
of crossing a vertex is zero, and we might be tempted to
just assume it true for a random plane. However, the
computational precision being finite, the probability of
a random plane to cross a vertex of S is not strictly zero.
To be able to restrict ourselves to the simple cases of
intersection, we thus rely on the following algorithm
for computing the intersection of the triangulated poly-
hedron S with a plane P: (1) check whether P contains
any vertex of S and, if it does, repeat choosing a random
P ′very close to P until it does not; (2) compute the
intersection knowing that transversality is true. A single
perturbation of P is enough in an outstanding majority
of cases. This algorithm is well adapted to anatomy,
where no relation such as strict orthogonality or paral-
lelism is important. This would not be true in an
industrial design environment.

Genericity can also be used algorithmically in the
form of the Morse Theory [3, 13] for the reconstruction
of anatomical surfaces from parallel cross-sections and
for surface coding [14]. For the present problem, it can
be used to simplify the analysis of topological changes
between successive cross-sections. Indeed it is possible
that a small change in the plane P brings a change in the
number of connected components in the section. Here

again, the general case is very complex, but the changes
generically follow the simpler patterns given by Morse
Theory. When we have to match sections that have
different numbers of connected components, we can
assume that the numbers differ only by 1. Matching a
section made of n + 1 pieces to a section made of n
pieces is algorithmically similar to reconstructing a
surface between a section with n + 1 components and a
section with n components where one has to introduce
a singularity, either a saddle point or a peak (assuming
the level with n components above the level with n + 1
components), somewhere between the two sections.

Genericity permits restricting a problem to simple
cases when it guarantees that the cases removed are not
likely to occur in practice, or that the slight modifica-
tion introduced to bring the simplification will not
significantly alter the solution found. It is thus common
in contemporary geometry to accept genericity condi-
tions in order to find solutions to a given problem. In
the present case, applying genericity to the surface
itself, one can discard many special cases like a
polyhedron having two parallel edges: as a conse-
quence, it is a generic property that no plane can cut it
with all of the intersected edges perpendicular to it, a
special case that we used as a counter-example in our
former discussion of the validity of an atlas. Such
arguments will certainly simplify the discussions, but
most of the problems are still open for research. On the
side of applications, a practical limit to these qualitative
arguments not to be overlooked for an actual imple-
mentation is the numerical conditioning of some of the
computational steps: a small perturbation of a problem
may bring the existence of a solution still leaving a very
bad conditioning for its numerical computation.

3.5. Optimal atlases

Optimising atlases can be targeted at their sizes and
defined as minimising the number of pairs of a valid
atlas. Indeed the usefulness of a non-optimised atlas
can be questioned in the case of a single search: one can
replace its building and searching by a mere stochastic
search for a best-starting position. The atlas that we
used in the implementation that we report was not
optimised either, but we were interested in repeated
searches for different target curves, using a single build.
A good atlas on the contrary would not spoil pairs in
regions where a single pair can lead the search for a
large territory of starting positions. The information
given by an optimised atlas can be compared to an a
priori distribution for a stochastic search.

Classical methods such as adaptive procedures could
be used to optimise atlases. But efficiency is not the
only incentive for optimising atlases: minimal atlases
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would certainly give much insight into the global
structure of the controlled dynamical system in relation
with the geometry of the surface. Such question can be
related to other instances of geometric searches with
important applications, such as those that appear in
drug design, or the problem of searching image data-
bases.

An other direction of research for performance
improvement must be mentioned. Assuming valid
atlases exist for the surface and can be built, and
knowing that building them can be done beforehand,
one could seek shorter execution time using non-
minimal atlases: an atlas with a greater number of
couples might allow smaller territories and thus shorten

Fig. 6. Photographs of the display that monitors the surface and its intersection during their evolution under the algorithm. In the left
window, a 3-dimensional scene of the scapula model (red, with the tube hardly visible on it) intersecting the horizontal plane (blue) in
which the target curve is drawn (green) can be interactively rotated for inspection. In the right window, a 2-dimensional plot of the two
curves to be matched and the discrete mapping cylinder between them. A: starting position and best mapping cylinder (before registration)
to a member of the atlas. B, C: two later steps during the same run, D: convergence. E, F: Two steps of an evolution towards a different
target curve.
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the second phase of the algorithm, at the cost of
increasing the time needed during the first phase to
query the atlas. One could even use only a large
sectional atlas if limited precision were enough, and
thus get rid of the second phase, with perhaps some
interpolation instead. It would then be most important
to improve algorithms for querying the sectional atlas,
for instance using some shape decomposition for the
sectional curves with possible relations with the prob-
lematics of minimal atlases.

4. Experimental results

The algorithm was implemented on an SGI system,
programmed in the C language under the IRIX operat-
ing system with visualisation using OpenGL and X
Window to show the evolution and quality of the match
(Fig. 6). The model surface tested was the boundary of
a dry scapula acquired from C.T. and reconstructed
from millimetric sections. That surface was chosen for
its complex shape. The sectional atlas held about

500 sections of the surface, the planes being regularly
distributed among those that intersect the surface. The
speed and precision of the search depend heavily on the
location of the target cross-section. A precise measure-
ment of the precision and reliability of the algorithm
could be the subject of future work. The simplified
section algorithm based on genericity performed satis-
factorily.

5. Conclusion

The present work shows the feasibility of some
registration of a single cross-section to the surface it
comes from, using only boundary information. The
differential approach is tractable and the generic section
algorithm performs well. Many variants and improve-
ments of the present implementation can now be
studied. Some theoretical issues such as the existence
of valid sectional atlases and the structure of minimal
sectional atlases have been raised and formalisms to
reformulate and address them have been discussed.
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