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Abstract

We first describe the Murray–Oster mechanical theory of pattern formation, the biological basis of which is experim
well documented. The model quantifies the interaction of cells and the extracellular matrix via the cell-generated for
model framework is described in quantitative detail. Vascular endothelial cells, when cultured on gelled basement m
matrix, rapidly aggregate into clusters while deforming the matrix into a network of cord-like structures tessellat
planar culture. We apply the mechanical theory of pattern formation to this culture system and show that neithe
biased anisotropic cell traction nor cell migration are necessary for pattern formation: isotropic, strain-stimulated cell
is sufficient to form the observed patterns. Predictions from the model were confirmed experimentally.To cite this article:
J.D. Murray, C. R. Biologies 326 (2003).
 2003 Published by Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.

Résumé

Nous décrivons la théorie mécanique de formation des motifs (théorie de Murray–Oster), qui repose sur u
biologique bien documentée expérimentalement. Le modèle quantifie l’interaction des cellules avec la matrice extra
par l’intermédiaire de forces générées par la cellule. Le cadre du modèle est décrit quantitativement en détail. Le
vasculaires endothéliales, lorsqu’elles sont cultivées sur une matrice membranaire couverte d’un gel, s’agrègent rapi
amas, et en déformant la matrice en un réseau de structures allongées. Nous appliquons la théorie mécanique de fo
motifs à ce système en culture et montrons que, ni une traction cellulaire anisotrope déviée par sustension, ni une
cellulaire ne sont nécessaires à la formation des motifs : une traction isotrope stimulée par la tension suffit à former l
observés. Les prédictions du modèle ont été vérifiées expérimentalement.Pour citer cet article : J.D. Murray, C. R. Biologies
326 (2003).
 2003 Published by Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.
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1. Introduction and biological background

Among the most crucial issues in development
the evolution of spatial patterns and the mechani
which create them. Much progress has been mad
furthering our understanding of the basic princip
that patterning mechanisms must possess to be ab
generate specific spatial patterns. Even so, we stil
not know, with any certainty, definitive details of a si
gle pattern formation mechanism which is involved
development. Morphogenetic model mechanisms
suggest possible scenarios as to how pattern is
down, and sometimes when (as for example, in the
perimentally confirmed case of stripe patterning on
alligator Alligator mississippiensis [1]) and how the
embryonic form might be created. It is now widely a
cepted that dramatic progress can come about thro
a genuine interdisciplinary approach involving expe
mentalists and theoreticians. The books by Murray
3] discuss in detail many such successful case stu

Embryogenesis proceeds through a series of
quential processes which generate specific patter
each stage. The network pattern observed in vasc
genesis and angiogenesis, for example, are typica
amples: how they are formed is an important and qu
tion particularly in view of the work of Folkman an
his colleagues (see, for example, [4,5]) on the cru
role angiogenis plays in the growth of solid tumour

Broadly speaking, there are two prevailing vie
of pattern generation that have influenced the thi
ing of embryologists. One is the long standing a
well known Turing chemical pre-pattern approach
and the Murray–Oster continuum mechanochem
approach (see, for example, [7–10]). The former
quires cells to respond to a concentration level s
as a positional information approach [11] applicatio
of which are given in [12]. Important related mec
anisms involve cells and chemotaxis, the aggrega
effect whereby cells move up concentration gradie
of chemoattractants. Practical examples of both ex
iment and theory involving bacteria are described
[13–15]. General descriptions, a full discussion of p
tern formation mechanisms and real biological exa
ples are given in [2,3]. A good view of the current sta
.

t

of pattern formation modelling in several different a
eas is given in [16,17].

2. Mechanochemical mechanisms for generating
pattern and form

The mechanochemical modelling framework
based on the observation [18] that “relatively sim
cellular forces can give rise to complex changes in
m”. This concept was clearly demonstrated by exp
iments in which fibroblast cells are placed on an e
tic substratum. The cells spread and migrate, con
rently generating strong traction forces which defo
the substratum creating tension patterns on the e
tic sheet [19]. The latter experiments and the (e
now) illusive nature of morphogens were the imp
tus for the initial development of the mechanoche
ical modelling approach [7–9]. The quantification
these types of cellular forces has been studied, for
ample, by Traqui and his colleagues [20] and Mo
[21].

Mesenchymal cells, on which we focus here,
spread within a three-dimensional fibrous extrace
lar matrix (ECM) and migrate within the matrix: the
can secrete (and degrade) matrix as well as exert
tion forces on the ECM environment. That is, the
cells are capable of significantly altering their en
ronment. So, within this simple framework, the ce
can create spatial heterogeneity and generate form
multaneously if the parameters are in appropriate
perimentally reasonable ranges. Perhaps most cru
however, is that with such a model mechanistic fram
work the variables involved and the consequence
their interaction can be observed and measured ex
imentally.

The power of mathematical modelling lies in
ability to make predictions and suggest experime
Mechanochemical theory is particularly well-suited
connecting theory with experiment since the mo
structure is firmly based on empirically measura
quantities (e.g., cell density, matrix density, cell tra
tion forces and known chemicals) and the conseque
of varying such quantities can be clearly observed.
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Fig. 1. Key variables and processes in dermal/fibroblast cell-tis
patterning. This structure underlies the mathematical model:
variable (cell density, ECM density, forces) requires an evolu
equation which incorporates terms corresponding to the var
processes. The force balance box determines the matrix defo
tion. ECM refers to extracellular matrix.

Here we give a brief introduction to the mechan
chemical theory of morphogenesis and, by way of
ample, describe a recent successful application to
cular network formation where the theory and expe
ment are sufficiently close to be able to suggest so
of the essential elements in the biological mechan
which create these specific biological patterns and
nal structure.

The basic mechanical model hinges on two key
perimentally determined properties of mesenchy
cells in vitro: (i) cells migrate within a tissue substr
tum made up of fibrous ECM and other cells; (ii) cells
can generate large traction forces. The models tr
mimic the mechanical interaction between the mo
cells and the viscoelastic substratum (ECM) with
which they move.

Mesenchymal cells move by exerting forces
their surrounding, consisting of the viscoelastic
brous ECM and the surface of other cells. They
their cellular protrusions, the filopodia or lamellap
dia, which stretch out from the cell in all directions,
grip whatever is available and pull. As the cells mo
through the ECM they deform it by virtue of their tra
tion forces. These deformations in the ECM indu
anisotropy effects which in turn affect the cell m
tion. Analysis of models incorporating these vario
effects show that coordination of such effects res
in spatially organized cell aggregations. The gene
modelling scenario underlying the models is sho
schematically in Fig. 1.

The model is a continuum one, consisting of th
equations governing (i) the cell population density, (ii)
the mechanical balance of the forces between the
and the ECM and (iii) the conservation law for th
ECM. Here we give only the equations in words
indicate the principles: brief mathematical details
given in the appendix with full discussions in [2,3].

2.1. Cell density conservation

Many factors, with varying levels of importanc
affect the movement of embryonic cells within a tiss
substratum which is made up of fibrous ECM. F
example, some of the more obvious are:

– chemotaxis, the process by which cell motion
directed by a chemical gradient,

– contact guidance, when the substratum defines
preferred direction of cell motion,

– contact inhibition, inhibiting motion and reducing
individual cell traction forces as a consequence
high cell densities,

– convection, which transports cells and ECM du
to local deformation in the matrix.

The forces exerted on the ECM by other cells
duce passive movement of cells on the ECM.Diffusion
is the usual random dispersal of cells with general m
tion down a cell density gradient: it can include bias
or tissue-guided diffusion.Haptotaxis is the process
by which ECM gradients affect cell movement. C
tractions generate gradients of matrix density, wh
are in turn associated with the density of adhesive c
for cell lamellapodia to bind to. Since cells can ge
stronger grip on denser matrix (up to a certain d
sity) cells tend to moveup an adhesive/matrix grad
ent. Galvanotaxis is movement due to the field ge
erated by electric potentials, which are known to
ist in embryos. These effects are all well documen
experimentally. The model field equations encapsu
the key features which affect cell movement with
its extracellular environment. For illustration we sh
not include all of the effects just mentioned but it w
be clear how they can be incorporated: see [2,3]
a full discussion and the mathematical representa
and quantification of the terms.
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Within a fixed control volume, cell density i
conserved according to equation (1):

rate of change of cellular density

= convection+ diffusion+ haptotaxis

(1)+ mitosis− cell death

where cell death refers to programmed cell death. D
fusion is dispersive, while haptotaxis is aggregat
The competition between aggregation and disper
is primarily what determines whether or not patte
ing will occur.

Contact guidance is involved in the formation
cell-matrix networks discussed below. Such guida
can be modelled in different ways. One possibility is
make the diffusion directed diffusion. In this case,
diffusion coefficient is a function of the elastic stra
of the ECM (see, for example, [3]). This dependen
implies that the strain of the matrix can grossly aff
the direction of cell movement as we shall see in
section on network formation.

The matrix mechanical behaviour is dominat
by the fibrous collagen component of the EC
Local disturbances in the matrix density can indu
convection of the matrix. Also, as (mesenchym
cells move through the matrix environment, they c
secrete and/or degrade the ECM: this occurs,
example, in wound healing.

2.2. Conservation of matrix density

The conservation equation for the ECM density
then given by equation (2):

rate of change of matrix density

(2)= convection+ secretion− degradation

In many applications, the secretion term is oft
negligible on the time scale of the pattern formatio
as is the case in the experiments associated with
matrix network related to vasculogenesis discus
below.

2.3. Mechanical interaction of cell and matrix

Since inertial terms are small in development,
governing equation for the mechanical interactio
between the cells and matrix is simply that the sum
the various forces are in equilibrium within the tissu
We thus have (equation (3)):

forces on the body

= cell traction forces+ viscoelastic restoring

(3)forces of the matrix= 0

2.4. Viscoelastic matrix material

The stress–strain relation in such a complex tis
matrix is almost certainly nonlinear and plastic. Th
is still no experimental evidence which would allo
us to postulate the actual form of the relation. Ma
patterns result from relatively small deformations a
cell density differences (one example occurs in
formation of papillae, the dermal condensations
cells which presage feather and scale formatio
We make the assumption that for small strains, c
matrix material forces can be modelled by a line
viscoelastic response [22]. The matrix stress t
consists of a viscous and an elastic component:

stressmatrix = stressviscous+ stresselastic

with the viscous component of the stress proportio
to the rate of change of the strain in the matrix.

2.5. External body forces

There are often external forces acting on the tis
body we are attempting to model. These forces m
be due to attachment of the matrix to a substrate
in the case of network formation we discuss below
the base of the experimental vessel. The body fo
holding the tissue in various places can reasona
be modelled as proportional to the density of ma
and the displacement of the matrix. Alternative
in the matrix network situation discussed later it
more appropriate to relate the attachment force to
viscous drag: we come back to this below.

Although at the time of the formulation of th
modelling approach [7–9] the mechanical proper
of ECM and cell-matrix interactions had not be
quantified, recent experimental advances have foc
on these mechanical aspects of tissue interactions.
result, many of the parameters described in the m
formulation can be estimated. As well as the wo
mentioned above [20,21] the viscoelastic proper
of mesodermal cells during early development h
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been quantified [22]. In the cell-matrix experimen
described below parameter estimations have also
obtained.

In many developmental situations (wound heal
is one) chemicals can play a significant role in
pattern formation process and therefore should
included in the model. Although chemical dynam
can be incorporated in principle relatively simply, b
only if we have some idea of how they interact w
the cells and matrix. At this stage, these interacti
are generally still uncertain.

The mathematical investigation of these mo
equations involves linear analysis about the ste
states to obtain what is called the dispersion rela
which predicts the pattern formation potential. T
analysis (see, for example, [2 or 3] for a full discu
sion) results in a remarkably wide variety of disp
sion relations which indicate a rich spectrum of no
linear spatial patterns. The nonlinear spatial patte
almost always have to be obtained by numerical s
ulation of the equations. As expected the type of p
terns possible depend on which effects are inclu
in the model mechanism. Another aspect of these
chanical models is their robustness to parameter va
tion. It is essential to know, at least approximately,
parameter domain for specific patterns because th
one of the optimal ways to assess model robustn
In the remainder of this article we discuss an appli
tion of mechanochemical theory to vascular netw
formation.

3. In vitro vascular network formation

Mechanical and fluid mechanical forces play ess
tial roles in the overall development of vasculature.
early as 1893 [23] the importance of (fluid) mecha
ical factors in the growth of blood vessels during d
velopment was pointed out. In a review [24] of th
and other works on mechanical forces on angioge
sis these early observations of how vascular sprou
in the growing embryo might occur as a result o
combination of velocity of blood and pressure are
scribed. Another review on some of the roles of m
chanical forces in vascular development and remo
ing is given in [25].

The development of in vitro angiogenesis syste
is a controlled means of studying vessel formati
.

Such systems have shown the important mechan
role that the ECM plays in angiogenesis. It provid
among other things, a scaffold necessary for cell
gration and morphogenesis (for example, [26,27]).
we described, cells can not only produce or degr
their ECM but also alter its structure by applying m
chanical forces. Through matrix production and deg
dation, cells can influence the mechanical propertie
their ECM and, through their mechanical forces, th
can reorganise its fibrous components into matrix li
that the cells use as migratory pathways and movem
cues. Such a mechanical scenario in which cell-E
interactions can be orchestrated to form complex s
tial patterns in development make it a very good can
date for the application of the Murray–Oster mecha
cal theory. The ability of the cell-matrix interaction
effect an alignment of the matrix thus influencing c
movement is quite common in development: some
cussion of these is given in [26–29] but the key ref
ence is the 1998 book [30] on vascular morphogene

Of particular relevance to this section is in vit
work on vascular network formation [26,27]. Th
work helps to elucidate the mechanism of vascu
network formation in vitro [26]. It is shown tha
networks are not specific to endothelial cells sin
a variety of traction exerting cells, not necessa
endothelial cells, can form networks when cultur
on gelled basement membrane (Matrigel). Moreo
cells cultured on different substrates (Matrigel, ty
I collagen gels), also form networks provided t
matrix is malleable enough. These studies suggest
the mechanism lacks cellular/matrical specificity a
that a physical/mechanical mechanism could poss
explain the generality of the network forming proce

Here we describe a basic mathematical mech
cal model mechanism with the aim of showing th
a purely mechanical mechanism could be respo
ble for the observed patterns and how they are a
ally formed in development. Such a mechanical mo
does not specify the type of cells and matrix involv
but rather only considers the possible mechanica
teractions between the various components. We
the model against the patterns observed by partic
experiments and we further use the model to qua
tatively describe the interaction between the vari
mechanical properties and the network and their
tern forming abilities.
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Fig. 2. (a) Experimental angiogenesis. Bovine aortic endothelial cells, cultured 48 h in a subconfluent monolayer on top of a layer of
organized into a planar network of cords. Each cord (example, arrow) is comprised of many cells. Image is viewed by darkfield illum
Bar at lower left= 200 µm. Image used was kindly provided by Dr. C. Little. (b)–(d) Numerical results of the model equations. The
shows the cell density distribution across the dish. White areas denote areas of large cell densities (up to 6 times the initial seeding
and dark areas denote regions of low cell densities. Initially the cells are approximately uniformly distributed throughout the dish, w
small random variations in the density. With time some cells cluster and other areas become less populated. Small-sized polygons a
of which grow in size while others close in, in a sphincter-like manner. Figures represent pattern at 7 h (b), 20 h (c), and 24 h (d). T
one square corresponds to 800 µm. The distribution of matrix is similar to that of the cell densities. (The parameter values – with the p
defined in the Appendix A – used in the simulations were:τ = 0.06 dyn/cell, E = 20 dyn cm−2, µ1 = 1.5 × 107 Pe,µ2 = 0.9 × 107 Pe,
D = 0.46× 10−11 cm2 s−1, ν = 0.2, s = 1010 dyn scm−3, n0 = 105 cells cm−2, λ= 4× 10−13.)
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Experiments [26,27] show that bovine aortic e
dothelial cells (BAEC), cells of the murine Leydig ce
line TM3, adult human dermal fibroblasts and hum
smooth muscle cells when cultured on Matrigel
observed to form networks. The process for all c
lines is similar: cells adhere onto the matrix and s
pulling on it. The pulling results in movement of th
matrix and the cells that have adhered to it, even
ally forming cell aggregates with significant amoun
of matrix accumulated underneath the aggregates
a result cellular traction tension lines appear aro
the clusters. In time, the matrix components appea
form fibrous lines between neighboring clusters a
along the tension lines. Once the lines form, the c
become actively motile and migrate onto the ma
pathways, thus forming cellular cords. Eventually
culture plane is tessellated with polygons with sid
defined by the cellular cords [26]: see also Fig. 2a.

Collagen (an ingredient of tissue matrix) conte
influences the formation of networks, presumably
altering matrix stiffness and thereby the effect of
cell-exerted traction onto the matrix. Thickness of
matrix layer also influences the size of the netwo
formed: thin layers of matrix resulted in small or n
network formation. On a ramp of increasing mat
thickness, larger cellular networks form on the thic
areas of matrix: refer also to Fig. 3c.

These results suggest that mechanical interact
are of primary importance for the development of p
tern. Mathematical descriptions of the interactio
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Fig. 3. Numerical simulations, (a)–(c), of cellular networks form
on a gradient in matrix density. On the top we had initially a ma
that was a tenth of the thickness of the matrix on the lower s
of the square. Smaller networks form in the presence of a thi
matrix (top side). (a) is the initial distribution and (b) and (c) are
distributions as time increases. Parameter values are the same
Fig. 2.

which we describe below, confirm the crucial role th
mechanical forces play in the network pattern form
tion and provide a tool for assessing which mechan
properties of the ECM control the patterning proc
as well as how the parameters may modulate pat
size. It also provides various experimental scenario
highlight the effect of experimentally variable param
ters, such as gel thickness, density of cells and so

Since in the experiments [26,27] there is neith
matrix production nor degradation we require on
two equations, namely cell density conservation a
n

a force balance equation. The effect of the ma
density is incorporated in the matrix thickness on
dish. As the cells pull the matrix, it moves acro
the dish. Experiments indicate that some matrix fib
remain attached to the dish, while the rest are drag
across the lower parts of the matrix. The net effect
the surface of the matrix of the attachment of the fib
on the dish, is a resistance, which in a planar situa
we treat as a resistive viscous drag.

Because the thickness of the experimental ge
which the cells are embedded is very thin, and
particular, relative to the cell-matrix spatial doma
a two-dimensional model is sufficient at this stage.

3.1. Mathematical model

The two-dimensional mathematical model quan
fies the basic experimental mechanical scenario
scribed above. We do not include cell proliferation:
the Matrigel cultures the first cell aggregates and li
of tension appear after 4 h and the networks are c
plete within about 24 h. The time between two su
sequent cell mitoses is about 17 hours for endothe
cells so we assume that no significant changes in
cell populations occur which could influence the p
tern forming process.

Local changes in the cell density are a combi
tion of mainly two movements, the convective flux a
an anisotropic strain-dependent random motion ten
We thus consider that cell movement can be appr
mated by a random walk that is biased along area
matrix alignment. The resulting conservation equat
for the cell density in words from equation (1) is th
(equation (4)):

rate of change of cell density

(4)= convection+ strain-dependent diffusion

Here the diffusion coefficient is dependent on the m
trix strain whose particular form depends on the s
cific assumption about how cells perform their rand
movements. Its specific form for small strain was d
rived [31] under the assumption that the movem
bias increases in expansion along one direction an
compression in the perpendicular direction.

In the initial analysis [28], we did not consid
strain-dependent active movement so that we co
test whether network formation is possible under j
cell-exerted traction.
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3.1.1. Forces within the extracellular matrix
The width of the matrix sample in the dish

much larger than the thickness of the matrix so
approximate the matrix as a two-dimensional mater
Moreover, we assume that the traction exerted by
cells remains confined in the plane parallel to the d
(or, approximately, the matrix) surface. In other wor
we consider the material to be under aplane-stress
assumption. The movement of the matrix is resis
by attachment of the matrix to the dish. In vivo plan
angiogenesis is, by comparison, influenced by
potential attachment and continuation of the fibro
and cellular components of the adjacent tissue an
more accurately described by the three-dimensio
model equivalent.

The key forces are of course those genera
by the cells. The others are generated as a d
consequence. So, forces that are present in the t
are: (i) the cell-exerted traction; (ii) the resistance
due to the matrix-dish contact; (iii) the viscoelastic
forces of the matrix material, which are resisti
the deformation. Again since the time required
generation of the pattern is relatively long and the s
of the pattern is small in absolute terms, inertia effe
are negligible and the forces at any given point
again considered to be in equilibrium.

In response to a force, the matrix is displac
slowly due to its viscous properties. If strains dev
oped in collagen gels are small (less than 10%) t
the gels have been found to respond linearly to app
stresses [32,33]. We therefore again describe the
trix response as that of a linear viscoelastic body.

The equation reflecting the balance of these for
(F ) is then (cf. equation (3))

Fcells (cell-exerted traction)

+Fanchoring(attachment on dish)

(5)+Fmatrix (viscoelastic restoring forces)= 0

Again as above we consider the cell traction forces
the matrix response as arising from the correspo
ing stresses within the matrix medium. So,Fcells, the
forces in the matrix due to the cells andFmatrix the
viscoelastic force in the matrix material.Fanchoringis
an external (body) force resisting the matrix displa
ment. The cell tractionFcells depends on the local ce
density initially increasing with the cell density eve
tually decreasing with large enough cell densities.
The viscoelastic stresses we consider to be m
up of elastic and viscous parts as in the last sect
The difference here is associated with the drag of
matrix across the dish. As the cells pull the matrix
moves across the dish. Experiments indicate that s
matrix fibrils remain attached to the dish, while t
rest are dragged across the lower parts of the ma
The net effect on the matrix surface due to the fib
attachments to the dish, is a resistant force. In
two-dimensional model we treat such resistance
viscous drag.

Since the vertical stress is zero we can deriv
relation between the strain components in the th
directions [3,28].

The detailed quantification of the two equatio
for cell conservation and balance of forces toget
constitute the model mechanism. The equations w
solved with the appropriate boundary conditions a
initial conditions in cell density and matrix distributio
in keeping with the experimental set-up [26,27] (s
the Appendix A and [3] for a full discussion). Whe
these parameters specifically appear in the mod
shown in the Appendix A.

3.2. Estimation of the parameters

Since there is a close relation between this ap
cation of the mechanical theory and in vitro expe
ments we were able to derive estimates for various
rameters describing cell behavior and matrix prop
ties. This is one of the most important aspects of
application of the theory. These parameters are defi
in the Appendix A where it is shown where they a
pear in the model equations.

The stiffness of the matrix is represented by th
elastic modulus of the material (E, dyncm−2) and is
determined primarily by the type, amount and orga
zation of its fibrous components. For example, the
terior porcine vitreous body and the posterior bov
vitreous body were found to have similar collagen c
tents and gave elastic moduli of 26.93 dyncm−2 and
8.01 dyncm−2, respectively [31,34]. Since the colla
gen gels used in the vascular network-forming exp
ments have collagen content comparable to that o
vitreous bodies mentioned, we assume that these
elastic moduli are within a similar range.

The shear viscosity of 2.1 mgml−1 collagen I gel
has been measured using creep tests to be 7.4×106 Pe
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[33] while that of the posterior bovine vitreous bo
was estimated to be 2.5× 102 Pe [32].

Traction per cell (τ dyn/cell) we consider to b
comparable to that of human umbilical vein endot
lial cells which is approximately 6.1 × 104 dyncm−2

[34]. From these results we estimate the traction fo
per cell to be in the region ofτ ≈ 0.15– 0.27 dyn/cell.

ThePoisson ratio (ν, cmcm−1) can be theoretically
measured by extending a material by a certain amo
and measured by its compression on the perpendic
direction. The ratio of relative extension to compr
sion on the perpendicular direction gives the mag
tude of the parameter. In practice, such measurem
for soft materials such as collagen gels can be very
ficult, not least because the value ofν changes in time
The Poisson ratio for the fibre network of such gels
estimated atν ≈ 0.2 [35].

Cell motility for endothelial cells has been calc
lated using migration assays. The values reported
endothelial (Human Microvessel Endothelial Cel
on gelatin were 9.5 ± 1.2 × 10−9 cm2 s−1 in the
presence of endothelial cell growth factor and 2.6 ±
0.6 × 10−9 cm2 s−1 in its absence and 19.3± 4.22×
10−9 cm2 s−1 on fibronectin [36].

In our investigation, we were concerned with t
initial stages of network pattern emergence where
strains are still small and we can assume that
parameters stay approximately constant.

4. Results

The model mechanism system of equations w
analyzed analytically and numerically [3,28,29].
Fig. 2 we show a selection of the results of t
analysis. Analysis showed that small variations
cell density could trigger matrix displacements
the following relation between the model (and re
biological) parameters obtains:

(6)
τ

E
>

1

1− ν2

1

c0

where τ is the cell traction per cell,E and ν are
respectively the elastic Young’s modulus and Pois
ration of the matrix,c0 = 4× 104–2× 105 cellscm−2

[26] is the initial cell seeding density.
The relation (6) suggests a basic, and intuitiv

reasonable, rule thatcould make patterns possible: pa
terns are more likely to form if the cell tractionτ is
sufficiently large, or if the matrix stiffnessE is suffi-
ciently low or if the initial seeding density is relative
large. The results are in general agreement with ex
imental findings. For example, when cell traction w
inhibited or matrix stiffness greatly increased, no p
terns formed [26]. Also, increases in the cell plati
densities facilitates the formation of pattern. We c
see why, since if few cells are seeded, they have d
culty in deforming the matrix and starting the patte
ing process.

This inequality predicts when pattern could for
but does not predict the type of pattern formed. T
pattern described by the equations can be determ
by solving the governing equations numerically. N
merical simulations [28] show that network formati
is possible through a purely mechanical process a
Fig. 2 (see also Fig. 3).

The numerical simulations clearly showed netwo
formation and subsequent remodelling: some po
gons grew larger and others closed in, in a sphinc
like manner. There was a direct correspondence
tween areas of large cell density and areas of high
trix density, just as we would expect (see the exp
mental image in Fig. 2a).

The choice of parameters influenced the format
of pattern and rate at which the network patte
formed. If traction was too low, the plating density t
low, or the stiffness too high, no patterns formed.
on the other hand, stiffness was too low or tract
too high, cells and the matrix formed clusters but
matrix cords were observed.

Viscosity of the matrix, as to be expected int
itively, influenced the time it took for the pattern
appear, provided traction and stiffness were within
appropriate range, but did not determine whether
tern would form or not.

The matrix density played a significant role
the size of the network formed. Since the mat
density in these experiments is directly related to
thickness of the membrane we simulated a situa
in which there was a gradient in matrix density. W
predicted that a network with a gradient in netwo
size would be formed. Fig. 3 shows the results [28
such a numerical simulation of the model equatio
Subsequent experiments confirmed this prediction

We then investigated how essential the direc
diffusion was by solving the equations without a
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diffusion. One of the initially surprising and importa
findings was that random motility of cells wasnot
necessary for the formation of pattern. Netwo
would still form, provided the seeding density w
sufficiently large.

4.1. Results from the mechanical theory

Mathematical analysis and simulation of the mo
mechanism give insight as to which elements
crucial to the development of pattern, help assess
relative importance of such elements, and predict h
changes in these factors affect pattern growth
shape. In this way, the model is useful in assess
the biological conditions under which a pattern m
or may not form.

We have presented a simple, purely mechan
model for network pattern formation in vitro, in whic
cellular traction forces play a crucial role in formin
the planar pattern of cellular aggregates, cords
matrix deformations observed in vitro. In spite of t
simplifying assumptions in the model the results sh
that in the absence of traction, as in the in vitro syst
no pattern forms, supporting our hypothesis that
pattern forms as a result of cellular traction forces. T
evolution of the pattern from the model proceeds
the same manner as the in vitro pattern, with irregu
polygons both increasing in size and decreasing
number, with the smallest polygons pinching off a
vanishing.

As in the in vitro system, pattern forms in our sy
tem only when the ratio of traction forces and seed
cell density to gel stiffness is above a certain thresh
Our model results confirm that on thicker gel larg
polygons will form. It also indicates that isotropic ce
lular traction is sufficient for pattern formation. W
further found that if cellular traction is sufficientl
high or the plating densities large, then traction for
alone can lead to formation of networks. Biased c
lular migration may be a component of pattern form
tion in vivo and in vitro, but we have shown it is not
necessary feature.

We also found that matrix thickness is an import
factor influencing the pattern. Cells spread on a ma
whose thickness increased from one end of the
to the other, formed polygon networks whose s
increased with increasing thickness of the gel. T
numerical simulation results are in agreement with
experimental results [26].

5. Discussion and some general concluding
remarks

The mechanochemical theory of pattern format
has been proven to be important in the study of a sp
trum of biological processes such as wound heal
angiogenesis, and limb development, to name ju
few. One of the significant features of the applicabi
of this theoretical framework to a wide variety of pro
lems is that the definable parameters are in princ
all measurable experimentally. Although a great d
of experimental work has been devoted to the mole
lar biology of development, few studies have focus
on mechanical aspects: they are technically difficu

Although certain morphogenetic events can be
scribed by chemical and/or mechanical mechanis
the vast majority of pattern formation events are
result of the interaction of chemicaland mechanical
processes. For this reason, mechanochemical theo
a broadly applicable, powerful tool in defining mec
anisms for numerous developmental events.

Why use mathematics to study something as
trinsically complicated and ill-understood as develo
ment, angiogenesis, wound healing and so on?
suggest that mathematics, rather mathematical m
elling, must be used if we ever hope to genuinely a
realistically convert an understanding of the unde
ing mechanisms into a predictive science. Mathem
ics is required to bridge the gap between the leve
which most of our knowledge is accumulating (cel
lar and below) and the macroscopic level of the p
terns we see. In wound healing, scar formation its
is a major concern of the surgeon and the pati
A mathematical approach lets us explore the logic
pattern formation. Even if the mechanisms were w
understood – and they certainly are not at this st
– mathematics would be required to explore the c
sequences of manipulating the various parameter
sociated with any particular scenario. In the case
wound healing, and it will be increasingly so in ang
genesis with the related cancer component, the num
of options that are fast becoming available to wou
and cancer managers will become overwhelming
less we can find a way to simulate particular treatm
protocols before applying them in practice. The l
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ter has been already of use in understanding the
cacy of various treatment scenarios with brain tumo
(glioblastomas) (see [3] for a full discussion and n
two-step treatment regimes for skin cancer [37].

There is no doubt that we are a long way from be
able to reliably simulate actual developmental scen
ios. Not only is the active cellular control of the ke
processes poorly understood, in the case of wou
for example, they are difficult to reproduce, with sim
lar wounds on different parts of the same body he
ing at different rates and with different results. D
spite these limitations, we argue that exploring
logic of biological processes is worthwhile even in o
present state of knowledge. It allows one to take a
pothetical mechanism and examine its conseque
in the form of a mathematical model, making pred
tions and suggesting experiments that would ve
or invalidate the model; even the latter casts light
the biology. Indeed, the very process of construct
a mathematical model can be useful in its own rig
Not only must one commit to a particular mechanis
but one is also forced to consider what is truly ess
tial to the process, the key players (variables) and
key processes by which they evolve. We are thus
volved in constructing frameworks on which we c
hang our understanding. The equations, the mathe
ical analysis and the numerical simulations that foll
serve to reveal quantitatively as well as qualitativ
the consequences of that logical structure.

Theoretical studies have served to highlight wh
our knowledge is deficient and to suggest directi
in which fruitful experimentation might lead us.
crucial aspect of this research is the interdisciplin
content. A critical test of all of these theoretical co
structs is in their impact on the experimental comm
nity. We believe that genuine collaboration betwe
experimentalists and applied mathematicians will le
us more rapidly towards a fuller understanding, if n
a complete one, of the biological processes invol
in pattern formation and a vast array of medical pr
lems.

Appendix A

Here we briefly give the mathematical descripti
of the mechanical theory as it applies to vascu
network theory.
-

The two-dimensional mathematical model quan
fies the basic experimental mechanical scenario
scribed above. We do not include cell proliferation:
the Matrigel cultures the first cell aggregates and li
of tension appear after 4 h and the networks are c
plete within about 24 h. The time between two sub
quent cell mitoses however is about 17 h for endot
lial cells so we assume that no significant change
the cell populations occur which could influence t
pattern forming process.

Local changes in the cell density are then a com
nation of mainly two movements, the convective fl
and an anisotropic strain-dependent random mo
tensor. We thus consider that cell movement can
approximated by a random walk that is biased alo
areas of matrix alignment. The conservation equa
for the cell density, denoted byc (cellsmm−2), is

∂c

∂t
= −∇·

(
c
∂u
∂t

)
+ ∇·∇·(D(ε)c

)

where the strain tensorε = 1
2(∇u + ∇uT ) and u is

the displacement vector of the ECM. HereD(ε) is
the random motion tensor, dependent on the ma
strainε, whose particular form depends on the spec
assumption about how cells perform their rand
movements. Its specific form for small strain w
derived [31] under the assumption that the movem
bias increases in expansion along one direction an
compression in the perpendicular direction and
given by:

D(ε) =D0




1+ εxx − εyy

2

εxy + εyx

2
εxy + εyx

2
1− εxx − εyy

2




Hereεxx , εyy , εxy , εyx represent the two-dimension
components of the strain tensor,ε, and D0 is the
motility coefficient when no strain is present.

The key forces are those generated by the c
The others are generated as a direct consequence
forces that are present in the tissue are: (i) the cell-
exerted traction; (ii) the resistance due to the matri
dish contact; (iii) the viscoelastic forces of the matr
material which are resisting the deformation. Sin
inertia effects are negligible the forces at any giv
point are considered to be in equilibrium.

In response to a force, the matrix is displac
slowly due to its viscous properties. We describe
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matrix response as that of a linear viscoelastic bo
The equation reflecting the balance of these force
then

Fcells (cell-exerted traction)

+Fanchoring(attachment on dish)

+Fmatrix (viscoelastic restoring forces)= 0

We consider the cell traction forces and the ma
response as arising from the corresponding stre
within the matrix medium. So,Fcells= ∇ · σcells, with
σcells the stress tensor in the matrix due to the cells
Fmatrix = ∇ · σmatrix with σmatrix the viscoelastic stres
tensor in the matrix material.Fanchoringis an externa
(body) force resisting the matrix displacement.

The cell tractionFcells depends on the local ce
density as described earlier and it decreases with l
enough cell densities. We take the cell-exerted st
on the matrix due to the cells as

σcells= τ c

1+ λc2 I

whereI is the unit tensor. The parameterτ (dyn/cell)
represents the stress that one cell exerts on the m
at low cell densities andλ is the parameter whic
measures the force inhibition as a result of increas
cell density. For the densities with which we a
concerned the traction force is approximately giv
with the cell stress tensorσcells≈ τ c.

The viscoelastic stresses we consider to be m
up of elastic and viscous parts as described gene
in the section on the mechanical theory. The stre
strain relation in such a complex tissue matrix
almost certainly nonlinear and plastic. There is s
no experimental evidence which would allow us
postulate the actual form of the relation. Since ma
patterns result from relatively small deformations a
cell density differences we make the assumption
for small strains, cell-matrix material forces can
modelled by a linear viscoelastic response [22]. T
matrix stress tensor then consists of a viscous an
elastic component:

σmatrix = σviscous+ σelastic

with the viscous component of the stress proportio
to the rate of change of the strainε in the matrix:

σviscous= µ1 εt +µ2 θt I
whereθ = ∇ ·u represents the dilation of matrix. He
the subscriptt refers to differentiation with respect t
time. The parametersµ1 andµ2 represent the bulk an
shear viscosities of the matrix, respectively.

The elastic component of the stress is given by

σelastic= E

1+ ν

(
ε + ν

1− 2ν
θ I

)

where the Young’s modulusE defines the stiffnes
of the matrix and the Poisson ratioν measures the
contraction of the matrix in one direction when it
stretched in a transverse direction.

In this application the difference is associated w
the drag of the matrix across the dish. As the c
pull the matrix, it moves across the dish. Experime
indicate that some matrix fibrils remain attached to
dish, while the rest are dragged across the lower p
of the matrix. The net effect on the matrix surface d
to the fibril attachments to the dish, is a resistant fo
In this two-dimensional model we treat such resista
as a viscous drag:

Fanchoring= −s
ut
h

whereh(x, y, t) (mm) represents the thickness of t
matrix (related to the ECM densityρ) ands is a mea-
sure of the strength of the resistance contributed by
attachment. We thereby assume that the resistan
proportional to the velocityv = ut of matrix displace-
ment.

Matrix thickness

Since the vertical stressσzz = 0, we get a relation
between the strain components in the three directi
εxx , εyy , εzz. From Hooke’s law in three dimension
we have

σzz = E

1+ ν

[
(1− ν)εzz + ν(εxx + εyy)

] = 0.

From this relation we get

(A.1)εzz = −ν

1− ν
(εxx + εyy)

When there is a strainεzz in the z-direction, the
thickness is calculated usingh(x, y, t)= h0(x, y) (1+
εzz) from which we derive the relation giving th
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thicknessh as a function of space and time:

h(x, y, t) = h0(x, y)(1+ εzz)

= h0

[
1− ν

1− ν
(εxx + εyy)

]

⇒ h(x, y, t)= h0

(
1− ν

1− ν
θ

)

where the dilationθ = εxx + εyy .

Boundary conditions for the model equations

Again, being guided by the experiments, the ma
barely moves along the edge of the dish. We inc
porate this into the model by assuming zero displa
ment as boundary conditions. Hence, for a square
(square rather than circular simply for ease of num
ical programming and reduction of computer time)
dimensions[ab] × [ab] the condition becomes:

u(x, y = a, t)= u(x, y = b, t)

= u(x = a, y, t)

(A.2)= u(x = b, y, t)= 0

whereu is again the matrix displacement. Cells rem
in the dish so we have zero flux boundary condition
the cells:

Jcells= ∂u
∂t

c − ∇·(D(ε)c
) = 0

whereJcells is the flux of cells.
The equations for cell conservation and bala

of forces together constitute the model mechani
The equations were solved with the above bound
conditions and initial conditions in cell density an
matrix distribution in keeping with the experiment
set-up and the results shown in Figs. 2 and 3 abov
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