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Abstract – As classically defined by Macdonald in the early 1950s, for the case of diseases with one vector and one
host, the Basic Reproduction Number, R0, is defined as the number of secondary infections caused by a single
infective of the same type (vector or host) during its infectiousness period in an entirely susceptible population. In the
case of a disease which has one vector and one host, it is easy to show that R0 coincides with the threshold for the
establishment of an endemic state: if R0 > 1 (< 1), the disease can invade (cannot invade) the host population. In this
paper we examine various epidemic situations in which there are more than one vector and/or host. We show that in
those more complex systems it is not possible to deduce a single R0 but rather a threshold for infection persistence
which is a composite of several quantities closely related to the classical expression of R0. Another definition of R0

given by Diekmann, Heesterbeek and Metz, and denoted in this paper R0
NGO is discussed and applied as an alternative

to calculate the thresholds for infection establishment. To cite this article: L.F. Lopez et al., C. R. Biologies 325
(2002) 1073–1084. © 2002 Académie des Sciences/Éditions scientifiques et médicales Elsevier SAS
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Résumé– Conditions seuil de persistence d’infection dans un système complexe d’interactions hôte–
vecteur.Dans le cas d’une infection à un seul vecteur et à un seul hôte, le taux de reproduction de base R0 a été défini
par Macdonald dans les années 1950 par le nombre d’infections secondaires causées par un seul individu infecté (hôte
ou vecteur) pendant toute la durée de sa période infectueuse, au contact d’une population entièrement saine. Dans le
cas d’une infection à un seul hôte et un seul vecteur, il est facile de montrer que R0 correspond à un seuil d’installation
d’un état endémique: Si R0 > 1 (< 1), l’épidémie envahit (disparaît de) la population hôte. Dans cet article, nous
étudions diverses situations d’épidémies à plusieurs hôtes et/ou vecteurs. Nous montrons que, dans ces systèmes plus
complexes, il n’est plus possible de définir un seul R0, mais plutôt un seuil de persistence de l’infection, qui est un
agrégat de plusieurs quantités fortement connectées à l’expression classique de R0. Nous discutons une autre définition
du R0, initialement proposée par Diekmann, Heesterbeck et Metz, notée R0

NGO, qui est proposée comme une alternative
pour calculer le seuil d’installation d’une infection. Pour citer cet article : L.F. Lopez et al., C. R. Biologies 325
(2002) 1073–1084. © 2002 Académie des Sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Often unnoticed by practicing physicians in the
temperate zone, arthropod-borne diseases account for a
huge proportion of the spectrum of human maladies
worldwide, and the problem appears to be growing [1].
Despite the enormous effort of the medical and scien-
tific community, controlling disease agents transmitted
by arthropod vectors has proven to be difficult. The list
of emerging and re-emerging infections is enormous
but it is worth citing just a few: dengue, malaria, yellow
fever, various mosquito-borne encephalitis, leishmania-
sis, and Lyme disease.

Most of the techniques used for the control and
eradication of vector-borne diseases were developed in
the early 20th century. Rules for source reduction,
insecticides, biological control, vaccination, chemo-
therapy and personal protection were all laid down
nearly a century ago [2]. Many of these techniques are
still effective, others succeeded initially but failed later
for a variety of reasons. Investigators must now incor-
porate new approaches that will allow them to move to
the next level of control to alleviate the effects of
vector-borne diseases on human and animal health [2].

The central parameter related to the intensity of
transmission of infection is the so called basic repro-
duction number (R0), defined by Macdonald [3] as the
number of secondary infections produced by a single
infective in an entirely susceptible population (see next
section). Originally applied in the context of malaria,
R0 is a function of the vector population density as
related to the host population, m, the average daily
biting rate of the vector, a, the host susceptibility, b, the
vector mortality rate, µ, the parasite extrinsic incuba-
tion period in days, n, and the parasitemia recovery
rate, r, according to the (now) historical equation:

R0 =
m a2 b exp[−µ n]

r µ (1)

(actually, Macdonald denoted R0 as z0 in his original
paper). From the definition of the basic reproduction
number it can be demonstrated that if R0 is not greater
than one, that is, when an index case (the first infective
individual) is not able to generate at least one new
infection, the disease dies out. Hence, in the original
Macdonald analysis, R0 coincides with the threshold for
the infection persistence. For an interesting historical
account of R0 see [4].

This paper is organized as follows. In section 2 we
revisit the Macdonald analysis of malaria transmission
and deduce the general expression of R0 for any one
vector – one host epidemic system. We show, using a
dynamical system approach, that R0 coincides with the
threshold for the infection persistence.

In section 3 we examine the definition of the basic
reproduction number given by Dieckmann, Heester-
beek and Metz [5] as compared with the classical
Mcdonald analysis.

In section 4 we examine more complex vector-hosts
systems, exemplifying with a 2 vectors–2 hosts system,
and show that there are four basic reproduction num-
bers of the Macdonald type, one for each kind of index
case. Obviously, those R0’s do not coincide with the
threshold for epidemic persistence. However, we show
that the threshold can be expressed in terms of those
basic reproduction numbers. There is, however, only
one basic reproduction number of the type defined by
Dieckmann, Heesterbeek and Metz [5]. As we shall see
the same threshold can be deduced from it.

In section 5 we discuss an even more complex
epidemic system, namely the yellow fever case, which
comprises three different kinds of hosts and two vec-
tors. In this case there are five R0’s, one for each kind
of index case. Also in this particular case, those R0’s do
not coincide with the threshold for epidemic persis-
tence. Again, the threshold is given by a combination of
them.

Finally, in the discussion section we summarize our
findings.

2. The classical Macdonald analysis

In his 1952 seminal paper, Macdonald [3] addressed
the problem of a system involving one vector (Anoph-
eles mosquitoes) and one host (man). As mentioned
above, his definition of R0 is the number of secondary
infections in the first generation, that is, produced by a
single infectee along his entire infectiousness period.
We shall deduce an explicit expression for R0 from an
intuitive perspective to show that it coincides with the
threshold for the establishment of the disease. We do
this because, as shown in the next section for more
complex systems, this approach does not work in such
a simple way.

Let us begin by assuming that the index case is a
human host. The question to be answered is how many
human secondary infections this index case produces in
his/her entire infectiousness period.

Let Nm be the number of female mosquitoes. Let a be
the average daily biting rate female anophelines inflict
in the human population. The number of bites in the
human population per unit of time is, therefore, Nm a.
Let Nh be the number of humans and r be the rate of
recovery from parasitemia in the human cases. There-

fore, the index case produces
Nm a
Nh R ch→m infected mos-

quitoes, where ch→m is the probability that a mosquito
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gets the infection after biting an infective human. These
Nm a
Nh r ch→m infected mosquitoes, in turn, produce

a
Nm a
Nh r ch→m

1
µ bm→h e−µ d new human cases in the first

generation, where 1
µ is the average life expectancy of

mosquitoes, bm→h is the probability that a human gets
the infection after being bitten by an infective mosquito
and e−µ d is the fraction of the infected mosquito
population that survives through the extrinsic incuba-
tion period d of the parasite. Note that, once infective a
mosquito is assumed to remain so for life. Therefore,
the expression for R0 is [3]:

R0 = a
Nm a
Nh r ch→m

1
µ bm→h e−µ d (2)

Similarly, if we begin with an infective mosquito as
an index case, and compute the number of infected
mosquitoes this index case produces in the first genera-
tion we get the same expression.

Let us now see how this deduction can be performed
by a dynamical system approach.

Let Yh be the number of infected humans, and Yv the
number of infected vectors. We can write

dYh

dt =
Yv a
Nh

bv→h Sh − r Yh (3)

dYv

dt =
Sv (t − d) a

Nh
ch→m e−µ d Yh (t − d) − µ Yv

where Sh and Sv are the number of susceptible humans
and vectors, respectively.

To deduce the threshold for the disease to establish in
the human population we analyse the stability of the
trivial solution Sh = Nh, Sv = Nv, Yv = Yh = 0, that is, the
solution representing the absence of the infection.
Linearising the system (3) around the trivial solution,
we get

dyh

dt = yv a bv→h − r yh (4)

dyv

dt =
Nv a
Nh

ch→m e−µ d yh (t − d) − µ yv

where yv and yh are small deviations from zero. From
the system (4), assuming solutions of the type yh = A ekt

and yv = B ekt , we get the following characteristic
equation for k:

�−(k + r) a bv→h

Nv a
Nh

ch→m e−µ d e−k d −(k + µ) � (5)

or

k2 + (µ + r) k + µ r −
Nv a
Nh

ch→m e−µ d e−k d a bv→h = 0 (6)

It follows (see Appendix) that the roots of equation
(5) or (6) have negative real parts if

µ r −
Nv a
Nh

a bv→h ch→m e−µ d > 0 (7)

The above result is the same as that obtained by the
intuitive McDonald’s approach.

This still holds true for slightly more complex
systems, such as those with one vector and two hosts
populations or two vectors with one host populations.
In these cases, the expression for R0 is partitioned in a
sum with the individual terms of each component of the
transmission chain [6].

3. The next generation operator

In a classical paper, Dieckman et al. [5] propose a
new definition of the basic reproduction number for
infections and we now study how it compares with the
classical Macdonald definition described above.

Those authors define R0 as being the greatest eigen-
value of an operator which they call ‘the next genera-
tion operator’ (NGO). The case of vector-transmitted
infections was analysed in a recent book by Dieckman
and Heeterbeek [7].

In this section we give the next generation operator
for the case of one-vector/one-host, exemplified by
malaria. In this case, the next generation operator
reduces to a two-by-two matrix

NGO =�Av→v Av→h

Ah→v Ah→h
� (8)

The elements have the following interpretation. The
element Av→h, for instance, means the number of
infected humans generated by a single infected vector
during its infectious period. Therefore, we have:

Av→v = 0

Av→h = a 1
µ bm→h e−µ d

Ah→h = 0

Ah→v =
Nm a
Nh r ch→m

Essentially, the NGO is the mean infectious output
over all possible progressions of the infection within
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the host individual and therefore contain any process
that influences output of infectious material to others.
In particular, the NGO was derived without appealing
to the dynamical system (3).

In this case the greatest eigenvalue of the NGO
matrix, that is, R0

NGO, is

R0
NGO =�a

Nm a
Nh r ch→m

1
µ bm→h e−µ d (9)

which is the square root of the Macdonald R0. It follows
from the general theory of the Next Generation Opera-
tor [5] that if R0

NGO < 1 (R0
NGO > 1) the disease cannot

(can) invade the host population.

4. Difficulties with more complex
systems

The simple one vector/one host system characteristic
of a great number of vector-borne diseases such as
malaria, however, is not unique in the biology of the
diseases transmitted by arthropods [2].

In some cases, more than one vector, or more than
one host, and in some cases, more than one parasite
may be involved. Examples of the complexity of the
vector-borne infections abound (see, for instance any
zoonoses textbooks, for instance Palmer, Soulsby and
Simpson [8]).

In some situations, several hosts may act as reser-
voirs of infection, being, therefore, intermediate steps
in the chain of transmission. In the dengue/yellow fever
complex, we have two (Haemagogus and Sabethes
mosquitoes) or three (Haemagogus, Sabethes and Aedes
mosquitoes) vectors for yellow fever, one common
vector for dengue and yellow fever (Aedes mosqui-
toes), and at least two hosts (one human and one
primate reservoir). As we demonstrate in the following
sections, in such complex situations, a single threshold
in the Macdonald’s R0 style simply does not exist.

4.1. The intuitive approach

Let us consider now a more complex system, namely
one with two vectors and two host populations. This
hypothetical system comprises an interaction between a
human (Nh) and an animal (Nm) population, mediated
by two species of vectors, referred to as (NA) and (NH).
We shall try to deduce an explicit expression for R0

from the intuitive perspective used by Macdonald [3].
Let us begin by assuming that there is an index case

in the human population. The question to be answered
is how many human and animal secondary infections
this index case produces in his/her entire infectiousness
period.

Let aA be the average daily biting rate female
mosquitoes of type A inflict in both host populations.
The number of bites in the human population per unit

of time is, therefore, NA aA

Nh

Nh + Nm
. Let rh be the rate

of recovery from parasitemia in the human
cases. Therefore, the index case produces

NA aA

Nh

Nh + Nm

1
Nh

1
rh

ch→A infected mosquitoes, where
1

Nh
is the fraction of the bites inflicted in the index case,

and ch→A is the probability that a mosquito gets the
infection after biting an infective human. Those

NA aA

Nh

Nh + Nm

1
Nh

1
rh

ch→A infected mosquitoes, in

turn, produce

NA aA

Nh

Nh + Nm

1
Nh

1
rh

ch→A aA
1
µA

bA→h e−µA dA

new human cases in the first generation, where 1
µA

is

the average life expectancy of mosquitoes, bA→h is the
probability that a human gets the infection after being
bitten by an infective mosquito and e−µA dA is the
fraction of the infected mosquito population that sur-
vives through the extrinsic incubation period dA of the
parasite. Note that, once infective, a mosquito is
assumed to remain so for life.

By the same token, the same index case also pro-
duces

NH aH

Nh

Nh + Nm

1
Nh

1
rh

ch→H aA
1
µH

bH→h e−µH dH

new human cases in the first generation, through the
vector population H.

On the other hand, the same human index case also
produces

NA aA

Nh

Nh + Nm

1
Nh

1
rh

ch→A aA
1
µA

bA→m e−µA dA

secondary animal cases due to vector population of
type A, and

NH aH

Nh

Nh + Nm

1
Nh

1
rh

ch→H aA
1
µH

bH→m e−µH dH

secondary animal cases due to vector population of
type H.

Moreover, an animal index case also produces a
similar amount of secondary animal and human infec-
tions due to each vector population.

Therefore, the human index case generates:

RhAh + RhHh
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where

RhAh = NA aA

Nh

Nh + Nm

1
Nh

1
rh

ch→A aA
1
µA

bA→h e−µA dA

RhHh = NH aH

Nh

Nh + Nm

1
Nh

1
rh

ch→H aA
1
µH

bH→h e−µH dH

human cases through the mosquitoes vectors A and
H, respectively.

Moreover, the human index case also generates:

RhAm + RhHm

where

RhAm = NA aA

Nh

Nh + Nm

1
Nh

1
rh

ch→A aA
1
µA

bA→m e−µA dA

RhHm = NH aH

Nh

Nh + Nm

1
Nh

1
rh

ch→H aA
1
µH

bH→m e−µH dH

animal cases through the mosquitoes vectors A and H,
respectively.

In the case when the index case is an animal, we find
that it generates:

RmAh + RmHh

where

RmAh = NA aA

Nm

Nh + Nm

1
Nm

1
rm

cm→A aA
1
µA

bA→h e−µA dA

RmHh = NH aH

Nm

Nh + Nm

1
Nm

1
rm

cm→H aA
1
µH

bH→h e−µH dH

human cases through the mosquitoes vectors A and H,
respectively.

It also generates:

RmAm + RmHm

where

RmAm = NA aA

Nm

Nh + Nm

1
Nm

1
rm

cm→A aA
1
µA

bA→m e−µA dA

RmHm = NH aH

Nm

Nh + Nm

1
Nm

1
rm

cm→H aA
1
µH

bH→m e−µH dH

animal cases through the mosquitoes vectors A and H,
respectively.

Since, strictly speaking, the expression for the basic
reproduction number should be calculated starting from
an index case and counting the first generation number
of cases of the same kind of the index case we have two

basic reproduction numbers, depending on the kind of
index case.

If the index case is a human being we tentatively set

R0h
= RhAh + RhHh

On the other hand, if the index case is an animal, we
tentatively set

R0m
= RmAm + RmHm

However, we still have to investigate the case where
the index case is a mosquito.

Assume that the index case is a mosquito of type A.
It produces

aA

Nh

Nh + Nm

1
µA

bA→h

infected humans and

aA

Nm

Nh + Nm

1
µA

bA→m

animal cases. Those, in turn, produce

RAhA + RAmA

where

RAhA = NA aA

Nh

Nh + Nm

1
Nm + Nh

1
rh

ch→A aA
1
µA

bA→h e−µA dA

RAmA = NA aA

Nh

Nh + Nm

1
Nm + Nh

1
rh

cm→A aA
1
µA

bA→m e−µA dA

infected mosquitoes of type A.
They also produce

RAhH + RAmH

where

RAhH = NH aH

Nh

Nh + Nm

1
Nm + Nh

1
rh

ch→H aA
1
µA

bA→h e−µA dA

RAmH = NH aH

Nh

Nh + Nm

1
Nm + Nh

1
rh

cm→H aA
1
µA

bA→m e−µA dA

infected mosquitoes of type H.
So, if we stick to the convention that R0 is the number

of secondary cases of the same type of the index case,
we have two more expressions:

R0A
= RAhA + RAmA

and

R0H
= RHhH + RHmH
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We, therefore, have a problem. We have four tenta-
tive R0 and we do not know if they are somehow linked
with the threshold condition. Due to this fact we turn
now to the dynamical system approach for the problem.
First, however, we summarize and simplify our nota-
tion by defining the following transmission coefficients

bAh = aA

Nh

Nh + Nm
bA→h

(10)

bHh = aH

Nh

Nh + Nm
bH→h

bAm = aA

Nm

Nh + Nm
bA→m

bHm = aH

Nm

Nh + Nm
bH→m

bhA = aA

NA

Nh + Nm
ch→A e−µA dA

bmA = aA

NA

Nh + Nm
cm→A e−µA dA

bhH = aH

NA

Nh + Nm
ch→H e−µH dH

bmH = aH

NA

Nh + Nm
cm→H e−µH dH

Also, for future use, let us summarize the following
parameters as:

RhAh = RAhA =
bhA bAh

rh µA

RhHh = RHhH =
bhH bHh

rh µH

RmAm = RAmA =
bmA bAm

rm µA

RmHm = RHmH =
bmH bHm

rm µH

RhHm =
bhH bHm

rh µH

RmAh =
bmA bAh

rm µA

RmHh =
bmH bHh

rm µH

RhAm =
bhA bAm

rh µA

RAhH =
bAh bhH

rm µH

RHmA =
bHm bmA

rm µH

RAmH =
bAm bmH

rm µA

RHhA =
bHh bhA

rh µH
(11)

Note also that we have

RhHm RmAh = RAhH RHmA (12)

RmHh RhAm = RAmH RHhA

Those parameters have a clear biological signifi-
cance. For instance, RhAh is the basic reproduction
number of a human index case who generates further
human infections through the infective mosquito A.
Note that in RhAh the mosquito population H and the
population of animals m exist but are supposed not to
contribute to RhAh. However, the animal population
appear in the parameter RmHm through the factors

NH

NH + Nm
and

NA

Nh + Nm
.

4.2. The dynamical system approach

The dynamical system associated with such a situa-
tion is:

�
dYh

dt = YA aA

Sh

Nh + Nm
bA→h

+ YH aH

Sh

Nh Nm
bH→h − rh Yh

dYm

dt = YA aA

Sm

Nh + Nm
bA→m

+ YH aH

Sm

Nh Nm
bH→m − rm Ym

dYA

dt = NA aA

Yh (t − dA)
Nh + Nm

ch→A e−µA dA

+ NA aA

Ym (t − dA)
Nh + Nm

cm→A e−µA dA − µA YA

dYH

dt = NH aH

Yh(t − dH)
Nh + Nm

ch→H e−µH dH

+ NH aH

Ym(t − dH)
Nh + Nm

cm→H e−µH dH − µH YH

(13)

Linearising the system (13) around the solution
without disease, namely Sh = Nh, Sm = Nm, SA = NA,
SH = NH, Yh = Ym = YA = YH = 0, we get the following
system:

�
dyh

dt = yA bAh + yH bHh − rh yh

dym

dt = yA bAm + yH bHm − rm ym

dyA

dt = yh(t − dA) bhA + ym(t − dA) bmA − µA yA

dyH

dt = yh(t − dH) bhH + ym(t − dH) bmH − µH yH

(14)
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where yi(i = h, m, A, H) are small deviations from zero.
From the system (14) we get the following character-
istic equation:

�−(k + rh)
0 bAh bHh

0 − (k + rm) bAm bHm

bhA e−kdA bmA e−kdA − (k + µA) 0

bhH e−kdH bmH e−kdH 0 − (k + µH)
� = 0 (15)

The trivial solution will then be stable if all the roots
of the characteristic equation (15) have negative real
parts. However, it is almost hopeless to study such a
complex characteristic equation as (15), and a sensible
procedure should be to neglect all the terms
e−kdi (i = A, H), in which case equation (15) would
became a fourth order algebraic equation which can be
analysed using the Routh–Hurwitz criteria [9]. This can
be justified very laboriously using perturbation theory
as is done for the simple case of one-host/one-parasite
in the appendix. However, it is easier to apply the Next
Generation Operator approach to calculate the thresh-
old conditions for the establishment of the epidemic.
This is the subject of the next section.

4.3. The next generation operator approach

For the reasons explained in the Appendix, we can
neglect the time delays from the very beginning. In this
case, the linearised system (14) becomes:

�
dyh

dt = yA bAh + yH bHh − rh yh

dym

dt = yA bAm + yH bHm − rm ym

dyA

dt = yh bhA + ym bmA − µA yA

dyH

dt = yh bhH + ym bmH − µH yH

(16)

which can be written in the form

dy
s

dt = (T − D) y
s

(17)

where T is a positive matrix and D is a diagonal
positive matrix (see Dieckman and Heesterbeck [7],

p. 105). The next generation operator in this case is
given by a four by four matrix:

NGO = TD−1 = �
0 0

bhA

µA

bhH

µH

0 0
bmA

µA

bmH

µH

bAh

rh

bAm

rm
0 0

bHh

rh

bHh

rm
0 0

� (18)

Although in this case we derived the NGO from the
linearised form of the system (14), given by equation
(16), this is not necessary. The NGO can be derived
independently and, in particular, it does not depend on
the assumption made in going from (14) to (16) of
neglecting the time delays.

According to the Dieckmann et al. [5] (see also [10])
theorem, the R0 given by the Next Generation Operator,
R0

NGO, is the largest eigenvalue of matrix (18). We then
have

R0
NGO =�1

2 �B + �B2 + 4 A�
where

B = RAhA + RHhH + RAmA + RHmH

= RhAh + RhHh + RmAm + RmHm

and

A = RhHm RmAh + RmHh RhAm − RmHm RhAh − RmAm RhHh

If R0
NGO < 1, then the solution without disease of

system (13) is stable. Therefore, the threshold condition
is given, then, by

R0
NGO =�1

2 �B + �B2 + 4 A� ≥ 1

which implies

A + B ≥ 1

or

T = (1 − RhAh − RhHh − RmAm − RmHm − RhHm RmAh

− RmHh RhAm + RmHm RhAh + RmAm RhHh) ≤ 0 (19)

The same conclusion can be obtained, more labori-
ously, by applying the Routh–Hurwitz criteria to equa-
tion (15), and taking the exponential terms e−kdi (i = A,
H) as 1.
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Some particular cases can be analysed. Suppose that
all RiJi are zero except one. Then, T becomes negative
if this non-zero RiJi is greater than 1, and the disease can
establish itself in the host population. Another more
interesting case occurs when, for instance,
RhAh = RhHh = 0. One might think, at first sight, that in
this case a human index case cannot trigger a human
epidemic. However, it can be seen that the threshold,
which determines whether T is positive or negative is
given by

T = (1 − RmAm − RmHm − RhHm RmAh − RmHh RhAm) (20)

which has a simple interpretation. In this case the fourth
term in the brackets, RhHm RmAh, describes the basic
reproduction number for a human index who transmit
the infection to the animal population through the
mosquito type H. The infected animal then passes the
disease, through mosquito type A back to the human
hosts. Therefore, even when RhAh = RhHh = 0, a human
index case can trigger a human epidemic. For this, it
suffices that RhHm RmAh > 1. The other terms in the
expression (20) refer to transmission among the animal
population by all the possible ways and all can be less
than 1 without preventing the disease establishing
itself.

By the same token, if we make RmAm RmHm = 0
(which apparently implies that an animal index case
cannot trigger an animal epidemic), then

T = 1 − RhAh − RhHh − RmAh RhHm − RhAm RmHh (21)

which can be negative when RmAh RhHm > 1, even when
the remaining components RiJi are all less than 1.

Another attempt to interpret our condition is as
follows. Suppose that when the index case is h, and
RmAm = RmHm = 0. Then, we have that T reduces to
(21). Suppose now that when the index case is m, and
RhAh = RhHh = 0. In this case T reduces to

T = (1 − RmAm − RmHm − RmAh RhHm − RmHh RhAm) (22)

To investigate the cases where the index cases are
mosquitoes, we rewrite T using the relations given by
equations (11) and (12). We get:

T = (1 − RAhA − RHhH − RAmA − RHmH − RAhH RHmA

− RAmH RHhA + RHmH RAhA + RAmA RHhH) (23)

If we now assume that the index cases is a mosquito
of the type A, we put RHhH = RHmH = 0 to obtain

T = (1 − RAhA − RAmA − RAhH RHmA − RAmH RHhA) (24)

Similarly, when the index case is a mosquito of type
H we put RAhA = RAmA = 0 to obtain

T = (1 − RHhH − RHmH − RHmA RAhH − RHhA RAmH) (25)

5. The yellow fever model

Urban yellow fever is transmitted from person to
person by peridomestic Aedes aegypti mosquitoes [11].
By contrast, jungle yellow fever is a zoonosis, trans-
mitted from monkeys to humans by mosquitoes that
breed in tree-holes of the genuses Haemagogus and
Sabethes in the rain forest ecosystem of South America.
The jungle form is only partly controlled by vaccina-
tion of rural residents and provides a source of infection
to population centres infested with Ae aegypti. In the
early 20th century, when it was discovered that the
yellow fever virus was transmitted in its urban cycle by
Aedes aegypti, measures of control were introduced
leading to its disappearance. Progressive neglect of the
disease, however, led to a new outbreak in Africa in
1927 [12] during which the etiological agent was
isolated; some years later a vaccine was discovered and
yellow fever disappeared again. Unfortunately, reinfes-
tation with the Aedes vector, which began in the 1970s,
is now virtually complete, and vector control is sub-
stantially more difficult than before. The threat of urban
yellow fever is greatest in towns near forests, but
improved transport links increase the likelihood of
spread by viremic people to non-endemic areas [13].

Classified as one of the viral hemorrhagic fevers,
yellow fever is unique in its severity, in particular
because of its hepatic impairment. Yellow fever is
currently endemic and epidemic in tropical areas of the
Americas and Africa [14–16].

From the point of view of its dynamics, yellow fever
differs from other vector borne infection by involving
three host populations and two vector populations and,
therefore, as we shall see, the threshold condition for
non-existence of the infection is quite complicated. We
recently calculated the risk of urban yellow fever in a
dengue infested area [17].

5.1. The dynamical system approach

Let Yc(t) be the number of infected human individu-
als living in cities, Yf(t) the number of infected ‘fisher-
men’ (those individuals who either live part of time in
forest areas or who eventually frequent those areas for
leisure or other purposes), Ym(t) the number of infected
non-human primates, YA(t) the number of infected
mosquitoes of the Aedes genus, and YH(t) the number of
infected mosquitoes of the Haemagogus or Sabetes
genuses. Let also Ni (i = c, f, m, A, H) be the total
number of individuals in each population considered.
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The linearised equations for Yi around the solution
without the disease are:

�
dYc

dt = YA aA

Nc

Nc + Nf
bA→c − rc Yc

dYf

dt = YA aA

Nf

Nc + Nf
bA→f

+ YH aH

Nf

Nc + Nf
bH→f − rf Yf

dYm

dt = YH aH

Nm

Nm + Nf
bH→m − rm Ym

dYA

dt = NA aA

Yc (t − dA)
Nc + Nf

gc→A e−µA dA

+ NA aA

Yf (t − dA)
Nm + Nf

gf→A e−µA dA − µA YA

dYH

dt = NH aH

Yf (t − dH)
Nm + Nf

gf→H e−µH dH

+ NH aH

Ym (t − dH)
Nm + Nf

gm→H e−µH dH − µH YH

(26)

where ai(i = A, H) is the average number of bites per
unit time that the vectors inflict on the hosts; bi→j
(i = A, H and j = c, f) is the fraction of the potentially
infective bites (ai Yi) per unit time, which are actually
infective; gj→i (i = A, H and j = c, f) is the fraction of
the bites inflicted on infective hosts that are really
infective to the vectors. Finally, rj (j = c, f, m) is the rate
with which the hosts leave the infective compartment
(either by death or by recovery from the infection), di
(i = A, H) is the incubation period of the virus in the
mosquito population (that is, the extrinsic incubation
period, the time elapsed between infection and infec-
tiousness in the vectors) and e−µi di is the natural
mortality rate of the vectors (therefore µi (i = A, H) is
the fraction of mosquitoes which survives throughout
the extrinsic incubation period).

A few words about the system (26). Take for instance
the second equation: in it, the term YA aA represents the
total number of potentially infective bites Aedes mos-

quitoes inflict in the fraction
Nf

Nc + Nf
of the ‘fishermen’

hosts, and bA→f is the fraction of those bites which are
actually infective for the host. Therefore, the complete

term YA aA

Nf

Nc + Nf
bA→f is the number of ‘fishermen’

who get the infection per unit of time from the Aedes
population. Note that we have linearised the original

equations. In its complete form, the fraction
Nf

Nc + Nf

would be
Sf

Nc + Nf
, where Sf is the number of suscep-

tible ‘fishermen’. By the same token, the second term

YH aH

Nf

Nc + Nf
bH→f is the number of ‘fishermen’ who

get the infection per unit of time from the Haemagogus
population. And finally, the last term rf Yf represents the
number of ‘fishermen’ removed from the infectious
state by death or recovery.

Similarly, the equations for the mosquitoes, for
instance, the fourth equation could be explained in
words as follows. The first term NA aA represents the
total number of bites Aedes mosquitoes inflict in the

fraction
Yc (t − dA)

Nc + Nf
of infected citizens (t − dA) days

ago, gc→A is the fraction of those bites that are actually
infective for the mosquitoes, and e−µA dA is the fraction
of mosquitoes that survives throughout the extrinsic
incubation period, therefore becoming infective to the
hosts. Therefore, the complete term

NA aA

Yc(t − dA)

Nc + Nf
gc→A e−µA dA represents the number of

Aedes per unit time which gets the infection from the
‘citizens’ hosts. Note that the original non-linearised

system should be SA (t − dA) aA

Yc(t − dA)

Nc + Nf
gc→A e−µA dA,

where SA (t − dA) is the number of susceptible Aedes
mosquitoes (t − dA) days ago. The second term of the

fourth equation NA aA

Yf (t − dA)

Nm + Nf
gf→A e−µA dA, by the

same reasoning, represents the number of Aedes per
unit time which gets the infection from the ‘fishermen’
hosts. And finally, the last term µA YA represent Aedes
removed from the infective condition by mortality.

Calculating the threshold condition for yellow fever

In order to simplify the notation let us define the
following transmission coefficients

bAc = aA

Nc

Nc + Nf
bA→c

bAf = aA

Nf

Nc + Nf
bA→f

bHf = aH

Nf

Nc + Nf
bH→f

bHm = aH

Nm

Nm + Nf
bH→m

bcA = aA

NA

Nc + Nf
gc→A e−µA dA

bfA = aA

NA

Nm + Nf
gf→A e−µA dA

bfH = aH

NH

Nm + Nf
gf→H e−µH dH

bmH = aH

NH

Nm + Nf
gm→H e−µH dH
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To calculate the threshold condition we examine the
stability of the trivial solution of system (26). We get
the following characteristic equation, written as a
determinant:

�−(rc + k) 0 0 bAc 0

0 − (rf + k) 0 bAf bHf

0 0 − (rm + k) 0 bHm

bcA e−kdA bfA e−kdA 0 − (µA + k) 0

0 bfH e−kdH bmH e−kdH 0 − (µH + k)

� = 0

(27)

Again, the trivial solution will then be stable if all the
roots of the characteristic equation (27) have negative
real parts. As mentioned above, it is almost hopeless to
study such a complex characteristic equation as (27),
and a sensible procedure should be to neglect all the
terms e−kdi (i = A, H), in which case equation (27)
would became a fifth order algebraic equation which
can be analysed using the Routh–Hurwitz criteria [9].
This can be justified by using perturbation theory as
done in the appendix. However, once again, it is easier
to apply the Next Generation Operator approach to
calculate the threshold conditions for the establishment
of the epidemic.

5.2. The next generation operator approach

The next generation operator approach for the above
model of yellow fever is given by

NGO = �
0 0 0

bAc

µA
0

0 0 0
bAf

µA

bHf

µH

0 0 0 0
bHm

µH

bcA e−µA dA

rc

bfA e−µA dA

rf

0 0 0

0
bfH e−µH dH

rf

bm e−µH dH

rm

0 0

� (28)

According to the Dieckmann et al. theorem, the R0

given by the Next Generation Operator, R0
NGO, is the

largest eigenvalue of matrix (28). We then have

R0
NGO =�1

2 � B + �B2 + 4 A �
where

B = RfHf + RfAf + RmHm + RcAc

and

A = −RfAf RmHm − RcAc RmHm − RcAc RfHf

The threshold condition is given, then, by

R0
NGO =�1

2 � B + �B2 + 4 A � ≥ 1

which implies

A + B ≥ 1

or,

T = 1 − (RcAc + RfAf + RfHf + RmHm − RcAc RfHf

− RcAc RmHm − RmHm RfAf) ≤ 0

Some particular cases can be of interest. Suppose that
transmission to fishermen is zero, that is, RfAf and RfHf
are equal to zero. Then:

T = 1 − (RcAc + RmHm − RcAc RmHm) ≤ 0 (29)

Therefore, the threshold occurs when either RmHm or
RcAc is greater than one. However, if both RmHm and
RcAc are greater than one, then T may become negative.
Therefore we have to apply the Routh–Hurwitz [9]
condition to each particular case. However, there will
obviously be an epidemic because the population of
humans living in cities becomes decoupled from the
population of non-human primates.

Suppose now that we have transmission only to
fishermen. In this case, the threshold becomes

T = �1 − (RfAf + RfHf)� ≤ 0 (30)

It is obvious that the threshold occurs when T
becomes negative and is given by

RfAf < 1 (31)

RfHf < 1

but

RfAf + RfHf > 1 (32)

which is intuitively very reasonable.

6. Summary and discussion

The basic reproduction number, as defined by Mac-
donald [3] is the average number of secondary cases
produced by an index case during its infectiousness
period. Note that the Macdonald definition implies
secondary cases of the same kind as the index case.
Furthermore, the basic reproduction number in a dis-
ease which involves only one host and one vector
coincides with the threshold that breaks the stability of
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the trivial solution, as shown in this paper. Another
definition of R0 is the largest eigenvalue of the Next
Generation Operator. The dominant eigenvalue of the
NGO gives the average multiplication factor with
which successive generations grow. It is therefore
precisely the average number of cases in the next
generation of infecteds produced by a typical case in
the present generation. Thus, a threshold is immediately
apparent: the disease cannot invade the population if
the dominant eigenvalue of the NGO is less than 1.

Suppose now an indirectly transmitted disease which
involves more than one type of host and/or vector.
Then, as we have shown in this paper, several basic
reproduction numbers can be defined. Notwithstanding,
there is only one threshold for the epidemic persistence
that can be written as a function of the many R0’s and
some other quantities, which are not R0, but are similar.
In fact, they are the number of secondary cases of
host(s)/vector(s) of a different kind of the index case.

In section 2, we revisited the classical Macdonald
model, calculated the basic reproduction number and
showed, by using a dynamical system approach, that
the threshold and the R0 are the same quantity.

In section 3, we discussed in detail the case of an
hypothetical infection system with two hosts (denoted h

and m) and two vectors (denoted A and H). We showed
that this system has four R0, namely

RhAh = RAhA

RhHh = RHhH

RmAm = RAmA

RmHm = RHmH

We also calculated the threshold for the epidemic
persistence, which is given by a quantity T (see
equation (19)), namely:

T = (1 − RhAh − RhHh − RmAm − RmHm − RhHm RmAh

− RmHh RhAm + RmHm RhAh + RmAm RhHh) (33)

If T is greater than zero there is no epidemic
persistence. Note that T involves terms that are R0 as
defined above (like RhAh or RhHh), but it involves as well
terms that are not R0 but refers to the number of human
or mosquitoes secondary infections produced by a
single infective mosquitoe or human, respectively (like
RhHm or RmAh).

Acknowledgements. The authors would like to thank Professor Hans Heesterbeek for his helpful comments on the manuscript. Eventual remaining errors are our
own responsibility.

Appendix

We write equation (6) as:

k2 + a1 k + a21 − a22 e−kd = 0 (34)

where

a1 = µ + r

a21 = µ r

a22 =
Nv a
Nh

ch→m e−µ d a bv→h

Assume a root

z = x + i y

We can separate equation (34) in its real and imagi-
nary parts. We get:

x2 − y2 + a1 x + a21 − a22 exd cos(yd) = 0 (35)

and

2 x y + a1 y − a22 exd sin(yd) = 0 (36)

Let us solve (35) and (36) perturbatively around the
solution obtained with d = 0. We write

x = x0 + x1 d + x2 d2 + ⋅ ⋅ ⋅ (37)

and

y = y0 + y1 d + y2 d2 + ⋅ ⋅ ⋅ (38)

Replacing (37) and (38) in (35) and (36), we get,
keeping only terms of zero order in d:

x0
2 + a1 x0 + a21 − a22 = 0 (39)

2 x0 y0 + a1 y0 = 0

whose solutions are

y0 = 0
(40)

x0 =
− a1 ± �a1

2 − 4 (a21 − a22)
2

and

x0 = −
a1

2
(41)

y0 = ±
�4 (a21 − a22) − a1

2

2
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However, the second solution (41) represents a root
with negative real part, and therefore is uninteresting.
We can see that in the zero order in d a root crosses
the imaginary axis through the real axis when
a21 − a22 → 0.

The terms in first order in d give

2 x0 x1 − 2 y0 y1 + a1 x1 − a22 x0 = 0 (42)

and

2 x0 y1 + 2 x1 y0 + a1 y1 − a22 y0 = 0 (43)

Replacing y0 = 0 in equations (42) and (43), we get:

2 x0 x1 + a1 x1 − a22 x0 = 0
(44)

2 x0 y1 + a1 y1 = 0

whose solution is

y1 = 0 (45)

x1 =
a22 x0

2 x0 + a1

Then we see that when (a21 − a22) → 0, x1 → 0,
together with x0.

The terms in second order in d, after substituting
y0 = 0 and y1 = 0, give

x1
2 + 2 x0 x2 + a1 x2 − a22 x1 − 1

2 a22 x0
2 = 0 (46)

2 x0 y2 + a1 y2 = 0

whose solution in

y2 = 0 (47)

x2 =
a22 x1 − x1

2 + 1
2 a22 x0

2

2 x0 + a1

Again we see that when (a21 − a22) → 0, x2 → 0
together with x0 and x1.

So, up to second order in d, a root crosses the
imaginary axis through the real axis when
(a21 − a22) → 0. It is not difficult to see that all terms in
the expansion vanish when (a21 − a22) → 0, showing
that a21 − a22 = 0 is the threshold for the infection to
persist.
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