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Abstract – We discuss the influence of positive and negative feedback on the stability of a system, which is not
clear-cut, and involves complex, mathematical problems. We show in particular that positive feedback can have a
stabilising effect on some systems. We also point out the role that positive feedback plays in the digital treatment of
signals required by cellular signalling, drawing on analogies from electronics, and the role that negative feedback
plays in making a system robust against alteration of its parameters. Both positive and negative feedback can be seen
as important enhancers of the properties of biological systems. To cite this article: O. Cinquin, J. Demongeot, C. R.
Biologies 325 (2002) 1085–1095. © 2002 Académie des Sciences/Éditions scientifiques et médicales Elsevier SAS

positive feedback / negative feedback / stability / regulation / multistationarity

Résumé – Rôles des rétrocontrôles positif et négatif dans les systèmes biologiques. Nous discutons l’influence
des rétrocontrôles positif et négatif sur la stabilité d’un système, qui n’est pas simplement déterminée et pose des
problèmes mathématiques complexes. Nous montrons en particulier que le rétrocontrôle positif peut avoir un effet
stabilisant sur certains systèmes. Nous montrons également le rôle que le rétrocontrôle positif joue dans le traitement
digital de signaux nécessité par la signalisation cellulaire, en nous fondant sur des analogies avec l’électronique, et
le rôle que le rétrocontrôle négatif joue dans la robustesse des systèmes. Les deux formes de rétrocontrôle peuvent
être vues comme apportant des améliorations importantes aux propriétés des systèmes biologiques. Pour citer cet
article : O. Cinquin, J. Demongeot, C. R. Biologies 325 (2002) 1085–1095. © 2002 Académie des Sciences/Éditions
scientifiques et médicales Elsevier SAS
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1. Introduction

The central importance of feedback circuits in bio-
logical systems has been very clear since the first
elucidation of molecular mechanisms they rely on [1].
But feedback is sometimes perceived as a means for
auto-correction of a system, to ensure its stability in the
neighbourhood of a specific set of values of parameters,
these values being the ones at which the system

operates in a satisfactory manner. The kind of feedback
associated to such a stabilising effect is negative
feedback; positive feedback, exemplified by the singing
of audio amplifiers, is sometimes likened to a problem-
atic side-effect in certain situations.

It is our purpose in this paper to prove this view to be
incomplete. First, we will show that negative feedback
can be destabilising for certain systems, and positive
feedback stabilising, where stability applies to steady
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states of the systems. We will then discuss the role of
positive feedback in information processing, and the
role of negative feedback in alleviating the dependency
of the global behaviour of a system on the specific
values of certain kinetic parameters, i.e. in making the
system robust.

2. Preliminaries

This section provides the rigorous mathematical
framework for the following discussion. It can be
skipped by readers not interested in the mathematical
detail. Our discussion applies to autonomous differen-
tial systems, whose mathematical formulation is as
follows: we consider an open domain D ⊂ �n, a
function F ∈ C∞(D, �n), a real interval L, and a func-
tion x ∈ C1(L, D) such that

∀ t ∈ L,
dx(t)

dt = F(x� t)) (1)

Vector x describes the state of the system, and vector
F(x) gives the direction in which the system will evolve
when it starts at point x of its state space. Points where
F vanishes, and where the system maintains an equi-
librium, are stationary states. We suppose that no
stationary state of F is degenerate (which implies that
stationary states are isolated). Let JF(x) be the Jacobian
matrix of F at x ∈ D. JF(x) can be considered to define
an oriented, weighted interaction graph on the set
I = �1, ..., n �, in which an arc points from i to j if and

only if
�Fj

�xi
(x) 7 0 (i.e. if variable j depends on

variable i), the associated weight being
�Fj

�xi
(x) (recip-

rocally, by reversing this process, a unique matrix M is
associated to a weighted interaction-graph, by setting
the value of Mi,j to the weight of the arc pointing from
j to i if it exists, and 0 if it does not exist). There is a
circuit involving nodes i1, ..., ik if and only if

�
j = 2

k + 1 �Fij

�xij−1

, where ik+1 = i1. A same node is not allowed

to appear more than once in the graph circuits consid-
ered in the following (i.e. in the previous example, ∀ p,
q ∈ �1...k � s.t. p 7 q, ip 7 iq ); circuits comprising a
single arc (from a vertex to itself) are allowed, and
correspond to diagonal, autocatalysis term in the Jaco-
bian, and a variable exerting a direct influence (positive
or negative) on itself. The sign of a circuit (positive or
negative) is defined as the sign of the product of the
weights of the associated arcs; i.e. a circuit is negative
if it has an odd number of negative interactions, and

positive otherwise. Finally, the weight of a circuit is
defined as the product of the weights of its arcs.

A variable is part of a feedback circuit if its corre-
sponding vertex in the interaction graph is part of at
least one circuit; if there is such a positive (respectively
negative) circuit, the variable is under positive (respec-
tively negative) feedback control. It is possible for a
variable to be part of a negative and a positive feedback
circuit at the same time.

It should be noted that we consider general feedback
circuits whose length can be greater than 1, and that the
sign of the circuit is not necessarily the same as the sign
of the interaction that links a later part of a pathway to
the earlier part (for example, if one considers a bio-
chemical synthesis pathway, the end-product P can
inhibit an early enzyme E of the pathway, as in models
considered in [2], but this inhibition can still be part of
a positive feedback circuit, if E itself inhibits another
enzyme that leads to the creation of P).

Note also that, except in the trivial linear case (which
does not give rise to interesting behaviours such as
non-degenerate multistationarity), the Jacobian matrix
is not constant within the domain D; it is thus possible,
and likely, that the weights and the signs of the circuits
are not constant, and even that the structure of the
interaction graph itself is not constant. Note also that if
there are two distinct mechanisms by which a variable
depends upon another (these mechanisms possibly
being antagonistic), it is the sum of the corresponding
derivatives which will appear in the relevant Jacobian
term. For example, if a protein whose concentration
corresponds to xi exerts a positive but saturable effect
on its own synthesis (positive autocatalysis, or auto-
activation), and undergoes exponential decay (negative
autocatalysis, or auto-inhibition), such that

dxi

dt = − xi + v
xi

K + xi
, v > 0, K > 0

then the overall autocatalysis for xi, corresponding to
the Jacobian term JF(x)i,i, will be positive for low values

of xi (provided that v
K > 1), and negative for high values

of xi (for example for xi > v).

We will call stationary states stable if and only if they
are locally asymptotically stable, i.e. if and only if all
eigenvalues of the Jacobian matrix have strictly nega-
tive real parts. Due to the strong dependency of the
characteristic polynomial of a matrix on its circuit
structure, stability exclusively depends on interactions
which are part of a feedback circuit; it is only the
weight of a circuit which is important (not the weights
of its particular elements), because they only appear in
the development of the determinant giving the charac-
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teristic polynomial. In the following, we will consider
stability of dynamical systems around steady states.

While studying the effect of feedback circuits on a
particular system, one is confronted with the problem
that changes in system parameters lead to changes in
weights of feedback circuits at given points of the state
space, but stationary states are also displaced as a result
of the change of parameter values, and the weight of
feedback circuits at the stationary states is thus not
always readily controllable. It can thus be that increas-
ing the strength of the interactions in the equations
governing a system does not lead to increased feedback
circuit weights at the stationary states of the system.

3. Feedback and stability

3.1. Negative feedback can be destabilising

It is quite obvious that the subjection of every
variable of a system to negative feedback is mandatory
for the stable maintenance of a stationary state. Were a
system under no feedback-control, it would ‘drift away’
according to varying inputs or random fluctuations of
its state variables. Were a system under exclusive
positive feedback-control, it would of course be
unstable. However, negative feedback can lead to
expanding oscillations, a source of instability. Indeed, a
linear system of three or more variables under control
of a single negative feedback circuit, as pictured in
Fig. 1 (as detailed in section 2, to this graph corre-
sponds a unique matrix, which defines the dynamics of
the linear system, with zero as an initial condition),
cannot be stable around the origin, whatever the weight
of the feedback circuit (the proof is direct, based on the
study of the characteristic polynomial). The critical
length of a feedback circuit is 2: negative feedback
involving one or two state variables provides stability
per se to an isolated linear system, while it does not
when longer circuits are involved. Intuitively, the
corrections to the variations of a variable come ‘too
late’, and give rise to an ever-expanding series of
‘over-corrections’, a phenomenon commonly known as
hunting. Of course, real-world systems oscillations do
no keep expanding, because these systems are not
linear and there is a saturation in synthesis rates (such
non-linearities are actually necessary for the occurrence
of asymptotically-stable limit cycles). Such long
negative-feedback circuits seem to be the basis for
cicardian clocks [3] and mitotic oscillations [4], and it
has been shown that they could generate oscillations in
MAP-kinase cascades [5]; a model system for a bio-
logical clock [6], which has been implemented in the
prokaroyte E. coli, oscillates only when the weight of
the negative feedback circuit is strong enough (Fig. 1b

in [6]). The necessity of the presence of a negative
feedback circuit (of length strictly greater than 1) in the
generation of oscillations resulting in a stable limit-
cycle has in fact already been shown in [7] and [8]
(boolean systems whose feedback circuits are all nega-
tive have no steady states, but stable cyclic trajectories
[9]).

3.2. Positive feedback can be stabilising

On the other hand, positive feedback can be neces-
sary for a system to preserve its stability. Again we will
illustrate this point by two examples, a linear one, for
which we do not have generating biological kinetic
equations at hand, and one with a more straightforward
biological interpretation.

Let us first consider the linear system with three
variables x, y, z, whose interaction graph is constant,
and is the one shown in Fig. 2 (again, to this graph
corresponds a unique linear system with 0 as initial
condition). Such a system could arise from the lineari-
sation of biological kinetic equations around a station-
ary state. The steady state (0,0,0) of this system is
stable with the proposed coefficients; however, if the
positive feedback on variable z is diminished by a
quantity equal at least to 1 (or replaced by negative
feedback), other coefficients remaining unmodified, the
system becomes unstable. The salient feature of this
system is that there is one variable, x, which is under
control of a negative feedback circuit of length greater
than 2, while other variables are under control of
negative feedback circuits of length equal to or less
than 2. Intuitively, if the positive feedback on variable
z is diminished, the propagation of the ‘error reading’
on x will be too damped for the correction to be
effective. Fig. 3 and 4 show parametric timeplots of

Fig. 1. Interaction graph associated to a three-dimensional
matrix possessing a single, negative feedback circuit; if such a
matrix is the Jacobian matrix of a differential system at a
stationary state, the stationary state is unstable.
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variables x and z after a perturbation on x, for two
different values of z autocatalysis. When the autoca-
talysis is high enough (Fig. 3), the system goes back to
its steady state (0,0,0) in an oscillatory fashion. But
when the autocatalysis coefficient is lowered by 1 unit,
z does not stay sufficiently negative to bring x back to
0, and the system diverges (Fig. 4): when z has become
sufficiently negative, x starts decreasing (first vertical
tangent on the plot, starting from the origin), but z then
starts going back to 0 (horizontal tangent), and x finally
sets on an ever-increasing course (starting from the
second vertical tangent). In contrast, sufficient auto-
catalysis of z allows a more persistantly negative value
of z: even though a decrease in x also causes z to go

back toward zero after some time, this time interval is
sufficiently great for x to have decreased by a sufficient
amount by the time it increases again (and thus causes
z to go back toward negative values), for the process to
converge.

Another example is the following 3-dimensional
system. Species and their concentrations are denoted in
the same way, by x, y, z. A nefarious biochemical
species x is supposed to promote its own synthesis by
an enzyme normally serving other purposes, following
Michaelis kinetics. The presence of x induces the
transcription of an mRNA species y, following the same
kinetics. Finally, protein z, translated from mRNA y,

Fig. 2. Example of a graph of a
Jacobian matrix in which, other
things being equal, a positive
autocatalysis coefficient (high-
lighted in the figure) cannot be
diminished by a quantity equal
at least to 1, without the asso-
ciated system becoming
unstable.

Fig. 3. Trajectory of the linear
system whose matrix is given
by the interaction graph in Fig-
ure 2, with initial conditions
x = 1, y = 0, z = 0. Arrows
mark the direction of evolution
of the system. The system con-
verges to 0.
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can competitively inhibit the auto-promoted creation of
x, as well as the expression of its own mRNA y.

An important feature of protein z is that it activates
its own translation from mRNA y, with a maximal
speed a ∈ �+

* . All three entities are supposed to
undergo exponential decay, and translation as well as
transcription are supposed to be leaky. The correspond-
ing equations are the following, for a generic choice of
parameters (leakage in mRNA and protein synthesis is
chosen to be small compared to induced synthesis, and
x undergoes decay that is slow compared to its synthe-
sis):

�
dx
dt = − 0.1 x + x

1 + x + z
dy
dt = − y + x

1 + x + z + 0.1

dz
dt = − z + y �0.1 + a z

1 + z�
(2)

Were there no leakage in y transcription, the only
steady state for which x = 0 would be x = y = z = 0,
and would be unstable.

This system possesses a steady state for x = 0 and
y = 0.1, and z given by a quadratic equation which
always has a positive root. A bifurcation study using the
xppaut program [10] shows that the steady state with
x = 0 and z > 0 is stable if and only if a > 97.4, i.e. if
and only if the positive autocatalysis of z is sufficiently
strong. If not, small quantities of x are amplified before
z can exert its repressing effect. Fig. 5 shows the
response of the system to a small perturbation in x, for
a = 100, starting from the steady state with x = 0 and
z > 0: z increases sharply, and the system then returns

to 0. Fig. 6 shows the response of the system for a = 50,
also starting from the steady state with x = 0 and z > 0:
the rise in z is not as sharp, and the system does not go
back to 0. There is an important difference between the
two responses around the region of the plots where
t = 0: while for a = 100 the evolution of z is markedly
quicker than the evolution of x (the parametric curve
has a vertical tangent for t = 0), when a = 50 the
opposite is true (the parametric curve has a flat tangent
for t = 0). Intuitively, in the case of a stable steady state,
z rises quickly enough to repress x ‘before it is too late’.

Fig. 4. Trajectory of the linear
system whose matrix is given
by the interaction graph in
Fig. 2; the highlighted coeffı-
cient being diminished by one,
with initial conditions x = 1,
y = 0, z = 0. The arrow marks
the direction of evolution of the
system. The system diverges.

Fig. 5. Trajectory of system 2, for a = 100, with initial condi-
tions x = 0.1, y = 0.1, z = 9.1 (the value of x being thus slightly
increased from the steady state). The arrow marks the direction
of evolution of the system. After a sharp increase in z, the system
converges back to its steady state where x = 0.
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Note that, in general, increasing parameters involved in
positive feedback circuits does not necessarily lead to
more positive weights of feedback circuits at stationary
states, but to more positive weights at precise points of
the state space (because the location of the stationary
states is generally altered when the parameters of the
system are changed).

It could make sense biologically to have an inducible
expression of z if z was costly to produce, or if it
interfered not only with the production of x but also
with physiologically desirable reactions. Delays
between triggering of a signal and mRNA transcription,
and then mRNA translation, are very noticeable in
cells, especially eukaryotic cells; it could therefore be
that positive feedback has a role in stabilising systems
that involve long-range negative feedback loops, that
length being bounded from below by structural, bio-
logical constraints.

Systems in which a variable is under positive auto-
catalysis, and under control of a long negative feedback

circuit, could also be relevant to the modelling of the
immunological system. A virus replicates auto-
catalytically, and the acquired immunological response
requires many successive steps eventually leading to
the prevention of its replication. The presence of
memory cells allows subsequent infections to occur
with different initial conditions (in the above system,
leakage allows z to be non-zero at rest, and makes it
possible for the steady state with x = 0 to be stable), but
there are positive feedback circuits at play in immuno-
logical responses, for example between interleukin 12
and interferon c [11].

3.3. Stability analysis

These examples show that, while it is generally true
that, by adding enough negative feedback, one can
stabilise any given system (see below), and that, by
adding enough positive feedback, one can destabilise
any given system, the behaviour between extremes is
more complicated (and it should be because the stabil-
ity of a variable can depend on a coefficient very far
away in the interaction graph). This fact becomes even
more obvious when one calculates the Routh–Hurwitz
equations for a given system. These equations provide
necessary and sufficient inequalities on the coefficients
of the Jacobian matrix of a system for this system to be
stable. These inequalities, which with current math-
ematical knowledge can only marginally be generically
simplified, are quite complex even if the underlying
system is highly structured in a simple fashion. The
Routh–Hurwitz inequalities for the system described in
Fig. 2 are shown in Table 1.

Relationships between Jacobian matrix structures
and biological or chemical system behaviours have
already been investigated extensively (see for example
[12] or [13], or more recently [14] and [15]). The
problem of the stability of qualitative matrices (matri-
ces grouped according to the signs of their coefficients)
has also received extensive attention in the past, before
computers made their way into everyday scientific life;
important results are summarised in [16], and we
review quickly how those results apply to feedback

Fig. 6. Trajectory of system 2, for a = 50, with initial conditions
x = 0.1, y = 0.1, z = 4 (the value of x being thus slightly
increased from the steady state). The arrow marks the direction
of evolution of the system. The system does not return to the
steady state where x = 0.

Table 1. Necessary and sufficient stability conditions on the coefficients of a matrix m, whose non-zero coefficients are the same as those
given by the graph in Fig. 2.
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circuits and stability. Results relevant to our discussion
are that if a system comprises a positive autocatalysis
loop, a positive circuit of length 2, or any circuit,
positive or negative, of length 3 or more, then the
system can be made unstable by altering weights of
interactions while strictly conserving their signs (this is
a direct application of lemma 5.1 in [16]). To make
system stability a property robust against changes in
values of its interaction weights, an interesting goal
from the evolutionary standpoint because it frees the
system from certain particular kinetic values, it thus
seems necessary to limit to a strict minimum the
number of negative feedback circuits of length greater
than 2. Positive feedback, if present, can always desta-
bilise the system if its amplitude is sufficiently aug-
mented; however, as will be detailed below, the exist-
ence of positive feedback is a necessary condition for
certain useful behaviours of regulation systems, and
thus often cannot be avoided. Furthermore, it is remark-
able that if one modifies a stable system by introducing
positive autocatalysis on variables previously not auto-
catalysed, the resulting system can always be brought
back to stability by altering interaction weights without
changing their sign (theorem 5.5 in [16]).

The most practical way to deal with the Routh–Hur-
witz inequalities seems to be by means of computer-
ised, symbolic computing. We have developed an
automated system based on the symbolic computing
program MAPLE (and especially on the ‘Hurwitz’
package of MAPLE), to test whether a system of given
dimension, whose coefficients are kept symbolic, can
be stable for a given set of values of its coefficients
(details to be reported elsewhere). This system is useful
for proving relationships between system structure and
system stability for a given system dimension, and
conjecturing that the relationships are also valid for
higher dimensions. A conjecture we have come to is the
following: if one wants to stabilise a given negative
circuit of length strictly greater than two, and if one is
allowed negative circuits of length of 2 or 1, then local,
negative feedback has to be added to all of the variables
but one. This tends to show that stabilisation is best
dealt with locally. From an evolutionary standpoint, it
should be less costly to provide each system variable
with local, negative feedback, rather than to ensure that
long feedback circuits are maintained in such a way as
to stabilise variables with no local feedback. Local,
negative feedback could be provided by specific and
non-specific proteolysis (which would thus not only
serve the purposes of automatically removing partially
degraded proteins or transducing certain signals).

To conclude this discussion of the respective rela-
tionships of positive and negative feedback to stability,

we point out that autocatalysis has a special role in that
it must be negative on average for the system to be
stable (the trace of a matrix is the sum of the real parts
of its eigenvalues), and that the theorem of the ‘domi-
nant diagonal’ (a well-known theorem from linear
algebra, also mentioned in [16]), has the intuitive
interpretation that if for each variable the autocatalysis
loop has a negative (respectively positive) weight
sufficiently higher in absolute value than the sum of
other interactions affecting the variable, then the system
is stable (respectively unstable).

4. Roles of positive feedback circuits

4.1. Digital processing

The digital processing of signals, which involves
making all-or-nothing decisions based on the strength
of a signal relative to a threshold, has undeniably been
the greatest advance in electronics, and has allowed
automated information processing. Many different elec-
tronic components, passive (like a diode) or active (like
an operational amplifier), can contribute to the shaping
of a signal into all-or-nothing forms.

In biology, the processing of information at a cellular
level also requires some digital capacity, because the
categorisation of inputs and the structuration of an
output behaviour require that decisions be made which
may not be a compromise between different possibili-
ties. For example, a cell should differentiate into a
specific cell type, and should not possess characteristics
of different types in varying proportions. Positive
feedback has for example been shown to be implicated
in the reading out of morphogen gradients, with tran-
scription factors responding differently to concentra-
tions of morphogen, and being part of mutually-
repressive positive feedback circuits [17]. Positive
feedback circuits are crucial components of models of
gradient interpretation, such as those presented in [18–
20] (interestingly, in one of the cases proposed in [20],
positive feedback is necessary for stability, for reasons
different from those discussed above). The role of
feedback circuits in development has also been inves-
tigated in [21], based on a formalism developed in [22].

Possible elements to approach all-or-none responses
are enzymes exhibiting allosteric kinetics, whose
response curves are sigmoidal and not hyperbolic as in
classical Michaelis–Menten kinetics, or modifying
enzymes functioning in conditions of zero-order ultra-
sensitivity ([23], see [24] for an application to thresh-
olds in development). However, sigmoid functions can
only come close to Heaviside step functions, and
cannot ever be the source of a perfect, all-or-nothing
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response, as emphasised in [18]; the approximation of
this kind of response can be enhanced, at the cost of
complexification of the allosteric mechanism, but can-
not be made perfect. An active mechanism based on
positive feedback can however solve this problem [18],
based on an underlying structural apparatus that needs
not be sophisticated. The paradigm is that of a molecule
controlled both by positive feedback and negative
feedback, and for which negative (respectively posi-
tive) feedback predominates at low and high (respec-
tively middle-valued) concentrations. Such a system is
quite easy to design in such a way that there are only
two stable stationary states, one with a high concentra-
tion of the molecule, and one with a low concentration.
In such a system there is a third stationary state, which
is unstable (and thus never observed in real-world
conditions), and which plays the role of a threshold:
starting at a concentration below that threshold, the
concentration is brought back to its low stationary state,
and starting above that threshold, the concentration is
brought back to its high stationary state. Examples of
biological situations where positive feedback circuits
allow for threshold effects, as proposed in [18], are the
activation of blood-coagulation enzymes [25], or the
MAP kinase cascades (see below). The electronic
equivalents of bi-stable systems would be ‘Schmitt
triggers’.

Positive feedback thus makes it possible, with a very
simple mechanism, to constrain a system variable to a
fixed set of possible values, and to have a behaviour
close to ideal. In the case of discrete systems, the
structure of feedback circuits, and especially their sign,
has been shown to be an important determinant of the
behaviour of the system [26]; it has been shown that the
presence of a positive feedback circuit is necessary for
a discrete system to have at least two stationary states
[9, 27]. In the continuous case, positive feedback is a
necessary feature of a wide class of autonomous
differential systems having two or more stationary
states, if all stationary states are isolated. This was a
conjecture made by Thomas [28], and proven indepen-
dently in the case of constant signs of the feedback
circuits in [7] and [29]. We recently provided a more
general demonstration [30]. The demonstration we
proposed shows that for such a multistationary system,
there is at least one unstable stationary state that
possesses a real, strictly positive eigenvalue in the
Jacobian matrix; positive feedback being necessary for
the existence of a real, positive eigenvalue, there is a
positive feedback in those systems, at least around this
unstable stationary state.

Positive feedback is of course no miracle solution,
and there are also energetical tradeoffs involved. For

the evolution of the system to be quick around unstable
stationary states (and thus less sensitive to stochastic
fluctuations), the positive and negative forces exerted
on the concentration of the relevant molecule must be
strong, which is energetically costly.

It would be quite wasteful for a switch molecule to be
under strong, simultaneous synthesis and degradation,
as would be the case in the paradigmatic example
described above. A way in which this can be avoided is
by ‘filtering out small stimuli’, as formulated in [31], so
that competition between positive and negative feed-
back circuits is kept at a minimum. This filtering
process can be provided by sigmoidal response curves;
MAP kinase cascades, often involved in switch-like
responses, exhibit such a type of response [31], and
also have a positive feedback circuit [31, 32]. The
situation is thus the following: given a system that
already exhibits some switch-like responses, even if
quite imperfect, positive feedback circuits make it
possible to give to the system an almost perfect
switch-like behaviour; the better the original system,
the lower the energetical cost to improve it.

An essential difference between positive and nega-
tive feedbacks is the existence of a real, positive
eigenvalue allowed by positive feedback. Negative
feedback can give rise to complex eigenvalues with
positive real part; the complex component creates
expanding oscillations in the dynamics around the
stationary state. Such oscillations are most undesirable
in a system trying to make a clear-cut decision.

Positive feedback is useful not only in making
decisions, but also in memory, as emphasised in [18],
and shown on a larger scale in [33]. First, positive
feedback is a necessary condition for multistationarity,
as shown in [30]; the greater the number of attractors of
a system, the greater its storage capacity. Second,
physical storage of information is a difficult task
because of the natural tendency toward degradation;
memory must be continuously self-renewed, a natural
role of positive feedback. Computer memories make
use of positive feedback, and so does the brain, if one
goes with the hypothesis that memories are stored as
strengths of connections between neurones, activated
connections being reinforced (neurones also make use
of positive feedback when their membrane depolarises
[34]). A form of biological memory relying on positive
feedback circuits, identified early on, is that of the
lactose permease [35]. Different isoforms of the prion
protein could also be a striking example of memory, as
discussed in [36], which would have important impli-
cations both from the theoretical and therapeutical
points of view. Positive feedback circuits could also
provide memory at the level of ecosystems [37].
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Finally, taking further the comparison between bio-
logical and computerised information processing, let us
note that computers and brains both have highly oscil-
latory functioning, which, in the case of the computer,
makes it possible to treat problems in a stepwise
manner and break a complex computation into many
elementary ones. It seems likely that intra-cellular
regulation systems are not that sophisticated; a funda-
mental role for oscillations has not been proven so far
in intra-cellular computations (but it has been shown
that signals can be encoded by different frequencies of
Ca2+ oscillations [38, 39]). This however does not
mean that temporal aspects are not important in cellular
systems: cells can have qualitatively different responses
to the same stimulus applied for differents lengths of
time (p42 and p44 MAP-kinase pathways seem capable
of such responses, as reported in [40]), and often prove
capable of desensitisation overtime (which requires the
use of integral feedback [41], which we will not discuss
here). The progression through the cell cycle shows that
temporal aspects are also important when it comes to
arranging a set of tasks for physical, not informational,
purposes. Also, cellular oscillations in the production of
a messenger molecule makes it possible to create sharp
peaks of that molecule, when a large cell population is
temporarily synchronised.

These remarks bring us to the role of positive
feedback circuits in the generation of oscillations.

4.2. Oscillations

Positive feedback is at the heart of many electronic
oscillators, and this is also true of biochemical systems
[4], the paradigm being a product which activates its
own synthesis in a cooperative fashion [4]: the product
slowly builds up while the synthesising enzyme is
active at a low level, activates the enzyme when it
reaches a sufficient concentration, which results in
substrate depletion and thus in a reduced synthesis rate.
Glycolytic oscillations, as well as many cases of Ca2+

oscillations, often involve positive feedback [4] (inter-
estingly, positive feedback can, in some situations,
disfavour glycolytic oscillations [42], as can enhanced
negative feedback due to proteic confinement and
non-Michaelian kinetics [43]).

Certain types of oscillators use ‘negative resistance’
components, often provided by positive feedback cir-
cuits [44]. Similarly, it has been known for a long time
that a positive feedback circuit enhances outer hair cell
movements, opposing viscous forces, and is necessary
for high frequency selectivity [45] (see [46] for a recent
review); it has in fact been shown that the hair bundles
of these cells have negative stiffness in a certain range
of displacements [47], making realistic a model based

on the principle of negative-resistance oscillators. In
this case, positive feedback circuits could thus have the
role of freeing the system from viscous forces (as in a
regenerative amplifier), as first proposed in [48], bring-
ing it closer to an ‘ideal’ behaviour. This parallels the
role of negative feedback circuits discussed in the next
section.

5. Negative feedback circuits
and robustness

Harold Black, a famous Bell Telephones Laborato-
ries engineer, was met with disbelief when he proposed
in the 1930’s that negative feedback could play a
significant role in amplifiers, other than avoiding sing-
ing. The idea behind his negative-feedback amplifier,
described in a patent [49], was to reduce distortion by
feeding back into the amplifier input the error between
the input and a scaled-down portion of the output (this
error is known as distortion, and results from uneven
amplification of different frequency signals).

Such a use of negative feedback is dynamic: one is
not concerned with clamping down system variables to
certain values, but to provide adjustments between
different, dynamic variables. Many biological systems
use negative feedback for this purpose. For example, it
is crucial for organisms to maintain a fixed stoichiom-
etry between proteic ribosomal subunits: ribosomes are
present in great quantities under favourable growth
conditions (40% of total dried cellular mass for E. coli
under the most favourable laboratory conditions, [50]),
and it would be most wasteful to have components
present in too high or too low quantities. It is thus
imperative that different subunits be produced in simi-
lar quantities (note that this quantity is not fixed for a
given prokaryotic cell, but rather a function of the
growth rate). Nature has engineered sophisticated cou-
pling mechanisms to ensure the concomitant produc-
tion of two proteins in similar quantities [51]. Such
coupling mechanisms are also present within ribosomal
operons in E. coli [50]; however, it appears that the
number of proteins is too great for their production to
be coupled within a single operon, requiring another
mechanism, based on negative feedback.

The mechanism, as reviewed in [50], is basically the
following: each operon (whose proteins are synthesised
in highly similar quantities) is under negative control of
one of the proteins it codes for. If a group of protein is
not in excess, it is incorporated into neo-synthesised
ribosomes; if however it is in excess, proteins will not
be sequestered in ribosomes, and then one of the
proteins will be available to inhibit translation of the
corresponding mRNA. Sequestering of proteins in ribo-
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somes is where the substraction happens. As with the
negative-feedback amplifier, the result of the substrac-
tion is fed back into the controlling input of the
signal/protein generation system.

The beauty of this system is that it would be difficult
(if not impossible) without negative feedback to devise
ribosomal proteins in such a way as their production
rates are exactly the same, especially since these
proteins have different lengths and amino-acid con-
tents. The system is freed from the particular kinetics of
protein synthesis, and the stoichiometry cannot be
ruined by evolutionary changes of these kinetics. More
generally, such negative feedback can make it possible
to have a varying number of copies of a same gene
without its function being affected, a major evolution-
ary advantage, keeping a same gene functional for
homozygotes and heterozygotes, and allowing duplica-
tion, a major source of new genes.

Black’s negative feedback amplifier was criticised on
the grounds that the feedback diminished the gain of
the amplifier; while the fact is quite true, the criticism
missed the point that it was better to have an amplifier
that would be slightly less powerful but that would
output a better signal. The same applies to ribosomal
synthesis: synthesis rates of different proteins align on
the lowest one. But, while it is necessary to strive
toward higher ribosomal synthesis rates, it is of no use
to synthesise some proteins in excess.

Finally, it is interesting to note that electronic engi-
neers and cyberneticians have made an extensive and
successful use of negative feedback to render their
systems independent of their operating conditions (espe-
cially temperature, for electronic systems) and of the
imperfections and variabilities inherent to their compo-
nents. Negative feedback in biological systems might
very well lay the same role of guiding a generic system
of variable properties toward the correct behaviour, by
having it constantly correct itself, and thus of making
the system robust against changes in its operating
conditions or its internal parameters. From the practical
viewpoint of understanding the inner workings of a

regulation system, this has the consequence that some
parameters may not be important and need not be
investigated thoroughly. Considering the great com-
plexity of most biological regulation systems, it is
important to be able to concentrate on main parameters,
i.e. those to which systems are very sensitive.

6. Conclusion

We have considered so far autonomous differential
systems, without delays. Delays are however known to
be involved in biological systems, because for example
mRNA synthesis and transport (in eukaryotic cells) are
certainly not instantaneous. Delays can be a major
source of instability in negative feedback circuits (the
intuitive situation being that of a correction to an
offending variable that is applied too late, and has
increased too much by the time it becomes effective,
thus causing a swing in the opposite direction of the
offending variable), and have been shown to effectively
cause oscillations in biological systems [52, 53]. Sys-
tems with delays are however most difficult to deal with
analytically, because they are differential systems of
infinite dimensions, to which one cannot associate
finite-dimensional Jacobian matrices. Asynchronous
automata have been proposed to describe regulatory
networks [54]. It should prove interesting to make use
of hybrid automata (whose theory is described in [55]),
derived from computer program verification techniques,
the disadvantage being that differential equations have
to be discretised into piecewise linear systems. Such
automata are useful when some system variables are
amenable to boolean treatment (which is often the case
for regulating genes which have on/off states, see [56]
for a discussion and the description of a boolean
formalism for genetic circuits), and can easily take
delays into account in simulations; programs are avail-
able to prove properties about them, for example that
they can (respectively cannot) reach situations which
are desirable (respectively not desirable).
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