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What do we mean by biological complexity?
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Abstract

The purpose of the present paper is to offer a precise definition of the concepts of integration, emergence and co
in biological networks through the use of the information theory. If two distinct properties of a network are expres
two discrete variables, the classical subadditivity principle of Shannon’s information theory applies when all the node
network are associated with these properties. If not, the subadditivity principle may not apply. This situation is ofte
encountered with enzyme and metabolic networks, for some nodes may well not be associated with these two prope
is precisely what is occurring with an enzyme that binds randomly its two substrates. This situation implies that an en
a metabolic network, may display a joint entropy equal, smaller, or larger than the corresponding sum of individual ent
component sub-systems. In the first case, the collective properties of the network can be reduced to the individual pro
its components. Moreover, the network is devoid of any information. In the second case, the system displays integratio
behaves as a coherent whole, and has positive information. But if the joint entropy of the network is smaller than th
the individual entropies of its components, then the system has emergent collective properties and can be considered
Moreover, under these conditions, its information is negative. The extent of negative information is enhanced if the en
the metabolic network, is far away from equilibrium.To cite this article: J. Ricard, C. R. Biologies 326 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Le but de cet article est de présenter une définition précise des notions d’intégration, d’émergence et de complexit
réseaux biologiques, à l’aide de la théorie de l’information. Dans sa forme originelle, toutefois, la théorie de Shannon
théorie de la communication qui s’établit entre la source et la destination de messages. Une telle théorie doit être
et adaptée pour rendre compte des phénomènes d’intégration et d’émergence apparaissant dans les réseaux
notamment les réseaux métaboliques. Si deux variables discontinues décrivent deux propriétés d’un réseau à l’éta
équilibre, le principe de sub-additivité, qui est central pour la théorie classique de l’information, s’applique seulemen
les nœuds du réseau sont associés à ces variables. Or, ces conditions ne sont, en général, pas satisfaites dans le ca
biologiques, car certains nœuds peuvent n’être associés à aucune, ou à une seule des deux variables. C’est, par
qui se passe pour une réaction enzymatique à deux substrats, où la protéine fixe de manière aléatoire chacun d
substrats. Dans le milieu réactionnel coexistent alors des molécules d’enzyme qui ont fixé un substrat, deux substrats
substrat. Dans le cas où le principe de sub-additivité n’est pas une condition nécessaire, l’entropie jointe du réseau
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1631-0691/03/$ – see front matter 2003 Académie des sciences/Édi
doi:10.1016/S1631-0691(03)00064-7
tions scientifiques et médicales Elsevier SAS. Tous droits réservés.

http://


134 J. Ricard / C. R. Biologies 326 (2003) 133–140

se trouve
ce réseau ne
phénomène
Si, enfin,
il peut être
rmation du
ues, entrent
is dans des
e matière
re vers un
us en plus
ait aucune
otion de
rmé d’un
pliqué peut
égale, inférieure ou supérieure à la somme des entropies individuelles des composants du système global. Si l’on
dans le premier de ces trois cas, les propriétés du réseau peuvent être déduites de celles de ses composants, et
possède aucune information. Si l’on se trouve, en revanche, dans le deuxième cas, le système considéré présente un
d’intégration de ses composants en un tout cohérent. Il possède, de plus, une information dont le signe est positif.
le réseau possède une entropie jointe supérieure à la somme des entropies individuelles de ses composants, alors
considéré comme complexe et présente des propriétés émergentes par rapport à celles de ses composants. L’info
réseau possède alors un signe négatif. De nombreuses réactions enzymatiques, ainsi que des réseaux métaboliq
certainement dans ces deux dernières catégories. Si le réseau n’existe pas dans un état de quasi-équilibre, ma
conditions d’état stationnaire, c’est-à-dire s’il se comporte comme un système thermodynamique ouvert, alors le flux d
qui parcourt le système crée des propriétés nouvelles. Si l’on fait évoluer le réseau, de son état initial de quasi-équilib
nouvel état stationnaire, en augmentant la constante catalytique de la réaction, l’information du système devient de pl
fortement négative. Cette situation est observée même si, dans l’état initial de quasi-équilibre, le système ne posséd
information. L’évolution d’un système enzymatique vers un état de non-équilibre engendre donc la complexité. La n
complexité est ainsi totalement distincte de celle de complication. Un système apparemment peu compliqué, car fo
petit nombre de composants, peut donc posséder un comportement complexe et, réciproquement, un système com
ne pas posséder un tel comportement.Pour citer cet article : J. Ricard, C. R. Biologies 326 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
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1. Introduction

Classical Science, that is the scientific activities t
have sprung up since the days of Descartes, New
and Leibniz, has always been in search for simplic
More explicitly, it is based upon four ‘principles’ ex
pressed by Descartes in theDiscours de la Méthode
[1]. These ‘principles’ are expressed below.

Le premier était de ne recevoir jamais aucu
chose pour vraie, que je ne la connusse évidemm
être telle : c’est-à-dire d’éviter soigneusement
précipitation et la prévention ; et de ne comprend
rien de plus en mes jugements, que ce qu
présenterait si clairement et si distinctement à m
esprit, que je n’eusse aucune occasion de le me
en doute.

Le second, de diviser chacune des difficu
que j’examinerais, en autant de parcelles qu
se pourrait, et qu’il serait requis pour les mieu
résoudre.

Le troisième, de conduire par ordre mes pensé
en commençant par les objets les plus simple
les plus aisés à connaître, pour monter peu à p
comme par degrés, jusques à la connaissance
plus composés ; et supposant même de l’ordre e
ceux qui ne se précèdent point naturellement
uns les autres.
Et le dernier, de faire partout des dénomb
ments si entiers, et des revues si générales, qu
fusse assuré de ne rien omettre.

The second ‘principle’ is no doubt reductionist
its essence and, for this reason, adverse to present
ies on complex systems. In spite of the fact that th
analytic and reductionist approaches have led to
portant discoveries, there is little doubt that the Wo
is complex in its essence and cannot be correctly
derstood through the classical reductionist appro
This is precisely what has recently become eviden
different fields of Science ranging from fundamen
Physics to Social Sciences [2–8]. It is clear that the
ing systems on Earth are complex systems and th
is hopeless to try to understand “what is life” throu
the sole study of the macromolecules that make up
substance of these systems.

The aim of the present contribution is threefold:

– first, to present a tentative definition of reductio
integration, emergence and complexity;

– second, to give a brief overview of the ma
features of complex systems;

– third, to discuss more thoroughly the most imp
tant of these features, the one which is at the v
basis of the concept of complexity, namely info
mation.
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Although this discussion will be general, it
more specifically oriented towards dynamic biologi
systems.

2. A tentative definition of reduction, integration,
emergence and complexity

From a philosophical viewpoint, the term of redu
tion can, at least, have two different meanings. It m
refer to the mental process of deriving a scientific t
ory from another one, more general and embrac
[9,10]. In this perspective, a biological theory, for i
stance, could be reduced to a more general phy
one. If such a reduction could be pursued ad infinitu
this would imply unity of Science.

But there is a second type of reduction that
directly related to the problem of emergence a
complexity. Let us consider a system made up,
any system, of a number of sub-systems. One
expect three types of situations to occur. The ove
system and the set of the isolated component s
systems have the same degrees of freedom, or
same entropy, or the same properties. Then, the ov
system is not a real one, but the simple union
the two component sub-sets. The second poss
situation occurs when the overall system has
degrees of freedom, or smaller entropy, than the
of the component sub-systems. It therefore behave
a real system, for it displays some sort of integrat
of its elements as a coherent whole. The integra
system therefore displays collective properties dist
from those of the isolated component sub-syste
The last situation is observed if the overall system
more degrees of freedom, or more entropy, than
set of the component sub-systems. One may ex
this system to have more wealthy collective proper
than the integrated system considered above. It ca
defined as an emergent, or complex, system. It res
from this definition that neither the properties of
integrated system, nor those of a complex system
be reduced to the properties of their component s
systems.

As the concepts of integration and emergence
related to that of information, it is thus clear th
the analysis and discussion of this concept should
central in any discussion on complexity.
l

3. Main features of complex systems

Before discussing more thoroughly the logic
foundations of the concepts of information, integrat
and emergence, it is of interest to present briefly
main features of complex systems [7]:

– a complex system should possess informat
this important matter will be discussed later on

– a complex system exhibits a certain degree
order; it is neither strictly ordered, nor full
disordered;

– complex systems should display collective pro
erties, that are properties different from those
the component sub-systems;

– a complex system is usually not in thermodynam
equilibrium; it is thermodynamically open an
displays non-linear effects;

– a complex system is in a dynamic state and
a history; this means that the present behav
of the system is in part determined by its p
behaviour;

– a complex system has emergent collective pro
ties.

As far as we know, it seems that properties 1
and 6 are mandatory for the definition of a comp
system.

4. Information, integration and emergence in
biological complex networks

Total information of the living cell is often iden
tified to genetic information. This is too restrictive
view of the concept of information. As a matter of fa
one may expect most biological networks to store
formation for they associate in space and time, acc
ing to a strict order, many chemical reagents. Class
Shannon’s communication theory [11–14], howev
is not ideally suited for describing what network i
formation is. It has therefore to be revisited and
tered in order to allow this study. Moreover, many p
pers have recently been devoted to networks, in pa
ular to metabolic networks [15–19]. Before studyi
integration and emergence, one has to present a
overview of what a biological network is.
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4.1. Biological networks

A network is a set of nodes connected accord
to a certain topology. In a metabolic network, for i
stance, the nodes are the various metabolites, o
enzyme–metabolite(s) complexes, and the edges
connect the nodes the corresponding chemical r
tion steps. Networks belong to different types kno
as random, regular, small-world and scale-free [1
In random graphs, the nodes are mutually conne
in a random manner according to a Poisson distr
tion, whereas in regular networks, node connectio
effected through a fixed topological rule. Small-wo
networks display a fuzzy topology, midway betwe
pure randomness and strict regularity. Sale-free gra
display both poorly and highly connected nodes.

A network is characterized by a parameter cal
diameter. If we consider all the possible pairs of no
in a graph and the shortest distance, that is the sma
number of steps within a pair, the network diame
is the mean of the shortest distances. The immed
consequence of this definition is the increase of
diameter of a random graph as the number of no
increases.

Metabolic networks possess an interesting prop
that is worth discussing briefly here [18]. Seque
ing genomes of very different organisms, ranging fr
mycoplasms and bacteria to man, have allowed u
know most of the enzymes present in these organis
and therefore most of the reactions they catalyse. A
consequence, this allows us to construct, in princi
the metabolic networks of these living systems. D
pending on they are primitive or evolved, the num
of nodes of their metabolic graphs are very differe
Still, the graph diameter remains nearly constant al
the phylogenetic tree. The reason for this constanc
that metabolic networks are not random but posse
fuzzy organization. They are of the small-world typ
and more and more connected as the organism is m
evolved [18,19].

4.2. Subadditivity principle, reduction and
integration

Let us consider a composite dynamic network m
up of four classes of nodes. A first class, X, colle
nodes associated with a discrete variablexi . A second
class, Y, describes a different property associated
t

t

a different discontinuous variableyj . A third one, XY,
has both propertiesxi andyj , and a last one has non
of them. Each node of X and Y has a certain pr
ability of occurrence,p(xi) and p(yj ), respectively.
Similarly, each node of the class XY has a probabi
p(xi, yj ). If the eventsxi andyi are independent, then

(1)p(xi, yj ) = p(xi)p(yj )

But if the eventsxi andyj are correlated, then:

(2)p(xi, yj ) = p(xi)p(yj /xi) = p(yj )p(xi/yj )

which is the classical Bayes’ relationship. He
p(yj/xi) andp(xi/yj ) are conditional probabilities
that is the probability ofyj given the valuexi and the
probability ofxi given the valueyj , respectively.

The concept of information is related to that
uncertainty. The larger the uncertainty of a mess
and the larger is its information content. Put in oth
words, the information of a system is its ability to pe
form a difficult, and therefore improbable, task. T
higher this difficulty, and the larger is the informatio
required to perform the task. Therefore, the essenc
information should be related to that of uncertain
Any mathematical function aimed at measuring
degree of uncertainty should meet two axioms: t
of monotonicity and that of additivity. Monotonicit
means that the uncertainty should increase regu
with the number of statesxi or yj . Additivity ex-
presses the view that if the discrete variables X
Y are independent, the uncertainty of the couples
should be equal to the sum of the uncertainties o
and Y. The only simple function of a probabilitypi

that meets these two requirements is:

(3)fi = log

(
1

pi

)

The corresponding mean uncertainty functionH, of
probabilitypi , is therefore:

(4)H =
∑

i

pifi = −
∑

i

pi logpi

One can thus define mean uncertainty functions
entropies expressed in bits) of X and Y as

H(X) = −
∑

i

p(xi) log2 p(xi)

(5)H(Y) = −
∑
j

p(yj ) log2 p(yj )
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Similarly, one can also derive the expression of
mean uncertainty function of the pairs XY (or me
joint entropy), namely

(6)H(X,Y) = −
∑

i

∑
j

p(xi , yj ) log2 p(xi, yj )

Simple inspection of equations (5) and (6) shows t
if the variables X and Y are independent, then:

(7)H(X,Y) = H(X) + H(Y)

This equation shows that the entropies, or the deg
of freedom, of the system XY and of the sum of t
sub-systems X and Y are the same. In line with w
has been expressed in Section 1 of the present p
equation (7) therefore implies that the system XY c
bereducedto its component sub-systems X and Y.

Now, if the discrete variables X and Y are corr
lated and if the sum of the probabilities,p(xi),p(yj ),
and p(xi, yj ), are all equal to unity, then one ca
demonstrate that the mean value of the conditio
probabilities is larger than the mean of the correspo
ing probabilities. This implies that:

(8)
〈
log2 p(x/y)

〉
>

〈
log2 p(x)

〉
and

(9)
〈
log2 p(y/x)

〉
>

〈
log2 p(y)

〉
and this leads to:

(10)H(X,Y) < H(X) + H(Y)

Expressions (7) and (10) define the so-called suba
tivity principle, which read:

(11)H(X,Y) � H(X) + H(Y)

Subadditivity principle is at the very basis of clas
cal communication theory. When applied to networ
however, this principle is not a necessary condition,
the corresponding probability space is different fro
that of a simple communication process. In the
ter, the elements of the probability space arep(xi, yj )

with i, j = 1, . . . , n, whereas in the former two add
tional elements are present, namelyp(x0) andp(y0).
One can demonstrate that, under these conditions
sign of expression (10) can be reversed. Theref
broadly speaking, the concept of information is mo
general than that of communication and can be defi
as the ability of a system to associate, in a spec
,

manner, some of its elements as to generate a f
tion, namely communication between a source an
destination, signalling, catalysis etc. The implicatio
of the lack of subadditivity will be discussed in th
next section. If, however, this principle applies, the d
ference,I (X:Y), between the two members of expre
sion (11) is defined as the information of the netwo
Therefore, one has:

(12)H(X,Y) + I (X:Y) = H(X) + H(Y)

Information is therefore the piece of entropy th
should be added to the joint entropyH(X,Y) in order
to obtain the sum of individual entropiesH(X) and
H(Y). If the subadditivity principle applies, informa
tion is positive or nil, but if it does not, that is if

(13)H(X,Y) > H(X) + H(Y)

then information, as defined by Eq. (12), has to
negative. In that case, information is the piece
entropy that has to be deduced from the joint entr
in order to obtain the sum of individual entropie
If condition (10) applies, information measures t
degree of integration of the network. Alternatively,
it is condition (13), information expresses the deg
of emergence of the system.

4.3. Integration and emergence in uncorrelated
networks

The above reasoning, and the subadditivity prin
ple which is at the heart of conventional Shanno
communication theory, rely upon the view that va
ables are correlated. If, however, these variables
not statistically correlated, but represent events
physically interact, the concept of information can s
be applied to this situation. To illustrate this idea,
us consider a simple enzyme-catalysed chemical r
tion AX + B → A + XB. If the reaction is catalyse
by enzyme E, this may imply that AX and B can for
binary and ternary complexes with the enzyme E
shown in Fig. 1. Catalysis takes place on the tern
E·AX ·B complex, which decomposes, thus leading
the regeneration of the free enzyme and to the app
ance of the reaction products A and XB.

Let us assume for the moment that the ove
system is close to thermodynamic equilibrium, wh
implies that the rate constant of decomposition
the ternary complex E·AX ·B is small relative to the
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Fig. 1. Random addition of substrates, AX and B, to an enzym
KA, K ′

A, KB, and K ′
B are the apparent binding constants of

substrates to the enzyme.k is the catalytic constant.

other rate constants. Then, one can easily derive
expression of the probabilities for the enzyme
bind AX, p(AX ), or to bind B, p(B), or to bind
both AX and B,p(AX ,B). Similarly, one can derive
the expression of conditional probabilities,p(AX/B)

and p(B/AX). If the concentrations of AX and B
are constant in the reaction mixture, the probabili
p(AX ) and p(B) are not correlated. As a matter
fact, each of them assumes one fixed value o
But one can still extend the concepts of entropy a
information to the present situation by setting:

H(AX) = − log2 p(AX )

H(B) = − log2 p(B)

(14)H(AX ,B) = − log2 p(AX ,B)

These expressions are indeed identical to eq
tions (5) and (6), if X, Y and XY each assume o
value only. Expressions of the probabilities that app
in equations (14) are dependent on the concentra
of the reagents, AX and B, as well as upon the affin
constantsKA, K ′

A, KB andK ′
B. One can demonstra

that if KA = K ′
A, which implies from thermodynamic

thatKB = K ′
B, then

p(AX/B) = p(AX)

(15)p(B/AX ) = p(B)
Under these conditions:

(16)H(AX,B) = H(AX) + H(B)

and the enzyme network does not contain any in
mation. The corresponding system, of joint entro
H(AX,B), can be reduced to its sub-systems, of
tropiesH(AX) andH(B).

Alternatively, if KA < K ′
A andKB < K ′

B, then

p(AX/B) > p(AX )

(17)p(B/AX ) > p(B)

and

(18)H(AX,B) < H(AX) + H(B)

The system behaves as an integrated cohe
entity. Its entropy,H(AX ,B), is smaller than the
sum of the entropies,H(AX) and H(B), of the
two component sub-systems. The information of
network,I (AX :B), is thus positive and equal to th
extent of the integration process.

The last case is even more interesting. IfKA > K ′
A

andKB > K ′
B, then

p(AX) > p(AX/B)

(19)p(B) > p(B/AX )

and

(20)H(AX,B) > H(AX) + H(B)

Under these conditions, the system behaves a
emergent coherent entity. Its entropy,H(AX,B), is
now larger than the sum of the entropies,H(AX) and
H(B), of the two component sub-systems. In line w
previous definitions, it can therefore be considere
complex system. Here, information,I (AX :B), defined
as a measure of the extent of the emergent process
a negative value. It is the piece of entropy that sho
be deduced from the joint entropy,H(AX,B), in or-
der to obtain the sum of individual entropiesH(AX)

andH(B).
As the subadditivity principle is at the root of sta

dard communication theory, the last conclusion ab
is at variance with this theory. It is therefore of inte
est to make clear the reasons for this disagreem
Classical Shannon’s communication theory is ba
on two different implicit postulates: the existence
a statistical correlation between discrete variables
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the assumption that the sums of the probabilities
occurrence of the corresponding states are all equ
unity. In the case of a simple enzyme network, as
one shown in Fig. 1, none of these conditions is f
filled. Therefore, for an enzyme reaction, subaddi
ity may, or may not, apply and one can also reach
same conclusion for metabolic networks. As a ma
of fact, for the enzyme process of Fig. 1, ifK ′

A > KA
andK ′

B > KB, the binding of B to the enzyme facil
tates that of AX, and conversely. Subadditivity sho
apply to this situation. But ifKA > K ′

A andKB > K ′
B,

then the binding of B hinders that of AX, and co
versely. In this case, subadditivity does not apply a
more. Therefore, in the present case, positive or n
tive information does not originate from statistical co
relation between discrete variables, but from the ph
ical interaction between two binding processes.

It is of interest to stress that, if subadditivity do
not apply, this means that the probability of occurre
of the E·AX ·B complex is smaller than the product
the corresponding probabilities of occurrence of
binary complexes E·AX and E·B. This implies in turn
that the ternary complex E·AX ·B is destabilised rela
tive to the binary complexes E·AX and E·B. One can
see that, under these conditions, the Michaelis c
stants for the two substrates AX and B as well as
catalytic constant are increased. Therefore, the in
sic properties of the enzyme network are altered ow
to the high information content of the E·AX ·B com-
plex. The situation that is expected to occur is just
opposite if there is less information in the E·AX ·B
complex than in the set of the E·AX and E·B binary
complexes.

Thus far, the simple enzyme network was assum
to occur under quasi-equilibrium conditions. If, ho
ever, the system departs from this state, that is if
catalytic rate constant,k, assumes rather high va
ues, the system can possibly reach a steady s
Under these conditions, the probabilities for the
zyme to bind AX, B, or both AX and B depend als
upon thek value. As a matter of fact, the probabi
ties p(AX ), p(B) andp(AX ,B) decrease ask is in-
creased. However, the decrease ofp(AX ,B) is steeper
than that ofp(AX) and ofp(B), in such a way tha
H(AX ,B) becomes larger than the sum ofH(AX) and
of H(B). This means that, as the system departs f
its initial pseudo-equilibrium conditions and becom
more ‘open’, it tends to generate negative informati
.

Moreover, this situation takes place even ifKA = K ′
A

andKB = K ′
B, that is even if the binding of the tw

substrates to the enzyme do not physically interac

5. General conclusions

Classical Shannon’s theory is aimed at deciphe
how information is conveyed within a channel from
source to a destination. The basic principles and
mathematical formulation of this communication th
ory, however, have to be revisited and altered a
offer a clear-cut and mathematically sound definit
of the concepts of reduction, integration, emerge
and complexity in biological systems. The reason w
Shannon’s communication model is not ideally sui
for studying biological networks relies upon the fac
is solely based on the idea of a statistical correla
between discrete variables and on the so-called su
ditivity principle. As a matter of fact, if two discontin
uous variables are correlated, subadditivity princi
should apply only if all the nodes of the network a
associated with these variables. It appears very lik
that this condition is not fulfilled for biological ne
works. This is precisely what is expressed in the st
ment made previously that the probability spaces
different for a communication process and a biologi
network. This means that three possible situations
be expected to occur. The joint entropy of the dyna
process is equal to the sum of the individual entrop
of its components. Then, this process does not c
tain any information and its properties can be redu
to those of its components. If, alternatively, the jo
entropy of the network is smaller than the sum of
dividual entropies of the component sub-systems,
network behaves as an integrated entity whose p
erties cannot be reduced to those of its elements.
information content of the system is then a meas
of its degree of integration. Last but not least, if t
joint entropy of the network is larger than the sum
the individual entropies of its components, the sys
is complex and displays emergent effects associ
with negative information.

These three possible situations are precisely fo
to take place with simple enzyme-catalysed reacti
occurring under quasi-equilibrium. In these uncom
cated networks, two substrate-binding processes
obviously not correlated, but they may physically
teract, that is the binding of a substrate may facilit
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or hinder that of the other. Although there is no cor
lation between discrete variables, there is an infor
tion transfer between two processes. Information t
ory can be extended to express quantitatively this
uation, and one can demonstrate that, if the bindin
a substrate facilitates that of the other, the overall s
tem is integrated and its information is positive. Alte
natively, if the binding of a substrate hinders that
the other, the system is complex and its informatio
negative.

Thus, in the case of an enzyme reaction whose j
entropy is smaller than the sum of the correspond
individual entropies, the probability of occurrence
the E·AX ·B state is smaller than the product of t
probabilities of occurrence of E·AX and E·B. This
implies in turn that the fundamental energy level
E·AX ·B is low, leading to a high-energy barrier b
tween this state and the corresponding transition s
of the chemical reaction. If, conversely, the joint e
tropy is larger than the sum of individual entropie
the probability of occurrence of the ternary E·AX ·B
enzyme–substrates complex is destabilized relativ
the binary E·AX and E·B complexes. In the forme
case above, one should expect the catalytic rate
stant of the reaction to be small, whereas in the la
the catalytic constant should be high.

If the network does not occur under quasi-eq
librium but under steady-state conditions, which i
plies that it is thermodynamically open, the depart
from quasi-equilibrium alone generates emergenc
information. This situation may take place even in
absence of any physical interaction between the s
strate binding processes. Departure from equilibr
may thus be sufficient to generate complexity. It the
fore appears that, within the frame of the definitio
given above, apparently uncomplicated biochem
systems may be considered complex.
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