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Stochastic models for circadian rhythms: effect of molecular n
on periodic and chaotic behaviour
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Abstract

Circadian rhythms are endogenous oscillations that occur with a period close to 24 h in nearly all living organism
rhythms originate from the negative autoregulation of gene expression. Deterministic models based on such genetic
processes account for the occurrence of circadian rhythms in constant environmental conditions (e.g., constant dark
entrainment of these rhythms by light-dark cycles, and for their phase-shifting by light pulses. When the numbers o
and mRNA molecules involved in the oscillations are small, as may occur in cellular conditions, it becomes necessary
to stochastic simulations to assess the influence of molecular noise on circadian oscillations. We address the effect of
noise by considering the stochastic version of a deterministic model previously proposed for circadian oscillations of
and TIM proteins and their mRNAs inDrosophila. The model is based on repression of theper andtim genes by a comple
between the PER and TIM proteins. Numerical simulations of the stochastic version of the model are performed b
of the Gillespie method. The predictions of the stochastic approach compare well with those of the deterministic mo
respect both to sustained oscillations of the limit cycle type and to the influence of the proximity from a bifurcation point
which the system evolves to a stable steady state. Stochastic simulations indicate that robust circadian oscillations c
at the cellular level even when the maximum numbers of mRNA and protein molecules involved in the oscillations ar
order of only a few tens or hundreds. The stochastic model also reproduces the evolution to a strange attractor in c
where the deterministic PER–TIM model admits chaotic behaviour. The difference between periodic oscillations of t
cycle type and aperiodic oscillations (i.e. chaos) persists in the presence of molecular noise, as shown by means o
sections. The progressive obliteration of periodicity observed as the number of molecules decreases can thus be dis
from the aperiodicity originating from chaotic dynamics. As long as the numbers of molecules involved in the osci
remain sufficiently large (of the order of a few tens or hundreds, or more), stochastic models therefore provide good a
with the predictions of the deterministic model for circadian rhythms.To cite this article: D. Gonze et al., C. R. Biologies 326
(2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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Résumé

Les rythmes circadiens sont des oscillations endogènes qui se produisent avec une période proche de 24 h chez
des organismes vivants. Ces rythmes résultent de l’autorégulation négative de l’expression de gènes de l’horloge ci
Des modèles déterministes fondés sur de tels processus de régulation génétique rendent compte de l’existence
circadiens dans des conditions d’environnement constant (par exemple, l’obscurité continue), de l’entraînement de ce
par des cycles lumière–obscurité, et de leur déphasage par des impulsions de lumière. Lorsque le nombre de molécu
messagers et de protéines impliquées dans le mécanisme des oscillations est faible, comme cela peut se produi
conditions cellulaires, il devient nécessaire de recourir à des simulations stochastiques pour déterminer l’influence
moléculaire sur les rythmes circadiens. Nous étudions l’effet du bruit moléculaire en considérant la version stochast
modèle déterministe précédemment proposé pour les oscillations circadiennes des protéines PER et TIM et de l
messagers chez la drosophile. Ce modèle est fondé sur la répression des gènesper et tim par un complexe entre les protéin
PER et TIM. Les simulations numériques de la version stochastique de ce modèle sont effectuées au moyen de la m
Gillespie. Les prédictions de l’approche stochastique sont en accord avec celles fournies par l’approche déterministe
ce qui concerne les oscillations entretenues de type cycle limite que pour l’influence de la proximité d’un point de bif
au-delà duquel le système évolue vers un état stationnaire stable. Les simulations stochastiques indiquent que d
circadiens robustes peuvent émerger au niveau cellulaire déjà lorsque le nombre maximum de molécules d’ARN me
de protéines impliquées dans les oscillations est de l’ordre de quelques dizaines ou centaines seulement. Le modèle s
reproduit également l’évolution vers un attracteur étrange dans les conditions où le modèle déterministe PER–TIM
comportement chaotique. La différence entre les oscillations périodiques de type cycle limite et les oscillations apério
c’est-à-dire le chaos – persiste en présence de bruit moléculaire, comme l’indiquent les sections de Poincaré obtenu
deux types de comportement dynamique. La disparition progressive de la périodicité, qu’on observe à mesure que
de molécules diminue, peut donc être distinguée de l’apériodicité résultant de la dynamique chaotique. Aussi longtem
nombre de molécules impliquées dans les oscillations demeure suffisamment grand (de l’ordre de quelques dizaines,
ou plus), les modèles stochastiques fournissent ainsi un bon accord avec les prédictions des modèles déterminist
rythmes circadiens.Pour citer cet article : D. Gonze et al., C. R. Biologies 326 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Keywords:circadian rhythms; stochastic simulations; molecular noise; robustness; chaos

Mots-clés :rythmes circadiens ; simulations stochastiques ; bruit moléculaire ; robustesse ; chaos
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1. Introduction

Most living organisms, from cyanobacteria to i
sects, plants and mammals, have developed the
pability of generating autonomously sustained os
lations with a period close to 24 h. These oscil
tions, known as circadian rhythms, are endogenous
cause they can occur in constant environmental co
tions, e.g., constant darkness [1,2]. Experimental s
ies during the last decade have shed much light on
molecular mechanism of circadian rhythms [3]. In
tial studies pertained to the flyDrosophila [4,5] and
the fungusNeurospora[3]. Molecular studies of circa
dian rhythms have since been extended to cyanoba
ria, plants and mammals [6,7]. In all cases investiga
so far, the molecular mechanism of circadian osci
tions relies on the negative autoregulation exerted
a protein on the expression of its gene [3–8]. Thus
-

-

Drosophila, the proteins PER and TIM form a com
plex that indirectly represses the activation of theper
andtim genes, while inNeurosporait is the FRQ pro-
tein that represses the expression of its genefrq [3,6].
The situation in mammals resembles that observe
Drosophila, but instead of TIM it is the CRY protei
that forms a regulatory complex with a PER prote
to inhibit the expression of theper genes [7]. Light
can entrain circadian rhythms by inducing degrada
of the TIM protein inDrosophila, and expression o
thefrq andpergenes inNeurosporaand mammals, re
spectively [3–7].

A number of mathematical models for circadi
rhythms have been proposed [9–15] on the basi
these experimental observations. These models a
a deterministic nature and take the form of a sys
of coupled ordinary differential equations. The mo
els predict that in a certain range of parameter v
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ues the genetic control network undergoes susta
oscillations of the limit cycle type corresponding
the circadian rhythm, whereas outside this range
gene network operates in a stable steady state.
question arises as to whether deterministic mod
are always appropriate for the description of cir
dian clocks [16]. Indeed, the number of molecules
volved in the regulatory mechanism producing cir
dian rhythms at the cellular level may well be reduc
This number could vary from a few thousands do
to hundreds and even a few tens of protein or mes
ger RNA molecules in each rhythm-producing cell.
such low concentrations it is more appropriate to re
to a stochastic approach to study the molecular b
of the oscillatory phenomenon.

In a previous publication [17], we compared t
stochastic and deterministic versions of a core mo
ular model for circadian oscillations based on the n
ative regulation exerted by a protein on the express
of its gene. Stochastic simulations were performed
means of the Gillespie algorithm [18,19] after deco
posing the deterministic model into elementary ste
We studied the effect of molecular noise by asses
the robustness of circadian oscillations as a functio
the number of interacting molecules. We showed t
robust circadian rhythmicity could already occur wh
the maximum numbers of mRNA and clock prote
molecules are in the tens and hundreds, respecti
Cooperativity of repression and periodic forcing
light-dark cycles enhance the robustness of circad
oscillations. In subsequent work [20], we compa
two stochastic versions of this core model, one fu
developed into elementary steps, and the other n
developed. We showed that stochastic treatmen
these two versions of the model for circadian rhyth
yields similar results.

The purpose of the present paper is to extend
comparison of deterministic and stochastic models
circadian oscillations, by considering a more detai
model for theDrosophilacircadian clock incorporat
ing the formation of a complex between the PER a
TIM proteins. Although this model does not take in
account other proteins such as CLOCK and CYC
volved in the circadian oscillatory mechanism, it
nevertheless more realistic than the core model
accounts for a larger number of experimental obse
tions. Moreover, this extended model predicts the p
sibility of autonomous chaotic behaviour [21]. Such
property will allow us to assess the effect of molecu
noise not only on periodic but also on chaotic osci
tions.

We first present in Section 2 the deterministic a
stochastic versions of the molecular model for cir
dian rhythms. In the stochastic version we introdu
molecular noise without decomposing the determin
tic mechanism into detailed reaction steps. The res
of stochastic simulations performed by means of
Gillespie method [18,19] are presented in Sectio
for the case of periodic behaviour. We assess the
of fluctuations by determining the effect of the numb
of mRNA and protein molecules on circadian rhy
micity. In Section 4 we examine how the proximi
from a bifurcation point influences the robustness
the oscillations with respect to molecular noise. H
such a noise affects chaotic behaviour is examine
Section 5. Section 6 is devoted to a comparative
cussion of deterministic versus stochastic simulatio

2. Deterministic and stochastic versions of the
molecular model for circadian oscillations

2.1. Deterministic model for circadian oscillations

We consider a ten-variable model previously p
posed for circadian oscillations of the PER and T
proteins and ofper and tim mRNAs in Drosophila
[9,10]. The model, schematised in Fig. 1, is ba
on the negative feedback exerted by the complex
tween the nuclear PER and TIM proteins on the
pression of their genes. For each of these proteins
gene is first transcribed in the nucleus into mess
ger RNA (mRNA). The latter is transported into th
cytosol where it is degraded and translated into
protein P0 (T0). The protein PER (TIM) undergoe
multiple phosphorylation, from P0 into P1 (T0 into
T1) and from P1 into P2 (T1 into T2). These modi-
fications, catalysed by a protein kinase, are reve
by a phosphatase. The fully phosphorylated form
the proteins is marked up for degradation and for
a complex (C), which is transported into the nucle
in a reversible manner. The nuclear form of the PE
TIM complex (CN) represses the transcription of t
perandtimgenes. Recent experiments indicate that
pression is in fact of indirect nature: the CLOCK a
CYC proteins promote the expression of theper and
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Fig. 1. Model for circadian rhythms inDrosophila. The model is
based on the negative regulation of theper and tim genes by a
complex between the PER and TIM proteins [11]. Theper (MP)
andtim (MT) mRNAs are synthesised in the nucleus and transfe
into the cytosol, where they accumulate at the maximum ratesvsP
andvsT, respectively; there they are degraded enzymatically a
maximum ratesvmP and vmT, with the Michaelis constantsKmP
and KmT. The rates of synthesis of the PER and TIM protei
respectively proportional toMP andMT, are characterised by th
apparent first-order rate constantsksP and ksT. ParametersViP,
ViT and KiP, KiT (i = 1, . . . ,4) denote the maximum rate an
Michaelis constant of the kinase(s) and phosphatase(s) invo
in the reversible phosphorylation of P0 (T0) into P1 (T1) and P1
(T1) into P2 (T2), respectively. The fully phosphorylated form
(P2 and T2) are degraded by enzymes of maximum ratevdP, vdT
and Michaelis constantsKdP, KdT, and reversibly form a comple
C (with the forward and reverse rate constantsk3, k4), which is
transported into the nucleus at a rate characterised by the app
first-order rate constantk1. Transport of the nuclear form of th
PER–TIM complex (CN) into the cytosol is characterised by th
apparent first-order rate constantk2. The negative feedback exerte
by the nuclear PER–TIM complex onper and tim transcription is
described by an equation of the Hill type, in whichn denotes the
degree of cooperativity, andKIP andKIT the threshold constant
for repression.

tim genes and are prevented from exerting this act
tion when forming a complex with PER and TIM [3
7]. In the model, the variables are the concentrati
of the mRNAs (MP andMT), of the various forms o
the PER and TIM proteins (P0, P1, P2, T0, T1, T2),
and of the cytosolic (C) and nuclear (CN) forms of the
PER–TIM complex. The temporal evolution of the
concentration variables is governed by a system o
kinetic equations that are listed in Appendix A (see
10] for further details).

The deterministic PER–TIM model accounts f
the occurrence of sustained oscillations in continu
t

darkness. When taking into account the control
erted by light on the maximum protein degradat
ratevdT, the model also accounts for entrainment
circadian oscillations by light-dark cycles and for th
phase shifting by pulses of light. Circadian oscillatio
have also been obtained in more detailed models b
on indirect repression and involving additional clo
gene products such as CLOCK and CYC ([14,1
J.-C. Leloup and A. Goldbeter, submitted for pub
cation).

As indicated above, besides periodic oscillatio
the model of Fig. 1 is also capable of generating
tonomous chaos in conditions corresponding to c
tinuous darkness. Although this behaviour is proba
not of physiological significance [21], it provides u
with the rare opportunity of testing the effect of mo
cular noise on chaotic behaviour in a realistic mo
based on genetic regulation.

2.2. Stochastic version of the model for circadian
oscillations

To assess the effect of molecular noise, we
scribe the reaction steps as stochastic birth and d
processes [22]. Numerical simulations of the tempo
evolution of the genetic control system are perform
by means of the Gillespie method [17,18]. Besid
other approaches [23–25], this method has been
to determine the dynamics of chemical [24,25] b
chemical [26] or genetic systems [27] in the prese
of molecular noise. The Gillespie method associat
probability with each reaction step; at each time s
the algorithm randomly determines the reaction t
takes place according to its probability, as well as
time interval to the next reaction step. The number
molecules of the different reacting species as wel
the probabilities are updated at each time step. In
approach [18,19], a parameter denotedΩ controls the
number of molecules present in the system. Using
Gillespie method we performed stochastic simulati
of the model described in section 2.1.

Our previous analysis of a core molecular mo
for circadian rhythms showed [17] that similar resu
are obtained when decomposing the determin
model into elementary steps (developed model) or
when the deterministic model is not decomposed
such steps and non-linear kinetic functions are sim
included in the probabilities associated with the glo
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reaction steps (non-developed model). Because it is
much easier to handle, we shall therefore restrict
stochastic analysis to such a non-developed versio
the model schematised in Fig. 1.

The non-linear terms appearing in the kinetic eq
tions (A.1) listed in Appendix A represent compa
kinetic expressions obtained after application of qu
steady-state hypotheses on enzyme–substrate or g
repressor complexes. The resulting expressions a
the Michaelis–Menten type for enzyme reaction ra
or of the Hill type for cooperative binding of the re
pressor (here, the nuclear PER–TIM complex) to
gene promoter. We attribute to each linear or n
linear term of the kinetic equations a probability
occurrence of the corresponding reaction. These r
tions and their associated probability are listed in
ble 1 in Appendix A. Thus reaction (1) corresponds
the transcription of theper gene intoper mRNA, MP;
the occurrence of this reaction with a probabilityw1

results in increasing by 1 the number of molecules
MP. Reaction (4) results in increasing by one the nu
ber of P1 molecules and decreasing by one the num
of molecules of P0.

In contrast to the treatment presented in our pr
ous work [17], here we do not decompose the bind
of the repressor to the gene promoter into succes
elementary steps, and rather retain the Hill funct
description for cooperative repression by the nuc
PER–TIM complex CN (steps (1) and (11)). A simila
global approach is taken for describing degradatio
per andtim mRNAs (reactions (2) and (12)), transl
tion of mRNAs into proteins P0 and T0 (reactions (3)
and (13)), phosphorylation of P0 and T0 into P1 and
T1 (reactions (4) and (14)) and of P1 and T1 into P2

and T2 (reactions (6) and (16)), as well as dephosp
rylation of P1 and T1 into P0 and T0 (reactions 5 and
15) and of P2 and T2 into P1 and T1 (reactions (7) and
(17)), enzymatic degradation of P2 and T2 (reactions
(10) and (18)), reversible formation of the complex
(reactions 8 and 9), and reversible transport of co
plex C into and out of the nucleus (reactions (19) a
(20)). Steps (21)–(30) relate to non-specific degra
tion of the various mRNA or protein species. Rea
tions (2), (4)–(7), (10), (12), and (14)–(18) are of t
Michaelian type; reaction (8) is of bimolecular natu
while reactions (3), (9), (13) and (19)–(30) correspo
to linear kinetics.
–
f

3. Effect of molecular noise on periodic
oscillations

Before dealing with the effect of molecular nois
let us recall the predictions of the deterministic mo
governed by equations (A.1). Typical circadian os
lations predicted by this model are shown in Fig.
(middle panel). These oscillations correspond to
evolution toward a limit cycle (Fig. 2A, left pane
shown here as a projection onto the plane formed
the concentrations ofper mRNA (MP) and nuclear
PER–TIM complex (CN). Because the behaviour
periodic and deterministic (i.e. oscillations occur
the absence of molecular noise), the histogram of
riods yields a single line corresponding to a circad
period close to 24 h (Fig. 2A, right panel).

Turning to the effect of molecular noise, we no
consider the dynamic behaviour of the stocha
version of the PER–TIM model for circadian rhythm
Shown in panels B–D in Fig. 2 are the limit cycl
(left panels), sustained oscillations ofper mRNA
(middle panels), and histograms of periods (ri
panels) obtained by stochastic simulations forΩ

= 1000 (B), 100 (C) and 10 (D). For these values
Ω , the numbers of molecules of nuclear PER–T
complex andper mRNA vary in the range 500–250
and 0–3000, 50–300 and 0–300, and 0–60 and 0
respectively.

The data presented in Fig. 2 show that the cir
dian oscillatory behaviour predicted by the determin
tic model is recovered when using the stochastic mo
for circadian rhythms. The mere effect of molecu
noise is to increase the effective thickness of the li
cycle. The results further indicate that robust circad
oscillations are still produced by the stochastic mo
when the maximum numbers of mRNA and prote
molecules are in the order of hundreds. It is only wh
these numbers decrease down to a few tens that n
begins to overcome rhythmicity, even though osci
tions still subsist (Fig. 2D); the period histogram
then much wider but still presents a maximum clo
to a circadian value.

Another way to illustrate the effect of molecul
noise is to draw a histogram of frequencies of pass
through the different points in the phase plane. In
deterministic case, such a plot would yield the sa
frequency of passage through all points of the lim
cycle, because these are all visited the same num
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Fig. 2. Sustained oscillations predicted by the deterministic and stochastic versions of the model for circadian rhythms. (A) Limit cycle obtained
in the 10-variable deterministic model governed by equations (A.1), shown as a projection onto theMP–CN phase plane (left panel); the arrow
indicates the direction of movement along the closed trajectory. Equations (A.1) and parameter values are listed in Appendix A. Middle panel:
sustained oscillations of per mRNA (MP) corresponding to the limit cycle in the left panel. Right panel: histogram of periods. Here, in the
absence of molecular noise, the deterministic model yields a single line corresponding to the periodic circadian oscillations. (B)–(D) Limit
cycle (left panel), sustained oscillations (represented by the time course of the number ofper mRNA molecules), and histograms of periods
predicted by the stochastic model for values of parameterΩ decreasing from 1000 (B) to 100 (C) and 10 (D). The results, obtained in the
presence of molecular noise, should be compared with those obtained with the deterministic model in (A). Numerical simulations in panels
(B)–(D) were performed by means of the Gillespie method [16,17] with the stochastic model listed in Table 1 in Appendix A. As in the
following figures stochastic simulations were performed for 2500 h, which corresponds to some 100 successive cycles. For period histograms,
the period was determined as the time interval separating two successive upward crossings of the mean level of mRNA or clock protein.
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Fig. 3. Probability of passage of a trajectory in a given region
the phase space in the presence of molecular noise, in cond
corresponding to the evolution to the limit cycle shown in Fig.
(left panel). Molecular noise induces a dispersion of the trajecto
around the deterministic limit cycle (Fig. 2A, left panel); th
probability of passage is highest where the trajectories are
dispersed. The bottom part of Fig. 3A shows contour lines
the probability of passage in different regions of the phase p
(permRNA molecules, nuclear PER–TIM complex molecules). T
contour plot contains 50, equidistant isoprobability lines betw
minimum and maximum probability. Panel B shows an enlargem
of the contour plot, rotated by 90◦ for the sake of comparison wit
the limit cycles shown in the left panels of Fig. 2. Parameter va
are as in Fig. 2, withΩ = 100.
of times. In the presence of noise, some regions of
phase space are visited more often than others w
dispersion is strong. This results in the occurre
of peaks in the frequency of passage, as show
Fig. 3A. The bottom part of Fig. 3A shows a conto
plot in the plane (permRNA molecules versus nucle
PER–TIM complexes). The contour plot is obtain
by projecting onto this plane the intersections of
histogram with 50 parallel planes, corresponding
equidistant frequencies. For the sake of clarity
contour plot is rotated by 90◦ and shown enlarge
in Fig. 3B. The most frequently visited regions
the phase plane correspond to the decrease in nu
PER–TIM levels and rise inper mRNA. Largest
dispersion occurs when mRNA decreases and P
TIM levels rise.

4. Influence of the vicinity of a bifurcation point

The question arises as to whether the proxim
from a bifurcation point may influence the robustne
of circadian oscillations with respect to molecu
noise. To address this issue, we first construc
Fig. 4 a bifurcation diagram showing the onset
limit cycle oscillations as a function of the maximu
rate of TIM degradation,vdT, for the deterministic
model governed by equations (A.1). The state
the system is represented in Fig. 4 by a sin
variable, the concentration ofper mRNA. Below
vdT = 0.46 nMh−1, the system evolves toward a stab
steady state. Above this critical bifurcation valu
limit cycle oscillations occur. The diagram show
the envelope of the oscillations: the upper and low
branches yield the maximum and minimum values
per mRNA concentration as a function ofvdT in the
course of oscillations.

The results of stochastic simulations perform
with increasing values of parametervdT are shown in
Fig. 5 in the form of dynamics in the phase plane (ri
panels) or time series (left panels). The steady sta
limit cycle predicted by the deterministic model for t
corresponding parameter values is shown in the ph
plane by a white dot or a white curve, respective
The four panels in Fig. 5 correspond to the fourvdT
values indicated by dashed vertical lines in Fig. 4.
vdT = 0.1 nMh−1, the deterministic system evolves
a stable steady state far from the bifurcation point; s
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Fig. 4. Bifurcation diagram showing the onset of circadian os
lations in the deterministic model as a function of parametervdT
which measures the maximum rate of TIM degradation. The cu
shows the steady-state level ofper mRNA, stable (solid line) or un
stable (dashed line), as well as the maximum and minimum con
tration of per mRNA in the course of sustained circadian oscil
tions. The vertical dashed lines refer to the four values consid
for vdT in Fig. 5, in panels (A)–(D), respectively. The diagram
established by means of the program AUTO [32] applied to eq
tions (A.1) listed in Appendix A. Parameter values are as in Fig

chastic simulations show low-amplitude fluctuatio
around the deterministic steady state (Fig. 5A).
vdT = 0.4 nMh−1, the deterministic system evolves
a stable steady state close to the bifurcation point;
chastic simulations show fluctuations of larger am
tude around the deterministic steady state (Fig. 5
For vdT = 0.5 nMh−1, the deterministic system un
dergoes limit cycle oscillations of reduced amplitu
just beyond the bifurcation point; stochastic simu
tions show small-amplitude, noisy oscillations arou
the deterministic limit cycle (Fig. 5C), which resem
ble the fluctuations shown in Fig. 5B. Finally, fo
vdT = 2.0 nMh−1, the deterministic system undergo
limit cycle oscillations of large amplitude far from th
bifurcation point; stochastic simulations show larg
amplitude, relatively less noisy oscillations around
deterministic limit cycle (Fig. 5D).

The data in Fig. 5 indicate that stochastic simu
tions allow us to recover the dynamics predicted
the deterministic model. Below a critical parame
value, the system displays low-amplitude fluctuatio
around a stable steady state, while above this v
sustained oscillations occur. Moreover, the effect
fluctuations is enhanced by the proximity from the
furcation point.
5. Effect of molecular noise on chaotic behaviour

We have previously reported the occurrence of
tonomous chaos in the deterministic model of Fig
[21]. Thus, for some parameter values, in conditio
corresponding to continuous darkness, sustained
riodic oscillations occur in this model, which corr
spond to the evolution toward a strange attracto
the phase space (see Fig. 6A). This phenomenon
vides us with the rare opportunity to assess the ef
of molecular noise on chaotic behaviour in a realis
biochemical model. Shown in panels B and C of Fig
for Ω = 1000 and 100, respectively, are the results
stochastic simulations performed for parameter va
corresponding to those producing chaos in the de
ministic model in Fig. 6A.

The results indicate that chaos persists in
presence of noise, but the structure of the stra
attractor begins to be blurred when the number
molecules decreases and the amplitude of fluctuat
rises. Nevertheless the small curler-like substruc
that characterises the strange attractor in the P
TIM model (Fig. 6A, left panel) is still visible in
the attractors obtained by stochastic simulations (
panels in Fig. 6B and C).

Because the PER–TIM model can produce perio
as well as chaotic oscillations, we can use this mo
to compare the effect of molecular noise on the t
types of dynamic behaviour. A convenient tool f
such a comparison is provided by Poincaré secti
For the case of periodic oscillations, the traject
in the (MP, MT, CN) plane takes the form of
limit cycle. Intersection of this trajectory with a plan
corresponding to a given value ofMT generally yields
two points, one for whichMT is on the rise and th
other for whichMT is on the decline. Shown in Fig. 7
is the point intersection obtained for the determinis
model whenMT passes the value 1.5 nM upwar
Panels B and C in Fig. 7 show the Poincaré sect
obtained by stochastic simulations withΩ = 1000 and
100, respectively, for the corresponding value of
number ofMT molecules (i.e., 1.5Ω). Instead of a
single point, we obtain a cloud of points surround
the deterministic Poincaré section; the smaller
number of molecules, the more scattered the cloud

In the case of chaos, instead of a single point
intersection in the deterministic model takes the fo
of an open continuous curve (Fig. 7D). Stochas
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Fig. 5. Effect of the proximity from a bifurcation point on the effect of molecular noise in the stochastic model for circadian rhythms. The
different panels are established for the four increasing values of parametervdT shown in Fig. 4: 0.1 (A), 0.4 (B), 0.5 (C) and 2 (D); these
values, to be multiplied byΩ , are expressed here in molecules per hour. The right panels show the evolution in the phase plane while the
left panels represent the corresponding temporal evolution of the number ofper mRNA molecules. (A) Fluctuations around a stable steady
state. (B) Fluctuations around a stable steady state for a value ofvdT close to the bifurcation point which lies around 0.47 molecules per hour.
Damped oscillations occur in these conditions when the system is displaced from the stable steady state. In (A) and (B), the white dot represents
the stable steady state predicted by the deterministic version of the model in corresponding conditions. (C) Oscillations observed close to the
bifurcation point. (D) Oscillations observed further from the bifurcation point, well into the domain of sustained oscillations. In (C) and (D) the
thick white curve represents the limit cycle predicted by the deterministic version of the model governed by equations (A.1), in corresponding
conditions, for the same values ofvdT expressed in nMh−1. The smaller amplitude of the limit cycle in (C) as compared to the limit cycle in
(D) is associated with an increased influence of molecular noise. The curves are obtained by means of the Gillespie algorithm applied to the
model of Table 1 (see Appendix A). BesidesvdT, parameter values are as in Fig. 2.
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Fig. 6. Effect of molecular noise on autonomous chaos. The strange attractor and the corresponding chaotic oscillations predicted by the
deterministic PER–TIM model for circadian rhythms are represented in (A). (B) and (C) Progressive dissolution of the strange attractor (left
panels) and corresponding aperiodic oscillations (right panels) in the presence of molecular noise, forΩ = 1000 and 100, respectively. The
curves in (A) are obtained by numerical integration of equations (A.1) listed in Appendix A. In (B) and (C), the curves are obtained by means
of the Gillespie algorithm applied to the model of Table 1 in Appendix A. Parameter values are given in Appendix A.
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simulations produce a cloudy version of this cur
the scattering of the points in this cloud increases
the number of molecules decreases (compare pa
E and F in Fig. 7). Interestingly, in Fig. 7F, we ca
observe a denser part of the cloud in the left up
part of the figure; this dense region corresponds
noise-induced visits to the curler-like sub-region of
strange attractor (see Fig. 6, left panels).

6. Discussion

Circadian rhythms originate from the negative a
toregulation of gene expression. Models based on s
regulatory processes have been proposed for circa
rhythms inDrosophilaandNeurospora. These models
are of a deterministic nature. When molecular no
becomes significant, however, the question arises
whether genetic control mechanisms can give ris
coherent circadian oscillations at the cellular level.
the presence of reduced numbers of molecules o
mRNA and protein species involved in the circad
clock mechanism, stochastic simulations are nee
to address this issue. In a previous publication [1
we studied the stochastic version of a core model
circadian oscillations based on negative autoregula
of a clock gene by its protein product. For stocha
simulations, this deterministic five-variable model w
first decomposed into a series of 30 elementary re
tion steps. Stochastic simulations performed by me
of the Gillespie method [18,19] indicated that rob
circadian oscillations, comparable to those predic
by the deterministic approach, can occur in this
veloped stochastic model even when the maxim
numbers of mRNA and clock protein molecules a
in the tens and hundreds, respectively. The robust
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of circadian rhythms, quantified by the period dist
bution and the half-time of the autocorrelation fun
tion [17], is enhanced when the cooperativity of t
repression process increases and when the numbe
mRNA and protein molecules involved in the osc
latory mechanism become larger. Formation of co
plexes between regulatory proteins is another stab
ing factor (D. Forger and C. Peskin, personal comm
nication). Stochastic simulations indicate, moreov
that forcing by a light-dark cycle stabilises the pha
of the oscillations [17].

In a follow up study [20] we compared two stocha
tic versions of the core model for circadian oscil
tions. In one version (the developed stochastic mod
described above, all reactions were decomposed
elementary steps, while in the second version (n
developed model), the reactions were not decompo
into elementary steps and non-linear rate express
were simply included in the probability of occurren
of each reaction. A comparison of the two stoch
tic versions of the core model indicates that they b
yield similar results; the two approaches are equ
lent and corroborate the predictions of the determi
tic model. It is only when the maximum numbers
mRNA and protein molecules are reduced to very l
values, of the order of a few tens, that molecular no
begins to prevent the emergence of coherent circa
oscillations. These numerical results are corrobora
by a recent analytical study [28].

Here we have extended the comparison of de
ministic and stochastic models for circadian rhyth
by considering a more extended molecular model p
posed for circadian oscillations of the PER and T
proteins and their mRNAs inDrosophila. The ten-
variable model is based on the negative autoreg
tion of theper and tim genes by a complex betwee
the PER and TIM proteins. Although additional pr
teins are known to be at work in the molecular mec
nism of the circadian clock inDrosophilaand mam-
mals, the PER–TIM model appears as more rea
tic than the core mechanism that we previously c
sidered for deterministic [9] and stochastic simu
tions [17]. Because the non-developed and develo
stochastic versions of the core model for circad
rhythms gave similar results, we focused here on
comparison of the deterministic PER–TIM model w
its non-developed stochastic version, which is ea
to handle than the developed one. An advantage o
f

PER–TIM model is that, in addition to periodic osc
lations, it also admits, for appropriate parameter v
ues, chaotic behaviour. This allowed us to assess
effect of molecular noise both on periodic and chao
oscillations.

Stochastic simulations of the PER–TIM model c
roborate the conclusions reached for the simpler c
mechanism for circadian rhythms. Sustained circad
oscillations predicted by the deterministic model
recovered by stochastic simulations. Robust circad
oscillations closely related to those obtained with
deterministic model can already occur when the m
imum numbers of protein and mRNA molecules a
in the hundreds or tens, respectively (the mean n
bers of these molecules in the course of oscillations
smaller, because the levels of both protein and mR
can go down to very low values at the trough of the
cillations). Robustness increases with the number
molecules involved, as reflected by the period dist
ution (see the period histograms in Fig. 2). It is only
very low numbers of molecules of protein and mRN
(reached, for example, forΩ = 10) that noise begin
to obliterate circadian rhythmicity [17]. In both the d
terministic and stochastic versions of the PER–T
model, critical parameter values separate the evolu
toward a stable steady state from the evolution tow
sustained oscillations. The effect of noise is merely
induce fluctuations around the stable steady stat
around the stable limit cycle predicted by the det
ministic model. As shown here (see Fig. 5), and e
where on the core model [20], the effect of molecu
noise is enhanced in the vicinity of a bifurcation poi

A previous study of models based on negative
toregulation of gene expression reported a lack of
bustness of circadian oscillations with respect to mo
cular noise [16]. The difference with respect to t
results presented here and elsewhere [17,20] is li
due to the lower values considered for bimolecular r
constants characterising the association of the rep
sor to the gene promoter [17,29]. When these para
ter values remain too small, the analysis of the de
ministic model indicates that the steady state beco
stable but displays the property of excitability:
the stochastic model, instead of sustained oscillati
fluctuations give then rise to irregular, large-amplitu
excursions away from the stable steady state.

Autonomous chaos has previously been descr
in the deterministic PER–TIM model for circadia
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rhythms inDrosophila[21]. As for periodic circadian
oscillations, chaotic behaviour is recovered when s
chastic simulations are performed for parameter
ues corresponding to chaos in the deterministic mo
Beyond a noisy appearance due to fluctuations in
presence of reduced numbers of mRNA and pro
molecules, the structure of the strange attractor
mains discernible (Fig. 6), in agreement with resu
obtained in models for chemical oscillations [30,3
The use of Poincaré sections (Fig. 7) allowed us
place on firmer ground the comparison of periodic a
chaotic behaviour in the presence of molecular no
The results lead to a clear distinction between no
limit cycle oscillations and chaotic oscillations su
jected to noise. The agreement between the stoch
and deterministic approaches therefore holds for p
odic oscillations as well as for chaotic behaviour.
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Appendix A

A.1. Kinetic equations of the deterministic model f
circadian oscillations

The time evolution of the 10 concentration va
ables in the model of Fig. 1 is governed by the f
lowing system of ordinary differential equations:

dMP

dt
= vsP

Kn
IP

Kn
IP + Cn

N
− vmP

MP

KmP+ MP
− kdMP

dP0

dt
= ksPMP − V1P

P0

K1P+ P0

+ V2P
P1

K2P+ P1
− kdP0

dP1 = V1P
P0 − V2P

P1 − V3P
P1
dt K1P+ P0 K2P+ P1 K3P+ P1
+ V4P
P2

K4P+ P2
− kdP1

dP2

dt
= V3P

P1

K3P+ P1
− V4P

P2

K4P+ P2
− k3P2T2

+ k4C − vdP
P2

KdP+ P2
− kdP2

dMT

dt
= vsT

Kn
IT

Kn
IT + Cn

N
− vmT

MT

KmT + MT
− kdMT

dT0

dt
= ksTMT − V1T

T0

K1T + T0
+ V2T

T1

K2T + T1

− kdT0

dT1

dt
= V1T

T0

K1T + T0
− V2T

T1

K2T + T1
− V3T

T1

K3T + T1

+ V4T
T2

K4T + T2
− kdT1

dT2

dt
= V3T

T1

K3T + T1
− V4T

T2

K4T + T2
− k3P2T2

+ k4C − vdT
T2

KdT + T2
− kdT2

dC

dt
= k3P2T2 − k4C − k1C + k2CN − kdCC

(A.1)
dCN

dt
= k1C − k2CN − kdNCN

For the case of periodic oscillations in the determ
istic model (Figs. 2A and 7A), the following set o
parameter values were used:n = 4, vsP

= 1.0 nMh−1, vsT = 1.0 nMh−1, vmP = 0.7 nMh−1,
vmT = 0.7 nMh−1, vdP = 2.0 nMh−1, vdT

= 2.0 nMh−1, ksP = ksT = 0.9 h−1, k1 = 0.6 h−1,
k2 = 0.2 h−1, k3 = 1.2 nM−1 h−1, k4 = 0.6 h−1,
KmP = KmT = 0.2 nM, KIP = KIT = 1.0 nM, KdP

= KdT = 0.2 nM, K1P = K1T = K2P = K2T = K3P

= K3T = K4P= K4T = 2 nM,V1P= V1T = 8 nMh−1,
V2P= V2T = 1 nMh−1, V3P = V3T = 8 nMh−1, V4P

= V4T = 1 nMh−1, kd = kdC = kdN = 0.01 nMh−1.
These values were also used for stochastic simulat
in Figs. 2B–D and 7B–C. For chaotic behaviour
the deterministic model (Figs. 6A and 7D) and in s
chastic simulations (Figs. 6B and C and 7E and
the same parameter values were considered, ex
vmT = 0.35 nMh−1, vdT = 5.3 nMh−1.
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Table 1
Stochastic model for circadian rhythms, corresponding to the mechanism schematised in Fig. 1

Reaction number Reaction step Probability of reaction

1
vsP−→ MP w1 = (vsP× Ω)

(KIP × Ω)n

(KIP × Ω)n + Cn
N

2 MP
vmP−→ w2 = (vmP× Ω)

MP

(KmP× Ω) + MP

3 MP
ksP−→ P0 w3 = ksP× MP

4 P0
V1P−→ P1 w4 = (V1P× Ω)

P0

(K1P× Ω) + P0

5 P1
V2P−→ P0 w5 = (V2P× Ω)

P1

(K2P× Ω) + P1

6 P1
V3P−→ P2 w6 = (V3P× Ω)

P1

(K3P× Ω) + P1

7 P2
V4P−→ P1 w7 = (V4P× Ω)

P2

(K4P× Ω) + P2

8 P2 + T2
k3−→ C w8 = k3 × P2 × T2/Ω

9 C
k4−→ P2 + T2 w9 = k4 × C

10 P2
VdP−→ w10 = (VdP× Ω)

P2

(KdP× Ω) + P2

11
VsT−→ MT w11 = (vsT × Ω)

(KIT × Ω)n

(KIT × Ω)n + Cn
N

12 MT
VmT−→ w12 = (VmT × Ω)

MT

(KmT × Ω) + MT

13 MT
VsT−→ T0 w13 = ksT × MT

14 T0
V1T−→ T1 w14 = (V1T × Ω)

T0

(K1T × Ω) + T0

15 T1
V2T−→ T0 w15 = (V2T × Ω)

T1

(K2T × Ω) + T1

16 T1
V3T−→ T2 w16 = (V3T × Ω)

T1

(K3T × Ω) + T1

17 T2
V4T−→ T1 w17 = (V4T × Ω)

T2

(K4T × Ω) + T2

18 T2
VdT−→ w18 = (VdT × Ω)

T2

(KdT × Ω) + T2

19 C
k1−→ CN w19 = k1 × C

20 CN
k2−→ C w20 = k2 × CN

21 MP
kd−→ w21 = kd × MP

22 P0
kd−→ w22 = kd × P0

23 P1
kd−→ w23 = kd × P1

24 P2
kd−→ w24 = kd × P2

25 MT
kd−→ w25 = kd × MT

26 T0
kd−→ w26 = kd × T0

27 T1
kd−→ w27 = kd × T1

28 T2
kd−→ w28 = kd × T2

29 C
kdC−→ w29 = kdC × C

30 CN
kdN−→ w30 = kdN × CN
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A.2. Stochastic version of the model for circadian
oscillations

For stochastic simulations, the model schemati
in Fig. 1 and governed by the deterministic syst
of equations (A.1) is presented as a sequence o
action steps in Table 1. Steps (21) to (30) refer to n
specific degradation reactions, of relatively redu
importance, which are not indicated in Fig. 1. The s
ond column in Table 1 lists the sequence of reacti
(see section 2.2). The probability of each reaction
given in the third column. Parameter values are
same as those listed above for the deterministic mo
but units of nM have to be replaced by numbers
molecules, after multiplication of the parameter byΩ ,
if need be, as indicated in the last column of Table
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