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Abstract

We describe one of the simplest models that exhibit an adaptive branching behaviour. It is analysed both exper
and formally, and its successive bifurcations provide a good model of what R. Thom called ‘generalized catastroph
theorems on the stochastic adaptivity of the algorithm to very general shapes of target are given. The model further
the phenomenon of abortive branching: each macroscopic branching appears after a burst of microscopic branching
growing after a very short time. The mathematical analysis of the model explains why and how this behaviour occurs.
applications of these models to Evolution (natural and artificial) and Epigenesis are briefly mentioned, and a higher dim
version is applied to growing a tree in a space of shapes in the context of a database of medical images.To cite this article: Y.L.
Kergosien, C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Ramification adaptative en évolution et épigénèse.Nous décrivons un des modèles mathématiques les plus simples q
capable de ramification adaptative et étudions sa pertinence biologique. Ayant défini dans un espace une probabilité
une région appelée cible, et un ensemble appelé graine, état initial du réseau à faire croître, chaque tirage d’un po
de la cible définit un nouveau point à ajouter au réseau. On peut observer expérimentalement l’apparition d’arbor
qui adaptent progressivement la forme du réseau à celle de la cible. On peut aussi montrer plusieurs théorèmes d’a
stochastique du réseau à des cibles très générales. L’étude plus fine des ramifications révèle l’existence du phén
ramifications abortives, dont l’étude formelle s’apparente au concept de catastrophe généralisée. Ce modèle est a
l’espace tridimensionnel pour modéliser l’épigénèse, mais aussi à des espaces de dimension plus grande, comme d
de formes, dont nous discutons quelques applications dans le cadre de l’évolution en biologie et pour des application
de données de formes en imagerie médicale.Pour citer cet article : Y.L. Kergosien, C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

1.1. The adaptive branching phenomenon in Biolo

Branching phenomena are very common in Bi
ogy, and often related to some adaptation. They
take place in physical spaces when epigenetic morp
genesis is the question. There they can be comp
to or related to the morphological branching pheno
ena which rivers, sparks, or transportation netwo
display, where some variational or optimality princ
ple can be recognized. It is tempting to look for so
function being optimized as soon as some tree m
phology is recognized, starting from plant biolog
But one can also think of using trees when the
jectives are given by humans and to be met by te
nology. Algorithmics has been such a fertile field
application. Even in Biology, trees occur in more a
stract spaces, like those where phylogenetic trees
constructed. There also, one can either consider t
trees as given and try to explain them from simp
principles, or use trees as a tool to explore and un
stand complex data spaces such as those which
from the collaborative biological research.

The algorithm we are going to present can be u
in both ways. We will study some of its features in
naturalist’s way, so as to be able to look for simi
patterns in biological phenomena and perhaps i
some interesting properties. On the other hand,
power can be used for more technologically orien
problems like the one we briefly mention at the end
this paper.

1.2. Some other simple models

Looking for the simplest models for adaptive bra
ching, one has first to consider physical phenom
that can exhibit such a behaviour. Among the
diffusion-based models have been studied very ea
for instance in relation to crystal growth. Diffusio
can be coupled to reaction (after A.M. Turing)
to other phenomena like accretion, and involve
number of diffusible species. The biologically orient
models of Gierer and Meinhard [1] used two diffusib
species. In [2,3] we described how to get adap
branching with a single one, but the interesting ran
of parameters was limited and the phenomenon ra
unstable. In the sequel, we will consider a model l
directly relevant to physical epigenesis but very rob
and perhaps better adapted to the study of branc
in abstract biological spaces. We still view this mo
as of an epigenetic flavor in that we do not use a
‘preformation’ or genetic information.

2. A simple adaptive branching algorithm

2.1. Definitions, the algorithm

Here we introduce the algorithm in a simple settin
which is not the most general one. The evolution ta
place in the usualp-dimensional spaceRp . A fixed
subset of it, finite or not, is called the target a
notedC, with a probability defined on it. A secon
subset ofRp , which we call the network, is going to b
modified (it will ‘grow’) at each step of the algorithm
We shall noteRn the network after stepn. Starting
with an initial networkR0, each step will add a poin
to the network.

To start, one needs to define an initial networkR0,
a targetC with its probability distribution, and a rea
numberε ∈]0,1[ . At each step, sayi, we:

– randomly draw a point, sayai , from the target
(using the given probability distribution);

– look for bi , the point of the networkRi−1 which
is closest toai ;

– computeb′i = ε · ai + (1− ε) · bi ;
– ‘graft’ b′i on the setRi−1 to getRi =Ri−1 ∪ {b′i}.

The stopping criterion can be the number of ste
or some condition on the network. The case of a
for the choice ofbi formally calls for a procedure
either stochastic or deterministic, to choosebi , but
those cases are very unprobable (we will not deve
that issue here). The formula to computeb′i uses vector
(or affine) algebra; typicallyε is taken small, making
b′i close tobi but slightly displaced in the direction o
ai .

Since each point added to the network is relate
a definite point of the former network, the network h
the structure of a finite tree ifR0 was a single poin
(and a finite set of finite trees in general). Branch
points can thus be defined as points with more t
one point grafted, besides ‘continuation points’ (poi
with only one graft) and ‘tip points’ (points with
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Fig. 1. Linear target (left): network after 1000, 5000, 25000 steps.
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no graft). One could include in the definition of th
network the line segments joining points to th
grafted sons and compute closest points on this ob
but we will not do it.

2.2. Experimental results

Fig. 1 shows the result of the algorithm for
target being a line segment with uniform probabil
distribution, starting from a single point, and f
ε = 0.001. The network grows toward the target a
branches several times in a way that looks adapte
the geometry of the target.

Starting from two points as the initial network ca
lead either to cooperation in a ‘market sharing’ w
or to a ‘winner takes all’ competition, depending
the situation of the two seeds and the geometry of
target (Fig. 2).

Adaptation to more complex shapes of targets
also seen. In Fig. 3, the network adapts to two differ
targets (i.e. two components of the target) the one
top being a circle with uniform probability and th
bottom one being a disk with uniform probability, wi
the disk getting a total of four times more probabil
than the circle. On that figure the target has
been drawn. Notice the different morphologies of
network in the two cases.

This algorithm can be used in higher dimensio
spaces. Fig. 4 shows on the left a network grow
from a point seed inR6 towards a 5-dimensiona
hypercube target. What is shown is the projection
the network onto a plane perpendicular to the tar
and which contains the seed. On the right of Fig
the network is shown growing inR50 towards a 49-
dimensional hypercube with the same conventio
Superimpositions due to the projection get of cou
more numerous in that case.

2.3. Adaptivity theorems

The former experimental results are supported
the following two theorems, which show the adapt
power of the algorithm. To state them, we sligh
modify our definitions. Instead of defining first th
target and then a probability on it, we start with
probability on R

p and define the target as the s
of points of R

p for which any neighbourhood ha
positive (i.e.> 0) probability (this set is known a
the support of the probability measure). We shall w
B(x, r) for the open ball{y ∈ R

p | d(x, y) < r}, where
x is the centre andr is the radius, andd is the
Euclidean distance.

The first theorem states that any neighbourh
of the target will be eventually approached by t
network as close as we want with a probability as cl
to 1 as we want. To state it formally, we choose a b
B(x, r) intersecting the target, and a slightly larg
concentric ballB(x, r ′), together with a probability
value 1− η as close to 1 as we wish. We then st
that, under these conditions, there is always a defi
number of steps after which the probability that so
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Fig. 2. Two seeds either sharing the target (left) or competing for it (right).
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Fig. 3. Evolution to a target (undrawn) made of a circle (top) an
disk (bottom).

points of the network have entered the larger ball i
least the probability value chosen in advance.

Theorem 1.LetE stand forRp with p � 2. Then for
anyε ∈]0,1[ , for anyη > 0, for anyx ∈E, anyr > 0
such thatP [B(x, r)] > 0 and anyr ′ > r, there exists
a positive integerN such that for any integern > N ,
P [B(x, r ′)∩Rn �= ∅]> 1− η, i.e. the probability that
some points ofRn are inB(x, r ′) is greater than1−η.
The second theorem states that when the ta
is bounded, all its points can be simultaneously
proached by points of the network as close as we w
with a probability as close to 1 as we want if we w
long enough. More formally, for any distance val
r > 0 and any probability value 1− ε, there is a def-
inite number of steps after which the property that
the points of the target will be at a distance less thar
from the network will hold with a probability greate
than 1− ε.
Theorem 2.Assume the targetC to be bounded. The
for anyε in ]0,1[ , for anyη > 0, for anyr > 0, there
exists a positive integerN such that for any intege
n > N , the probability thatsupc∈C d(c,Rn) < r is
greater than1− η (i.e. the probability that there exist
a pointc in the target not within a distancer from the
network is less thanη).

Consequence.Let us define an active point of a ne
work as a point which, for at least one point of t
target, is the closest among the network points: i
thus a point which still has a non-zero probability
being grafted. A consequence of the second theo
is that after the same numberN of steps, and with the
same probability, no active point of the network r
mains further thanr from the network. Thus, wherea
the network is an increasing set with a part of it (t
active set) approaching the target, the active set re
tends to fit the target, leaving no point behind.
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Fig. 4. Growth of a network inR6 (left) and inR
50 (right).
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3. Abortive branchings

Decreasingε usually makes branches straight
and one could think that in the limit the algorith
tends to the clean branchings and smooth bran
of a deterministic process. This does not happ
because a particular phenomenon occurs repetiti
in the vicinity of macroscopic branchings: many sm
branchings appear, but are soon inactivated by
of their branches winning over the other one. W
called ‘abortive bifurcations’ this phenomenon [3
Analysing the 2-dimensional case leads to a g
understanding of the phenomenon.

3.1. The geometry of branching

Branching occurs when some grafting takes pl
at a point of the network, sayA, which is not a tip.
This implies thatA is closer to some point of the targ
than any point on the branch already grafted onA.
3.2. Demonstrating abortive bifurcations

Fig. 5 shows an instance of successive abor
bifurcations before a macroscopic branching appe
To see them, one should use smallε and magnify
the network at a distance from the target wher
macroscopic branching is likely to occur. Notice t
constant qualitative pattern of the network at ea
abortive bifurcation: after one of the branches w
over the other one, i.e. ‘hides it’ from the target (t
winner being closer than the other to any point of
target, the loser cannot grow anymore), the netw
bends back to the centre of the target. In some cont
like Evolution, such repetition of abortive attempts
differentiation might be looked for and perhaps us
to detect the imminence of a major branching.

3.3. Analysis of abortive branching

To understand why abortive branching happ
repetitively before a major branching can remain, o
can restrict the study to the simple 2-dimensional c
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Fig. 5. Small abortive bifurcations slightly before a stable branching (going right to left).
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with a linear target. The evolution of the two tip
say X and Y , that arise from a branching can b
summarized by the evolution of the vectorY − X.
Each of the two tips hides the other one and w
when the vector crosses one of two lines (we call th
critical) related to the ends of the target. The evolut
of the vector is stochastic, but the expectation of
dynamical system that governs it can be compu
easily from the target geometry and the position of
tips. Fig. 6 shows the phase portraits of the dynam
system acting on the vector and the critical lines
two different distances to the target. When far fro
the target, all the trajectories eventually cross one
the winning lines. Getting closer to the target modifi
the picture, and a growing number of trajectories
able to make their way without hitting either of th
critical lines, meaning that the branching did not ab
The real vector field that acts on the couple of tips
be viewed as the sum of that deterministic (expec
field and a stochastic component that can be m
small withε small. The whole picture thus involves
bifurcation stochastically perturbed, the determinis
part of which depends on the position relative
the target. It fits with the idea of a ‘generaliz
catastrophe’ proposed for study by Thom in [4].

4. A modified algorithm

4.1. Some implementation issues

At each step of the algorithm, one has a to fin
closest point within the network. But many points m
become irreversibly inactive and it is computationa
more efficient to periodically detect and mark inact
points to avoid testing them for proximity (one c
also maintain a list of active points: several varia
and data structures can be used). A network p
x gets inactive when the active pointsy1, . . . , yk of
the network collectively ‘hide it’ from all the targe
points, i.e. when for any target pointc there is
always ayi such thatd(yi, c) < d(x, c). Sometimes
a simple criterium can find some of the inacti
points. For instance, when the target is a line segm
with end pointsc1 and c2, for a point x in the
network to be inactive, it is enough that there ex
another pointy in the network such thatd(y, c1) <
d(x, c1) andd(y, c2) < d(x, c2). This rule generalize
to polytopes (either for the target or a bounding b
for it) and their extreme points in higher dimensio
but such information is not always easy to get
applications. More powerful rules have to adapt
complex target shapes and do not share the simpl
and versatility of the algorithm. Another reason f
modifying the algorithm is the number of compariso
to be performed, even if active points have be
selected.

4.2. Avoiding garbage collection and using search
trees

We experimented with success a modified vers
of the algorithm, where a binary search tree is u
to locate the closest points, and where no garb
collection is needed. The new rule is that after so
branching occurs, one definitively assigns a part of
target to the future growth of each of the two branch
After each target point has been drawn, one t
first locates the branch to be grown by successiv
comparing the distances to couples of sons of
former branchings points, starting from the root
classical binary search in a tree). Such algorit
remains very efficient even with large trees in hig
dimension spaces. It also behaves quite like the for
one, with good adaptive properties, but of course w
no abortive bifurcations, since the subregions of
targets cannot move after each bifurcation.

5. Growing trees in shape spaces

Discrete trees have extensively been used by se
algorithms to organize comparisons. There is als
place for continuous trees to organize morphogen
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Fig. 6. Phase portraits far from (left) and close to (right) target.
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or evolutive processes into continuous branching fa
lies of shapes. These viewpoints fuse in the techno
of databases for continuously varying data like ima
or 3-dimensional protein shapes. We experimented
former algorithm to grow trees in a space of shapes
tracted from medical images, using as the target the
of all the sections of a complex bone (human scapu
The original surface was reconstructed from a se
parallel sections acquired from CT-scanner. Consi
ing any possible section in any direction leads to a v
complex family of curves where queries are proble
atic. Each sectional curve is a set of polygons (som
the sections are not connected) but so far we kept
a single component so as to be able to use a sim
matching procedure. Randomly drawing sections fr
a set of 962 possible sections, and starting from a s
ple shape like a circle (approximated by a 100-sid
polygon), we could grow a tree in the shape sp
and observe branchings that progressively led to
actual members of the set of sections. When sea
ing for closest curves, prior matching was used, in
der to focus on shape, before computing the elem
to be added to the network using an interpolation
tween each new target curve and the closest netw
curve. Fig. 7 shows the inner nodes of the tree thus
tained (grown from right to left, after 500 steps, w
ε = 0.09, for a computing time of 35 seconds on a 5
MHz Pentium processor). Observe the progressive
ferentiation of shapes towards different morpholog
in the target space. Once grown, the tree can be
for fast retrieval and classification of an unknown s
tional curve [5], comparing it first with the root’s se
tion, then with right and left children at each branc
ing, like with binary search trees. Such methodolo
could be compared to some of the procedures use
exploratory statistics [6], but here we emphasize
construction of a continuous family with branchin
that could be used in the comparison and study of c
plex biological objects. Also our first algorithm can
compared to Kohonen’s self organizing maps [7]
spite different behaviour.

6. Conclusion

A simple stochastic algorithm has been describ
which can adapt a finite subset with a tree struct
to very general targets inRp . A major advantage o
it is the small number of parameters to be chosen
the robustness of the adaptivity property. The ad
tivity properties have been illustrated experimenta
and supported by two theorems. The phenomeno
abortive bifurcations has been analysed and its
tinence to problems in biological evolution has be
briefly mentioned. As an application to databases
shapes, a tree is grown in a space of curves taken
medical images.

Appendix A. Proofs of the adaptivity theorems

We want to prove that∀ε ∈]0,1[ , ∀η > 0, ∀x ∈E,
∀r > 0 such thatP [B(x, r)] > 0, ∀r ′ > r, ∃N ∈ N:
∀n > N , P [B(x, r ′) ∩ Rn �= ∅] > 1 − η whereRn
is the network after thenth accretion. A problem is
that successive accretions due to points drawn f
B(x, r) may grow different branches of the netwo
instead of adding their effects to the same tip. We t
choose a ballB(y, ξ) ⊂ B(x, r) with P [B(y, ξ)] > 0,
whereξ is a positive real number small enough (to
computed later). We know from elementary proba
ity results that waiting long enough guarantees u
witness as many drawings fromB(y, ξ) as we wish,
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Fig. 7. Inner nodes of a tree grown in the space of shapes of plane sections of a human scapula (right to left).
-

whatever the smallness ofP [B(y, ξ)]. We will call
a1, . . . the points drawn fromB(y, ξ), b1, . . . the corre-
sponding closest network points, andb′1, . . . the points
consequently added to the network. We callb0 the
point of the initial networkR0 closest toB(y, ξ), and
li = d(ai, b′i ). If we can get ab′i close enough to itsai ,
it has to be inB(x, r ′) and we are done. Let us com
pute howli decreases withi:
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li+1 = d(ai+1, b
′
i+1)= (1− ε) d(ai+1, bi+1)

� (1− ε) d(ai+1, b
′
i )

(since otherwisebi+1 would not be closer toai+1 than
b′i )

� (1− ε)(d(ai+1, ai)+ d(ai, b′i )
)

� (1− ε)(2ξ + li )
If we took ξ such that, for all theli we need,

ξ � ε li

4(1− ε)
then

li+1 � (1− ε/2) li � (1− ε/2)i+1 l0

Just choosek big enough to getlk � (1 − ε/2)k l0
< r ′ − r and take ξ accordingly. After k points
have been drawn from theB(y, ξ) you chose, which
happens with a probability greater than 1− η after a
computable numberN of steps of the algorithm, th
network will have enteredB(x, r ′).

The second theorem states that∀ε ∈]0,1[ , ∀η > 0,
∀r > 0,∃N ∈ N such that∀n >N , P [supc∈C d(c,Rn)
< r] > 1 − η. Cover C with balls of radiusr/3.
Using the compacity ofC (which is always closed
and bounded by hypothesis), extract a finite cove
(B(ci , r/3))1�i�M . Apply the former theorem and
simultaneous inference argument to getN such that
with a probability greater than 1− η:
∀1 � i �M ∃bj ∈ Rn: bj ∈B(ci,2r/3)
Then with probability greater than 1− η:
∀c ∈C ∃j, 1� j �M :
d(c,Rn)� d(c, cj )+ d(cj , bj ) < r/3 + 2r/3 = r
The consequence on the active set is obvious: if
point of the target is less than a distancer away from
the network, then no point of the network can be ac
unless it is within that distance from the target.
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