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Stochastic models for circadian rhythms: effect of molecular noise
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Abstract

Circadian rhythms are endogenous oscillations that occur with a period close to 24 h in nearly all living organisms. These
rhythms originate from the negative autoregulation of gene expression. Deterministic models based on such genetic regulatory
processes account for the occurrence of circadian rhythms in constant environmental conditions (e.g., constant darkness), fo
entrainment of these rhythms by light-dark cycles, and for their phase-shifting by light pulses. When the numbers of protein
and mRNA molecules involved in the oscillations are small, as may occur in cellular conditions, it becomes necessary to resort
to stochastic simulations to assess the influence of molecular noise on circadian oscillations. We address the effect of molecula
noise by considering the stochastic version of a deterministic model previously proposed for circadian oscillations of the PER
and TIM proteins and their mRNAs iDrosophila The model is based on repression of geg andtim genes by a complex
between the PER and TIM proteins. Numerical simulations of the stochastic version of the model are performed by means
of the Gillespie method. The predictions of the stochastic approach compare well with those of the deterministic model with
respect both to sustained oscillations of the limit cycle type and to the influence of the proximity from a bifurcation point beyond
which the system evolves to a stable steady state. Stochastic simulations indicate that robust circadian oscillations can emerg
at the cellular level even when the maximum numbers of mMRNA and protein molecules involved in the oscillations are of the
order of only a few tens or hundreds. The stochastic model also reproduces the evolution to a strange attractor in conditions
where the deterministic PER-TIM model admits chaotic behaviour. The difference between periodic oscillations of the limit
cycle type and aperiodic oscillations (i.e. chaos) persists in the presence of molecular noise, as shown by means of Poincar
sections. The progressive obliteration of periodicity observed as the number of molecules decreases can thus be distinguishe
from the aperiodicity originating from chaotic dynamics. As long as the numbers of molecules involved in the oscillations
remain sufficiently large (of the order of a few tens or hundreds, or more), stochastic models therefore provide good agreement
with the predictions of the deterministic model for circadian rhythfescite thisarticle: D. Gonze et al., C. R. Biologies 326
(2003).
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Résumé

Les rythmes circadiens sont des oscillations endogenes qui se produisent avec une période proche de 24 h chez la plupa
des organismes vivants. Ces rythmes résultent de I'autorégulation négative de I'expression de génes de I'horloge circadienne
Des modeles déterministes fondés sur de tels processus de régulation génétique rendent compte de I'existence de rythm
circadiens dans des conditions d’environnement constant (par exemple, I'obscurité continue), de I'entrainement de ces rythme
par des cycles lumiére—obscurité, et de leur déphasage par des impulsions de lumiére. Lorsque le nombre de molécules d’ARI
messagers et de protéines impliquées dans le mécanisme des oscillations est faible, comme cela peut se produire dans |
conditions cellulaires, il devient nécessaire de recourir a des simulations stochastiques pour déterminer l'influence du bruit
moléculaire sur les rythmes circadiens. Nous étudions I'effet du bruit moléculaire en considérant la version stochastique d’'un
modele déterministe précédemment proposé pour les oscillations circadiennes des protéines PER et TIM et de leurs ARN
messagers chez la drosophile. Ce modele est fondé sur la répression dgseg@hém par un complexe entre les protéines
PER et TIM. Les simulations numériques de la version stochastique de ce modéle sont effectuées au moyen de la méthode c
Gillespie. Les prédictions de I'approche stochastique sont en accord avec celles fournies par I'approche déterministe, tant pou
ce qui concerne les oscillations entretenues de type cycle limite que pour I'influence de la proximité d’'un point de bifurcation
au-dela duquel le systéme évolue vers un état stationnaire stable. Les simulations stochastiques indiquent que des rythme
circadiens robustes peuvent émerger au niveau cellulaire déja lorsque le nombre maximum de molécules d’ARN messagers ¢
de protéines impliquées dans les oscillations est de I'ordre de quelques dizaines ou centaines seulement. Le modéle stochastiq
reproduit également I'évolution vers un attracteur étrange dans les conditions ou le modéle déterministe PER-TIM admet un
comportement chaotique. La différence entre les oscillations périodiques de type cycle limite et les oscillations apériodiques —
c’est-a-dire le chaos — persiste en présence de bruit moléculaire, comme l'indiquent les sections de Poincaré obtenues pour e
deux types de comportement dynamique. La disparition progressive de la périodicité, qu'on observe a mesure que le nombre
de molécules diminue, peut donc étre distinguée de I'apériodicité résultant de la dynamique chaotique. Aussi longtemps que le
nombre de molécules impliquées dans les oscillations demeure suffisamment grand (de I'ordre de quelques dizaines, centaine
ou plus), les modéles stochastiques fournissent ainsi un bon accord avec les prédictions des modeles déterministes pour I¢
rythmes circadiend?our citer cet article: D. Gonze et al., C. R. Biologies 326 (2003).
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1. Introduction Drosophilg the proteins PER and TIM form a com-
plex that indirectly represses the activation of ez
Most living organisms, from cyanobacteria to in- andtim genes, while ilNeurospordit is the FRQ pro-
sects, plants and mammals, have developed the ca-tein that represses the expression of its giené3, 6].
pability of generating autonomously sustained oscil- The situation in mammals resembles that observed in
lations with a period close to 24 h. These oscilla- Drosophilg but instead of TIM it is the CRY protein
tions, known as circadian rhythms, are endogenous be-that forms a regulatory complex with a PER protein
cause they can occur in constant environmental condi- to inhibit the expression of thper genes [7]. Light
tions, e.g., constant darkness [1,2]. Experimental stud- can entrain circadian rhythms by inducing degradation
ies during the last decade have shed much light on the of the TIM protein inDrosophila and expression of
molecular mechanism of circadian rhythms [3]. Ini- thefrg andpergenes ifNeurosporaand mammals, re-
tial studies pertained to the flprosophila[4,5] and spectively [3-7].
the fungusNeurospord3]. Molecular studies of circa- A number of mathematical models for circadian
dian rhythms have since been extended to cyanobacte+hythms have been proposed [9-15] on the basis of
ria, plants and mammals [6,7]. In all cases investigated these experimental observations. These models are of
so far, the molecular mechanism of circadian oscilla- a deterministic nature and take the form of a system
tions relies on the negative autoregulation exerted by of coupled ordinary differential equations. The mod-
a protein on the expression of its gene [3—8]. Thus, in els predict that in a certain range of parameter val-
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ues the genetic control network undergoes sustainedproperty will allow us to assess the effect of molecular
oscillations of the limit cycle type corresponding to noise not only on periodic but also on chaotic oscilla-
the circadian rhythm, whereas outside this range the tions.
gene network operates in a stable steady state. The We first present in Section 2 the deterministic and
question arises as to whether deterministic models stochastic versions of the molecular model for circa-
are always appropriate for the description of circa- dian rhythms. In the stochastic version we introduce
dian clocks [16]. Indeed, the number of molecules in- molecular noise without decomposing the determinis-
volved in the regulatory mechanism producing circa- tic mechanism into detailed reaction steps. The results
dian rhythms at the cellular level may well be reduced. of stochastic simulations performed by means of the
This number could vary from a few thousands down Gillespie method [18,19] are presented in Section 3
to hundreds and even a few tens of protein or messen-for the case of periodic behaviour. We assess the role
ger RNA molecules in each rhythm-producing cell. At  of fluctuations by determining the effect of the number
such low concentrations it is more appropriate to resort of mRNA and protein molecules on circadian rhyth-
to a stochastic approach to study the molecular basesmicity. In Section 4 we examine how the proximity
of the oscillatory phenomenon. from a bifurcation point influences the robustness of
In a previous publication [17], we compared the the oscillations with respect to molecular noise. How
stochastic and deterministic versions of a core molec- such a noise affects chaotic behaviour is examined in
ular model for circadian oscillations based on the neg- Section 5. Section 6 is devoted to a comparative dis-
ative regulation exerted by a protein on the expression cussion of deterministic versus stochastic simulations.
of its gene. Stochastic simulations were performed by
means of the Gillespie algorithm [18,19] after decom-
posing the deterministic model into elementary steps. 2. Deterministic and stochastic versions of the
We studied the effect of molecular noise by assessing molecular model for circadian oscillations
the robustness of circadian oscillations as a function of
the number of interacting molecules. We showed that 2.1. Deterministic model for circadian oscillations
robust circadian rhythmicity could already occur when
the maximum numbers of mMRNA and clock protein We consider a ten-variable model previously pro-
molecules are in the tens and hundreds, respectively.posed for circadian oscillations of the PER and TIM
Cooperativity of repression and periodic forcing by proteins and ofper and tim mRNAs in Drosophila
light-dark cycles enhance the robustness of circadian [9,10]. The model, schematised in Fig. 1, is based
oscillations. In subsequent work [20], we compared on the negative feedback exerted by the complex be-
two stochastic versions of this core model, one fully tween the nuclear PER and TIM proteins on the ex-
developed into elementary steps, and the other non-pression of their genes. For each of these proteins the
developed. We showed that stochastic treatment of gene is first transcribed in the nucleus into messen-
these two versions of the model for circadian rhythms ger RNA (mRNA). The latter is transported into the
yields similar results. cytosol where it is degraded and translated into the
The purpose of the present paper is to extend our protein B (Tg). The protein PER (TIM) undergoes
comparison of deterministic and stochastic models for multiple phosphorylation, from Pinto Py (Tg into
circadian oscillations, by considering a more detailed T1) and from R into P, (T into T2). These modi-
model for theDrosophilacircadian clock incorporat-  fications, catalysed by a protein kinase, are reverted
ing the formation of a complex between the PER and by a phosphatase. The fully phosphorylated form of
TIM proteins. Although this model does not take into the proteins is marked up for degradation and forms
account other proteins such as CLOCK and CYC in- a complex (C), which is transported into the nucleus
volved in the circadian oscillatory mechanism, it is in a reversible manner. The nuclear form of the PER—
nevertheless more realistic than the core model and TIM complex (Gy) represses the transcription of the
accounts for a larger number of experimental observa- perandtim genes. Recent experiments indicate that re-
tions. Moreover, this extended model predicts the pos- pression is in fact of indirect nature: the CLOCK and
sibility of autonomous chaotic behaviour [21]. Such a CYC proteins promote the expression of {her and
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darkness. When taking into account the control ex-
erted by light on the maximum protein degradation

)
)

TIMy (T1)  TIM2 (To)—»

L P 1Y rate vgt, the model also accounts for entrainment of
circadian oscillations by light-dark cycles and for their
: — N phase shifting by pulses of light. Circadian oscillations
fim transcription - nuclear have also been obtained in more detailed models based
i, PER-TIM ¢ _ PER-TIM o ; . . .
H complex S complex on indirect repression and involving additional clock
per transcription  (Cn) ©) gene products such as CLOCK and CYC ([14,15],
g J.-C. Leloup and A. Goldbeter, submitted for publi-
v cation).
per mRNA (Mp)—- PERo (Po) PER; (P1) PER2 (P2)— As indicated above, besides periodic oscillations,

the model of Fig. 1 is also capable of generating au-
tonomous chaos in conditions corresponding to con-
tinuous darkness. Although this behaviour is probably
not of physiological significance [21], it provides us
with the rare opportunity of testing the effect of mole-
cular noise on chaotic behaviour in a realistic model
based on genetic regulation.

'

Fig. 1. Model for circadian rhythms iDrosophila The model is
based on the negative regulation of ther and tim genes by a
complex between the PER and TIM proteins [11]. Tder (Mp)
andtim (M) mRNAs are synthesised in the nucleus and transferred
into the cytosol, where they accumulate at the maximum redes
andvsT, respectively; there they are degraded enzymatically at the
maximum ratessmp and vy, With the Michaelis constant& y,p

and KmT. The rates of synthesis of the PER and TIM proteins,
respectively proportional ta/p and M, are characterised by the
apparent first-order rate constariigp and ks7. ParametersV;p,

Vit and K;p, K;T (i =1,...,4) denote the maximum rate and
Michaelis constant of the kinase(s) and phosphatase(s) involved
in the reversible phosphorylation opRTp) into P, (T1) and R

(T1) into P, (Ty), respectively. The fully phosphorylated forms
(P2 and T) are degraded by enzymes of maximum rej§g, vqt

2.2. Stochastic version of the model for circadian
oscillations

To assess the effect of molecular noise, we de-
scribe the reaction steps as stochastic birth and death
processes [22]. Numerical simulations of the temporal
evolution of the genetic control system are performed
and Michaelis constant&gp, K41, and reversibly form a complex by means of the Gillespie method [17,18]. Besides
C (with the forward and reverse rate constakis k4), which is other approaches [23-25], this method has been used
t_ransported into the nucleus at a rate characterised by the apparenty qetermine the dynamics of chemical [24,25] bio-
first-order rate constantl_. Transport of tr_le nuclear fprm of the chemical [26] or genetic systems [27] in the presence
PER-TIM complex Cy) into the cytosol is characterised by the . : . .
apparent first-order rate constant The negative feedback exerted ~ Of molecular noise. The Gillespie method associates a
by the nuclear PER-TIM complex guer andtim transcription is probability with each reaction step; at each time step
described by an equation of the Hill type, in whighdenotes the the algorithm randomly determines the reaction that
degree of c_:ooperativity. anff|p and K7 the threshold constants takes place according to its probability, as well as the
for repression. time interval to the next reaction step. The numbers of

molecules of the different reacting species as well as
tim genes and are prevented from exerting this activa- the probabilities are updated at each time step. In this

tion when forming a complex with PER and TIM [3—

approach [18,19], a parameter denofgdontrols the

7]. In the model, the variables are the concentrations number of molecules present in the system. Using the

of the mRNAs (Mp and M7), of the various forms of
the PER and TIM proteinsRy, P1, P2, Ty, T1, T2),
and of the cytosolic@) and nuclear(y) forms of the
PER-TIM complex. The temporal evolution of these

Gillespie method we performed stochastic simulations
of the model described in section 2.1.

Our previous analysis of a core molecular model
for circadian rhythms showed [17] that similar results

concentration variables is governed by a system of 10 are obtained when decomposing the deterministic

kinetic equations that are listed in Appendix A (see [9,
10] for further details).
The deterministic PER-TIM model accounts for

model into elementary stepsidveloped modglor
when the deterministic model is not decomposed into
such steps and non-linear kinetic functions are simply

the occurrence of sustained oscillations in continuous included in the probabilities associated with the global
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reaction stepsnon-developed modelBecause it is 3. Effect of molecular noise on periodic
much easier to handle, we shall therefore restrict our oscillations
stochastic analysis to such a non-developed version of
the model schematised in Fig. 1. Before dealing with the effect of molecular noise,
The non-linear terms appearing in the kinetic equa- let us recall the predictions of the deterministic model
tions (A.1) listed in Appendix A represent compact governed by equations (A.1). Typical circadian oscil-
kinetic expressions obtained after application of quasi- lations predicted by this model are shown in Fig. 2A
steady-state hypotheses on enzyme—substrate or gene{middle panel). These oscillations correspond to the
repressor complexes. The resulting expressions are ofévolution toward a limit cycle (Fig. 2A, left panel)
the Michaelis—Menten type for enzyme reaction rates, Shown here as a projection onto the plane formed by
or of the Hill type for cooperative binding of the re- the concentrations afer mRNA (Mp) and nuclear
pressor (here, the nuclear PER-TIM complex) to the PER-TIM complex Cn). Because the behaviour is
gene promoter. We attribute to each linear or non- periodic and deterministic (i.e. oscillations occur in
linear term of the kinetic equations a probability of he absence of molecular noise), the histogram of pe-
occurrence of the corresponding reaction. These reac-110ds Yields a single line corresponding to a circadian
tions and their associated probability are listed in Ta- P€riod close to 24 h (Fig. 2A, right panel).
ble 1 in Appendix A. Thus reaction (1) correspondsto ~ 1urning to the effect of molecular noise, we now
the transcription of theer gene intaper mRNA, Mp: conglder the dynamic behaviour .of th_e stochastic
the occurrence of this reaction with a probability Version _Of the PER_TIM_ mo_del for C|rcad|a_n r_hythms.
results in increasing by 1 the number of molecules of Shown in panels BfD n F|g_. 2 are the limit cycles
Mp. Reaction (4) results in increasing by one the num- (left panels), sustained oscillations gler mRNA

. (middle panels), and histograms of periods (right
gfe:ncglilrﬂglsegfulﬁ?s and decreasing by one the number panels) obtained by stochastic simulations far

In contrast to the treatment presented in our previ- = 1000 (8), 100 (C) and 10 (D). For these values of

ous work [17], here we do not decompose the bindin §2, the numbers of molecules of nuclear PER-TIM
' PO '9 complex andper mRNA vary in the range 500-2500
of the repressor to the gene promoter into successive

) . .~ ~and 0-3000, 50-300 and 0-300, and 0-60 and 0-50,
elementary steps, and rather retain the Hill function

L . . respectively.
description for cooperative repression by the nuclear The data presented in Fig. 2 show that the circa-
PER-TIM complex @ (steps (1) and (11)). A similar '

) o : dian oscillatory behaviour predicted by the determinis-
global approach is taken for describing degradation of i el is recovered when using the stochastic model
per andtim mRNAs (reactions (2) and (12)), transla-

X ) ’ / for circadian rhythms. The mere effect of molecular
tion of MRNAs into proteins fand To (reactions (3)  pise is to increase the effective thickness of the limit
and (13)), phosphorylation ofgPand Tp into .Pl and cycle. The results further indicate that robust circadian
T (reactions (4) and (14)) and ohRnd T into P2 gscillations are still produced by the stochastic model
and T, (reactions (6) and (16)), as well as dephospho- ywhen the maximum numbers of mMRNA and protein
rylation of Py and T, into Ry and To (reactions Sand  molecules are in the order of hundreds. It is only when
15) and of B and Tz into Py and Ty (reactions (7) and  these numbers decrease down to a few tens that noise
(17)), enzymatic degradation obRnd Tz (reactions  pegins to overcome rhythmicity, even though oscilla-
(10) and (18)), reversible formation of the complex C  tions still subsist (Fig. 2D); the period histogram is
(reactions 8 and 9), and reversible transport of com- then much wider but still presents a maximum close
plex C into and out of the nucleus (reactions (19) and to a circadian value.

(20)). Steps (21)—(30) relate to non-specific degrada- ~ Another way to illustrate the effect of molecular
tion of the various mRNA or protein species. Reac- noise is to draw a histogram of frequencies of passage
tions (2), (4)—(7), (10), (12), and (14)—(18) are of the through the different points in the phase plane. In the
Michaelian type; reaction (8) is of bimolecular nature, deterministic case, such a plot would yield the same
while reactions (3), (9), (13) and (19)—(30) correspond frequency of passage through all points of the limit
to linear kinetics. cycle, because these are all visited the same number
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Fig. 2. Sustained oscillations predicted by the deterministic and stochastic versions of the model for circadian rhythms. (A) Limit cycle obtained
in the 10-variable deterministic model governed by equations (A.1), shown as a projection oMip-tfig phase plane (left panel); the arrow
indicates the direction of movement along the closed trajectory. Equations (A.1) and parameter values are listed in Appendix A. Middle panel:
sustained oscillations of per mMRNA/) corresponding to the limit cycle in the left panel. Right panel: histogram of periods. Here, in the
absence of molecular noise, the deterministic model yields a single line corresponding to the periodic circadian oscillations. (B)—(D) Limit
cycle (left panel), sustained oscillations (represented by the time course of the nunpeend®NA molecules), and histograms of periods
predicted by the stochastic model for values of param&tatecreasing from 1000 (B) to 100 (C) and 10 (D). The results, obtained in the
presence of molecular noise, should be compared with those obtained with the deterministic model in (A). Numerical simulations in panels
(B)—(D) were performed by means of the Gillespie method [16,17] with the stochastic model listed in Table 1 in Appendix A. As in the
following figures stochastic simulations were performed for 2500 h, which corresponds to some 100 successive cycles. For period histograms,
the period was determined as the time interval separating two successive upward crossings of the mean level of MRNA or clock protein.
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of times. In the presence of noise, some regions of the
A phase space are visited more often than others where
Frequency dispersion is strong. This results in the occurrence
0.02 1 of peaks in the frequency of passage, as shown in
Fig. 3A. The bottom part of Fig. 3A shows a contour
plot in the planeger mRNA molecules versus nuclear
PER-TIM complexes). The contour plot is obtained
by projecting onto this plane the intersections of the
histogram with 50 parallel planes, corresponding to
equidistant frequencies. For the sake of clarity the
contour plot is rotated by 90and shown enlarged
in Fig. 3B. The most frequently visited regions in
the phase plane correspond to the decrease in nuclear
PER-TIM levels and rise irper mRNA. Largest
dispersion occurs when mRNA decreases and PER-
TIM levels rise.

0.015 4

0.01 4

0.005 -

01

i

100
Number of
per mMRNA 200

molecules 300 555 100 150 200 250 300

Number of nuclear PER-TIM

complex molecules 4. Influence of the vicinity of a bifurcation point

B The question arises as to whether the proximity
from a bifurcation point may influence the robustness
of circadian oscillations with respect to molecular
noise. To address this issue, we first construct in
Fig. 4 a bifurcation diagram showing the onset of
limit cycle oscillations as a function of the maximum
rate of TIM degradationpgt, for the deterministic
model governed by equations (A.1). The state of
the system is represented in Fig. 4 by a single
variable, the concentration gber mRNA. Below
vgT = 0.46 nMh~1, the system evolves toward a stable
steady state. Above this critical bifurcation value,
0 50 100 150 200 250 300 limit cycle oscillations occur. The diagram shows
Number of per mMRNA molecules the envelope of the oscillations: the upper and lower
. . . . 4 _ branches yield the maximum and minimum values of
Fig. 3. Probability of passage of a trajectory in a given region of . . .
the phase space in the presence of molecular noise, in conditions per mMRNA concentration as a function of in the

corresponding to the evolution to the limit cycle shown in Fig. 2¢  course of oscillations.
(left panel). Molecular noise induces a dispersion of the trajectories The results of stochastic simulations performed
around the deterministic limit cycle (Fig. 2A, left panel); the with increasing values of parameteyr are shown in
p_robablhty of passage is hlghest_where the trajectories are less Fig. 5in the form of dynamics in the phase plane (right
dispersed. The bottom part of Fig. 3A shows contour lines of anels) or time series (left panels). The steady state or
the probability of passage in different regions of the phase plane p . . P A y
(per mRNA molecules, nuclear PER-TIM complex molecules). The  limit cycle pred|cted by the determ_m'St'C mo_del forthe
contour plot contains 50, equidistant isoprobability lines between corresponding parameter values is shown in the phase
minimum and maximum probability. Panel B shows an enlargement plane by a white dot or a white curve, respectively.
of the contour plot, rotated by 9Gor the sake of comparison with The four panels in Fig 5 correspond to the fayf
the limit cycles shown in the left panels of Fig. 2. Parameter values L : . . . .
are as in Fig. 2, with2 — 100, values indicated by dashed vertical lines in Fig. 4. For
vgt = 0.1 nMh~1, the deterministic system evolves to
a stable steady state far from the bifurcation point; sto-

Number of nuclear PER-TIM
complex molecules
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I OI.5 I1 1I.5 2
TIM degradation rate, vqp ("M h-T)

per mRNA concentration (nM)

0 2.5

Fig. 4. Bifurcation diagram showing the onset of circadian oscil-
lations in the deterministic model as a function of paramegr
which measures the maximum rate of TIM degradation. The curve
shows the steady-state levelpdr mRNA, stable (solid line) or un-
stable (dashed line), as well as the maximum and minimum concen-
tration of per mRNA in the course of sustained circadian oscilla-
tions. The vertical dashed lines refer to the four values considered
for vgt in Fig. 5, in panels (A)—(D), respectively. The diagram is
established by means of the program AUTO [32] applied to equa-
tions (A.1) listed in Appendix A. Parameter values are as in Fig. 2.

chastic simulations show low-amplitude fluctuations
around the deterministic steady state (Fig. 5A). For
vgt = 0.4 nMh™1, the deterministic system evolves to
a stable steady state close to the bifurcation point; sto-
chastic simulations show fluctuations of larger ampli-
tude around the deterministic steady state (Fig. 5B).
For vgt = 0.5 nMh~1, the deterministic system un-
dergoes limit cycle oscillations of reduced amplitude
just beyond the bifurcation point; stochastic simula-
tions show small-amplitude, noisy oscillations around
the deterministic limit cycle (Fig. 5C), which resem-
ble the fluctuations shown in Fig. 5B. Finally, for
vgt = 2.0 nMh™1, the deterministic system undergoes
limit cycle oscillations of large amplitude far from the
bifurcation point; stochastic simulations show large-
amplitude, relatively less noisy oscillations around the
deterministic limit cycle (Fig. 5D).

The data in Fig. 5 indicate that stochastic simula-
tions allow us to recover the dynamics predicted by
the deterministic model. Below a critical parameter
value, the system displays low-amplitude fluctuations

D. Gonze et al. / C. R. Biologies 326 (2003) 189—-203

5. Effect of molecular noise on chaotic behaviour

We have previously reported the occurrence of au-
tonomous chaos in the deterministic model of Fig. 1
[21]. Thus, for some parameter values, in conditions
corresponding to continuous darkness, sustained ape-
riodic oscillations occur in this model, which corre-
spond to the evolution toward a strange attractor in
the phase space (see Fig. 6A). This phenomenon pro-
vides us with the rare opportunity to assess the effect
of molecular noise on chaotic behaviour in a realistic
biochemical model. Shown in panels B and C of Fig. 6
for 2 = 1000 and 100, respectively, are the results of
stochastic simulations performed for parameter values
corresponding to those producing chaos in the deter-
ministic model in Fig. 6A.

The results indicate that chaos persists in the
presence of noise, but the structure of the strange
attractor begins to be blurred when the number of
molecules decreases and the amplitude of fluctuations
rises. Nevertheless the small curler-like substructure
that characterises the strange attractor in the PER-
TIM model (Fig. 6A, left panel) is still visible in
the attractors obtained by stochastic simulations (left
panels in Fig. 6B and C).

Because the PER-TIM model can produce periodic
as well as chaotic oscillations, we can use this model
to compare the effect of molecular noise on the two
types of dynamic behaviour. A convenient tool for
such a comparison is provided by Poincaré sections.
For the case of periodic oscillations, the trajectory
in the (Mp, Mt, CN) plane takes the form of a
limit cycle. Intersection of this trajectory with a plane
corresponding to a given value dfr generally yields
two points, one for whichMt is on the rise and the
other for whichM7y is on the decline. Shownin Fig. 7A
is the point intersection obtained for the deterministic
model whenMt passes the value 1.5 nM upward.
Panels B and C in Fig. 7 show the Poincaré sections
obtained by stochastic simulations with= 1000 and
100, respectively, for the corresponding value of the
number of Mt molecules (i.e., 1.52). Instead of a
single point, we obtain a cloud of points surrounding
the deterministic Poincaré section; the smaller the

around a stable steady state, while above this value number of molecules, the more scattered the cloud.

sustained oscillations occur. Moreover, the effect of
fluctuations is enhanced by the proximity from the bi-
furcation point.

In the case of chaos, instead of a single point the
intersection in the deterministic model takes the form
of an open continuous curve (Fig. 7D). Stochastic
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Fig. 5. Effect of the proximity from a bifurcation point on the effect of molecular noise in the stochastic model for circadian rhythms. The
different panels are established for the four increasing values of paramgtshown in Fig. 4: 0.1 (A), 0.4 (B), 0.5 (C) and 2 (D); these

values, to be multiplied by2, are expressed here in molecules per hour. The right panels show the evolution in the phase plane while the
left panels represent the corresponding temporal evolution of the numiper cfRNA molecules. (A) Fluctuations around a stable steady

state. (B) Fluctuations around a stable steady state for a valygr aflose to the bifurcation point which lies around 0.47 molecules per hour.
Damped oscillations occur in these conditions when the system is displaced from the stable steady state. In (A) and (B), the white dot represent:
the stable steady state predicted by the deterministic version of the model in corresponding conditions. (C) Oscillations observed close to the
bifurcation point. (D) Oscillations observed further from the bifurcation point, well into the domain of sustained oscillations. In (C) and (D) the
thick white curve represents the limit cycle predicted by the deterministic version of the model governed by equations (A.1), in corresponding
conditions, for the same values qft expressed in nMhl. The smaller amplitude of the limit cycle in (C) as compared to the limit cycle in

(D) is associated with an increased influence of molecular noise. The curves are obtained by means of the Gillespie algorithm applied to the
model of Table 1 (see Appendix A). Besidegr, parameter values are as in Fig. 2.
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Fig. 7. Poincaré sections in the absence or presence of molecular noise. The upper row corresponds to periodic oscillations of the limit cycle
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simulations produce a cloudy version of this curve; whether genetic control mechanisms can give rise to
the scattering of the points in this cloud increases as coherent circadian oscillations at the cellular level. In
the number of molecules decreases (compare panelghe presence of reduced numbers of molecules of the
E and F in Fig. 7). Interestingly, in Fig. 7F, we can mRNA and protein species involved in the circadian
observe a denser part of the cloud in the left upper clock mechanism, stochastic simulations are needed
part of the figure; this dense region corresponds to to address this issue. In a previous publication [17],
noise-induced visits to the curler-like sub-region of the we studied the stochastic version of a core model for
strange attractor (see Fig. 6, left panels). circadian oscillations based on negative autoregulation
of a clock gene by its protein product. For stochastic
simulations, this deterministic five-variable model was
first decomposed into a series of 30 elementary reac-
tion steps. Stochastic simulations performed by means
Circadian rhythms originate from the negative au- Of the Gillespie method [18,19] indicated that robust
toregulation of gene expression. Models based on suchcircadian oscillations, comparable to those predicted
regulatory processes have been proposed for circadianby the deterministic approach, can occur in this de-
rhythms inDrosophilaandNeurosporaThese models  veloped stochastic model even when the maximum
are of a deterministic nature. When molecular noise numbers of mRNA and clock protein molecules are
becomes significant, however, the question arises as toin the tens and hundreds, respectively. The robustness

6. Discussion
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of circadian rhythms, quantified by the period distri- PER-TIM model is that, in addition to periodic oscil-
bution and the half-time of the autocorrelation func- lations, it also admits, for appropriate parameter val-
tion [17], is enhanced when the cooperativity of the ues, chaotic behaviour. This allowed us to assess the
repression process increases and when the numbers oéffect of molecular noise both on periodic and chaotic
mRNA and protein molecules involved in the oscil- oscillations.
latory mechanism become larger. Formation of com-  Stochastic simulations of the PER-TIM model cor-
plexes between regulatory proteins is another stabilis- roborate the conclusions reached for the simpler core
ing factor (D. Forger and C. Peskin, personal commu- mechanism for circadian rhythms. Sustained circadian
nication). Stochastic simulations indicate, moreover, oscillations predicted by the deterministic model are
that forcing by a light-dark cycle stabilises the phase recovered by stochastic simulations. Robust circadian
of the oscillations [17]. oscillations closely related to those obtained with the
In a follow up study [20] we compared two stochas- deterministic model can already occur when the max-
tic versions of the core model for circadian oscilla- imum numbers of protein and mMRNA molecules are
tions. In one version (the developed stochastic model), in the hundreds or tens, respectively (the mean num-
described above, all reactions were decomposed intobers of these molecules in the course of oscillations are
elementary steps, while in the second version (non- smaller, because the levels of both protein and mRNA
developed model), the reactions were not decomposedcan go down to very low values at the trough of the os-
into elementary steps and non-linear rate expressionscillations). Robustness increases with the numbers of
were simply included in the probability of occurrence molecules involved, as reflected by the period distrib-
of each reaction. A comparison of the two stochas- ution (see the period histograms in Fig. 2). Itis only at
tic versions of the core model indicates that they both very low numbers of molecules of protein and mRNA
yield similar results; the two approaches are equiva- (reached, for example, fa2 = 10) that noise begins
lent and corroborate the predictions of the determinis- to obliterate circadian rhythmicity [17]. In both the de-
tic model. It is only when the maximum numbers of terministic and stochastic versions of the PER-TIM
mRNA and protein molecules are reduced to very low model, critical parameter values separate the evolution
values, of the order of a few tens, that molecular noise toward a stable steady state from the evolution toward
begins to prevent the emergence of coherent circadiansustained oscillations. The effect of noise is merely to
oscillations. These numerical results are corroborated induce fluctuations around the stable steady state or
by a recent analytical study [28]. around the stable limit cycle predicted by the deter-
Here we have extended the comparison of deter- ministic model. As shown here (see Fig. 5), and else-
ministic and stochastic models for circadian rhythms where on the core model [20], the effect of molecular
by considering a more extended molecular model pro- noise is enhanced in the vicinity of a bifurcation point.
posed for circadian oscillations of the PER and TIM A previous study of models based on negative au-
proteins and their mRNAs ibrosophila The ten- toregulation of gene expression reported a lack of ro-
variable model is based on the negative autoregula- bustness of circadian oscillations with respect to mole-
tion of the per andtim genes by a complex between cular noise [16]. The difference with respect to the
the PER and TIM proteins. Although additional pro- results presented here and elsewhere [17,20] is likely
teins are known to be at work in the molecular mecha- due to the lower values considered for bimolecular rate
nism of the circadian clock ibrosophilaand mam- constants characterising the association of the repres-
mals, the PER-TIM model appears as more realis- sor to the gene promoter [17,29]. When these parame-
tic than the core mechanism that we previously con- ter values remain too small, the analysis of the deter-
sidered for deterministic [9] and stochastic simula- ministic model indicates that the steady state becomes
tions [17]. Because the non-developed and developedstable but displays the property of excitability: in
stochastic versions of the core model for circadian the stochastic model, instead of sustained oscillations,
rhythms gave similar results, we focused here on the fluctuations give then rise to irregular, large-amplitude
comparison of the deterministic PER-TIM model with  excursions away from the stable steady state.
its non-developed stochastic version, which is easier =~ Autonomous chaos has previously been described
to handle than the developed one. An advantage of thein the deterministic PER-TIM model for circadian
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rhythms inDrosophila[21]. As for periodic circadian + V4PL — kqP1
oscillations, chaotic behaviour is recovered when sto- Kap+ P2
chastic simulations are performed for parameter val- dp, P >
ues correspo_ndingto chaosinthe determinigtic m_odel. o 3PK3P+ P V4PK4P+ Py k3 P2T2
Beyond a noisy appearance due to fluctuations in the P
i 2
presence of reduced numbers of mMRNA and protein + k4C — vgp —kqP>
molecules, the structure of the strange attractor re- Kap+ P2
mains discernible (Fig. 6), in agreement with results dM+ K}, M+

— kgMT

obtained in models for chemical oscillations [30,31].
The use of Poincaré sections (Fig. 7) allowed us to
place on firmer ground the comparison of periodic and dTp
chaotic behaviour in the presence of molecular noise. ¢
The results lead to a clear distinction between noisy
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limit cycle oscillations and chaotic oscillations sub- — kdTo
jected to noise. The agreement between the stochasticﬂ _ To v o v Th
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odic oscillations as well as for chaotic behaviour. T
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For the case of periodic oscillations in the determin-

Appendix A istic model (Figs. 2A and 7A), the following set of
parameter values were usedn = 4, wvsp

A.1. Kinetic equations of the deterministic modelfor —1.0nMh2, vs7= 1.0 nMh™2, vp= 0.7 NnMh™1,

circadian oscillations vmt = 0.7 nMh™Y, vgp = 20 nMhL, g

=20 nMh™, ksp= kst = 0.9 h™%, ki3 = 0.6 h7?,
The time evolution of the 10 concentration vari- k, = 0.2 h™1, k3 = 1.2 nM~1h™1, ks = 0.6 h1,
ables in the model of Fig. 1 is governed by the fol- g o= K,r=0.2 nM, Kip = K;1 = 1.0 nM, Kgp

lowing system of ordinary differential equations: = Kgr = 0.2 nM, K1p = K11 = Kop = Ko1 = K3p
dMp Ko Mp =K3T=K4P=K4T_TZHM,V1P= VlT=8|1|\1/| ht,
= UsP—, — — Ump — kqMp Vop=Vor=1nMh™, Vgp= V31 =8 nMh™, Vgp
dr Kip + Cx Kmp + Mp — Var = 1 nMhL, kg = kgc = kan = 0.01 nMhL.
% — keoMp — V. Po These values were also used for stochastic simulations
dr sPHP lPK1P+ Po in Figs. 2B-D and 7B-C. For chaotic behaviour in
P the deterministic model (Figs. 6A and 7D) and in sto-
R ony kaPo chastic simulations (Figs. 6B and C and 7E and F),
dp; Py P Py the same parameter values were considered, except

1
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Table 1
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Stochastic model for circadian rhythms, corresponding to the mechanism schematised in Fig. 1

Reaction number

Reaction step

Probability of reaction

1

10

11

12

13
14

15

16

17
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20
21
22
23
24
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27
28
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30
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A.2. Stochastic version of the model for circadian
oscillations

DrosophilaandNeurosporaJ. Biol. Rhythms 14 (1999) 433—
448.
[13] J.-C. Leloup, A. Goldbeter, Modeling the molecular regulatory

L . . mechanism of circadian rhythms Drosophila BioEssays 22
For stochastic simulations, the model schematised (2000) 8'4_93 readl " phra =i Y

in Fig. 1 and governed by the deterministic System [14] H.R. Ueda, M. Hagiwara, H. Kitano, Robust oscillations
of equations (A.1) is presented as a sequence of re-  within the interlocked feedback model Bfosophilacircadian
action steps in Table 1. Steps (21) to (30) refer to non- rhythm, J. Theor. Biol. 210 (2001) 401-406.
specific degradation reactions, of relatively reduced [1°1 P- Smolen, D.A. Baxter, J.H. Byre, Modeling circadian
. . L A oscillations with interlocking positive and negative feedback
importance, WhICh are n_ot indicated in Fig. 1. The s_ec— loops, J. Neurosci. 21 (2001) 6644—6656.

ond column in Table 1 lists the sequence of reactions [16] N, Barkai, S. Leibler, Circadian clocks limited by noise,
(see section 2.2). The probability of each reaction is Nature 403 (2000) 267—268.

given in the third column. Parameter values are the [17] D. Gonze, J. Halloy, A. Goldbeter, Robustness of circadian

same as those listed above for the deterministic model,

but units of nM have to be replaced by numbers of
molecules, after multiplication of the parameter®y
if need be, as indicated in the last column of Table 1.
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