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Abstract
Biological systems are composed of different levels of organization. Usually, one considers the atomic, molecular,

individual, population, community and ecosystem levels. These levels of organization also correspond to different
observation of the system, from microscopic to macroscopic, i.e., to different time and space scales. The more micros
level is, the faster the time scale and the smaller the space scale are. The dynamics of the complete system is the r
coupled dynamical processes that take place in each of its levels of organization at different time scales. Variables ag
methods take advantage of these different time scales to reduce the dimension of mathematical models such as a sy
dinary differential equations. We are going to study the dynamics of a system which is hierarchically organized in the s
it is composed of groups of elements that can be themselves divided into further smaller sub-groups and so on. The hi
structure of the system results from the fact that the intra-group interactions are assumed to be larger than inter-group
present aggregation methods that allow one to build a reduced model that governs a few global variables at the slow t
To cite this article: P. Auger, C. Lett, C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé
Les systèmes biologiques sont composés de différents niveaux d’organisation. Habituellement, les niveaux de l’a

la molécule, de la cellule, de l’individu, de la population, de la communauté et de l’écosystème sont considérés. Ce
d’organisation correspondent en fait à des niveaux d’observation différents, c’est-à-dire à des échelles d’espace et
différentes : les niveaux plus microscopiques correspondent à des échelles de temps plus rapides et à des échelle
plus petites. Ainsi, la dynamique globale d’un système biologique est le résultat des dynamiques couplées de chac
niveaux d’organisation, dynamiques qui se déroulent à différentes échelles de temps. Les méthodes d’agrégation d
tirent partie de l’existence de ces différentes échelles de temps afin de réduire la dimension des modèles mathématiqu
les systèmes d’équations différentielles ordinaires. Nous étudierons la dynamique d’un système présentant une str
rarchique, c’est-à-dire composée de groupes d’éléments, eux-même constitués de sous-groupes qui peuvent à le
structurés en parties plus petites et ainsi de suite. La structure hiérarchique du système provient du fait que l’on suppo
interactions intra-groupe sont rapides par rapport aux interactions de type inter-groupe. Nous présenterons la métho
gation qui permet de construire un modèle global gouvernant la dynamique de quelques variables macroscopiques à u
de temps lente.Pour citer cet article : P. Auger, C. Lett, C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The dynamics of mathematical models of comp
systems generally involves a very large number
variables evolving according to a set of nonlinear d
ferential equations that cannot be treated analytic
Therefore, it is necessary to look for approximat
methods that enable to simplify the model. A hier
chically organized system is an interesting case
cause the structure of such a system shows a partia
coupling between degrees of freedom belonging to
ferent levels in the hierarchy or to different groups
the same level. Consequently, models of complex
erarchical systems can be simplified, however the s
plification is generally based on approximation me
ods and thus the question of its validity has to be
amined.

Roughly speaking, in biology, one considers
molecular level, the biochemical level, the cellu
level, the organic level, and the organism level [1–
In ecology, one can think of the individual, the popu
tion, the community and the ecosystem levels. The
erarchical structure of systems in biology and ecolo
has been particularly studied by Allen et al. [4] a
Auger [5]. Slow–fast models and perturbation me
ods permit some simplifications [6–8]. In this artic
we focus on a method known as variables aggrega
method. The main goal of this method is to redu
the dimension of a mathematical model of a syst
so that it becomes handled analytically. The aggre
tion of the model consists in defining a small numb
of global variables, which are functions of the sta
variables of the model, and then building a new s
tem describing the dynamics of these global variab
[9–16]. This paper gives a brief synthesis of the agg
gation method for time continuous systems of ordin
differential equations (ODEs). For time discrete mo
els, we refer to [17–21].

2. The complete dynamical system

We consider a dynamical system characterized
N time dependent state variablesni(t), i ∈ {1,2, . . . ,

N}, evolving according to a set ofN first order ODEs:

(1)
dni = fi(n1, n2, . . . , nN , t) for i ∈ {1,2, . . . ,N}

dt
-

Fig. 1. Schematic view of a hierarchical system. The system sh
is composed of three groups that are themselves divided into
subgroups. The interactions within a group are strong and
interactions between the groups are weak.

In a hierarchical system, the state variables
be considered as belonging to groups (Fig. 1).
denote groups by an indexα; calling A the number
of groups, we haveα ∈ {1,2, . . . ,A}. Of course, the
number of groups is assumed to be smaller than
number of state variables, i.e.,A < N . The variables
are now designated bynα

j , α ∈ {1,2, . . . ,A}, j ∈
{1,2, . . . ,Nα}, with an upper index labelling th
group and a lower index labelling the variable with
the group, and we have

∑A
α=1 Nα = N .

In order to emphasize the hierarchical structure
the system, (1) is rewritten as follows:

dnα
j

dτ
= f α

j (nα) + ε ·
A∑

β=1
β �=α

f
αβ
j (nα,nβ)

(2)for α ∈ {1,2, . . . ,A} andj ∈ {1,2, . . . ,Nα}
wherenα = (nα

1, nα
2, . . . , nα

Nα ), ε is a dimensionles
parameter andτ is the fast time unit.

The (intra-group) partf α
j of the differential equa

tions, which contains only variables belonging to
groupα of the particular variablenα

j , has been sepa
rated from the remaining (inter-group) part, which
cludes the coupling with the other groups. The ba
assumption that defines a hierarchical system is
the intra-group part is much larger than the inter-gro
part, i.e., that the parameterε is small. In other words
in a hierarchical system the interactions within a gro
are strong while the coupling between different grou
is weak. As a consequence, the inter-group part in
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tem (2) can be regarded as perturbations with res
to the intra-group one.

3. Choice of global variables

An important step in the aggregation method is
introduce for each groupα a global variableV α . V α is
a function ofnα

j and the dynamics ofV α is expressed
in terms ofnα

j as:

(3)
dV α

dτ
=

Nα∑
j=1

∂V α

∂nα
j

· dnα
j

dτ
for α ∈ {1,2, . . . ,A}

and introducing equations (2):

(4)
dV α

dτ
= I + ε · E for α ∈ {1,2, . . . ,A}

where

(5)I =
Nα∑
j=1

∂V α

∂nα
j

· f α
j (nα)

describes the dynamics due to internal effects and

(6)E =
A∑

β=1
β �=α

Nα∑
j=1

∂V α

∂nα
j

· f αβ
j (nα,nβ)

describes the role of variables external to the grou
The global variablesV α have to be chosen in such

way that their dynamics is slow with respect to that
the intra-group variablesnα

j . An efficient way to define
these variables is to look for conserved quantities
the intra-group dynamics, i.e., quantities that wo
remain constant if the inter-group interaction w
turned off. The mathematical consequence for
choice of such variables is that the internal p
vanishes, i.e.,I = 0. Consequently, the dynamics
the variablesV α is only governed by the slow partE

of the complete system. It is therefore convenien
introduce a slow time unitt = ε · τ . Then, at the slow
time scale, the system (4) becomes:

(7)
dV α

dt
= E for α ∈ {1,2, . . . ,A}

4. The aggregated model

The last step of the aggregation method is to
pressE in terms of the global variableV α only. A suf-
ficient condition is that the fast part dynamics quick
reaches an asymptotically stable equilibrium, deno
nα∗

. For everyα, nα∗
is the equilibrium of the com

plete system (2) whenε is set to 0.nα∗
is a function

of V α (constant at the fast time scale), which can
substituted into equations (7) leading to the followi
system for the global variables:

dV α

dt
=

A∑
β=1
β �=α

Nα∑
j=1

∂V α

∂nα
j

(V α) · f αβ
j (V 1,V 2, . . . , V A)

(8)for α ∈ {1,2, . . . ,A}
This method has been extended to systems w

the fast part dynamics shows a stable limit cycle [
and in some cases of infinite dimensional dynam
systems (systems of partial derivative equations)
24].

In system (8), the dynamics of each global varia
V α depends on global variables only: this system
called the aggregated model. The aggregated mod
a set ofA equations only while the complete syste
(2) is composed ofN equations. For instance,
the case of a partition into three groups, each
containing three subgroups, like in Fig. 1, we get th
global equations in (8) instead of nine equations
(2). This clearly shows how this method can lead
an important reduction in the number of equations.

An aggregated model is different from the initi
complete model. However, it can be shown that
dynamics of the aggregated model is a good app
imation of the dynamics of the complete one if (i) ε

is small enough and (ii) the aggregated model is stru
turally stable. If the second proposal does not hold,
has to calculate further terms of the aggregated m
that can be expressed as a Taylor expand in functio
increasing powers of the small parameterε [13,14,16].

5. Applications to population dynamics

In the context of population dynamics, the sta
variablesnα

j are population densities. For instanc
index j refers to different spatial patches and ind
α to different species. The intra-group dynamics
the migration between the patches for each spe
which is conservative; the inter-group dynamics is
interaction between the species. The global varia
V α = ∑Nα

j=1 nα
j are the total populations per speci

the partial derivatives of the global variables a
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simply ∂V α

∂nα
j

= 1 for any α and j , and system (8

simplifies:

dV α

dt
=

A∑
β=1
β �=α

Nα∑
j=1

f
αβ
j (V 1,V 2, . . . , V A)

(9)for α ∈ {1,2, . . . ,A}
In order to illustrate the general method, we a

now going to present a new and original application
population dynamics. We consider a population tha
distributed on two spatial patches. Letn1(t) andn2(t)

be, respectively, the sub-populations densities on p
1 and 2 at timet . The complete model is composed
the two following equations:

(10)




ε
dn1

dt
= (k12n2 − k21n1) + εr1n1(n1 − M)(K − n1)

ε
dn2

dt
= (k21n1 − k12n2) + εr2n2

where all parameters are positive,K > M andε is a
small positive dimensionless parameter.

The model is composed of two components
fast part corresponding to migrations between
two patches and a slow part that relates to the s
population growth on each patch. The fast part
scribes the migration between the two patches w
constant migration rateskij from patchj to patchi.
Imagine that the two patches would not be connec
i.e., the migration rates are equal to zero. Then s
population dynamics on patch 1 would show an Al
effect [25]: for any positive initial condition below th
thresholdM, the population would decay and go
extinction; otherwise it would tend to the carrying c
pacityK. Patch 2 would be a source or a sink acco
ing to the sign of the growth rater2. We now study the
situation where the two patches are connected by
migration. In this case, the aggregation method p
sented above can be applied. First, it is easy to s
that the fast part has a positive and asymptotically
ble equilibrium:

n∗
1 = k12

k12 + k21
n = ν∗

1n

(11)n∗
2 = k21

k12 + k21
n = ν∗

2n

where the constantsν∗
i represent the proportions of in

dividuals on patchi, i ∈ {1,2}, at the fast equilibrium
andn(t) = n1(t) + n2(t) is the total population den
sity. Substitution of the fast equilibrium into the com
plete model leads to the following aggregated mo
governing the total population:

(12)
dn

dt
= [

r2ν
∗
2 + r1ν

∗
1(ν∗

1n − M)(K − ν∗
1n)

]
n

Right-hand side of (12) is a polynomial equation
degree 3. Therefore, the model (12) can have one,
or three equilibria. The origin 0 is always equilibrium
Two more equilibria can occur according to the sign
∆ = r1(ν

∗
1)3(r1ν

∗
1(M − K)2 + 4r2ν

∗
2).

There are three different cases.

(i) r2 < − r1ν
∗
1(M−K)2

4(1−ν∗
1)

. This condition is equivalen

to ∆ < 0. The origin is the unique equilibrium
and it is asymptotically stable. The total popu
tion goes to extinction (Fig. 2A): the global d
namics is sink-like.

(ii) − r1ν
∗
1(M−K)2

4(1−ν∗
1)

< r2 <
r1ν

∗
1MK

1−ν∗
1

. This condition im-

plies that∆ > 0. There exist three equilibria, th
origin (stable) and two positive ones, the small
being unstable and the largest stable (Fig. 2B)
this case, the global dynamics shows an Allee
fect.

(iii) r2 >
r1ν

∗
1MK

1−ν∗
1

. This condition implies that∆ > 0.

There exist three equilibria, the origin and tw
others, one positive and one negative. The
gin is unstable and the positive equilibrium
stable. Thus, the global dynamics is logistic-li
(Fig. 2C).

The three previous cases are represented on Fig
with respect to parametersν∗

1 and r2. In the sink-
like and Allee effect cases, the total population ha
global behaviour that is similar to the local behavio
of one of its sub-populations. However, in the logist
like case, the total population behaviour is differe
from its sub-populations behaviours. This exam
shows that, in general, the global model may hav
qualitatively different dynamics than the local ones

Regarding other applications to population dyna
ics, aggregation methods have been used in the fol
ing cases: (i) modelling a trout fish population in a
arborescent river network composed of patches c
nected by fast migration [26,27]; (ii) studying the ef-
fects of different individual decisions on the global d
namics of a prey-predator system in an heterogen
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[12]

Fig. 2. (A)–(C) Time evolution of the total population density in the aggregated model (12) withr1 = 0.2, M = 0.5, K = 2, ν∗

1 = 0.5,
ν∗
2 = 1 − ν∗

1 = 0.5 and (A) r2 = −0.5, (B) r2 = 0.05, (C) r2 = 0.5. (D) The three types of dynamics shown by the aggregated model
with respect toν∗

1 andr2 (the curves shown correspond to the particular values of the parametersr1 = 0.2, M = 0.5 andK = 2, but their shapes

are general).
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environment composed of patches connected by
migration [28–32]; (iii) modelling a sole larvae pop
ulation with a continuous age with fast migration b
tween different spatial patches [23]; (iv) modelling the
influence of different individual strategies on the d
namics of a population of two competing populatio
using fast game dynamics [33–36]; (v) studying the
effect of frequent migrations on the stability and p
sistence of host–parasitoid systems [37].

6. Conclusion

Starting from a complex dynamical system, t
aggregation method presented in this paper ena
to build a reduced system which dynamics is ea
to analyse. This method relies on the existence
different time scales, i.e., the dynamics of the sys
involves fast and slow components. Then, the met
allows to investigate the effects of the fast proces
on the slow dynamics and reciprocally.

The method is general and can be applied in m
contexts where hierarchical dynamical systems
used, i.e., in most fields of biology and ecology. Mo
cular biology made recent important improvements
understanding biological processes at the microsc
level. The next challenge is to develop an integra
approach to assess the influences of these proces
a macroscopic level. In this perspective, aggrega
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methods can be used as they are based on mutua
pendence of the intra- and inter-level dynamics.
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