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Abstract

Biological systems are composed of different levels of organization. Usually, one considers the atomic, molecular, cellular,
individual, population, community and ecosystem levels. These levels of organization also correspond to different levels of
observation of the system, from microscopic to macroscopic, i.e., to different time and space scales. The more microscopic the
level is, the faster the time scale and the smaller the space scale are. The dynamics of the complete system is the result of th
coupled dynamical processes that take place in each of its levels of organization at different time scales. Variables aggregatior
methods take advantage of these different time scales to reduce the dimension of mathematical models such as a system of ¢
dinary differential equations. We are going to study the dynamics of a system which is hierarchically organized in the sense that
itis composed of groups of elements that can be themselves divided into further smaller sub-groups and so on. The hierarchica
structure of the system results from the fact that the intra-group interactions are assumed to be larger than inter-group ones. W
present aggregation methods that allow one to build a reduced model that governs a few global variables at the slow time scale
To citethisarticle: P. Auger, C. Lett, C. R. Biologies 326 (2003).
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Résumé

Les systémes biologiques sont composés de différents niveaux d’organisation. Habituellement, les niveaux de I'atome, de
la molécule, de la cellule, de I'individu, de la population, de la communauté et de I'écosystéme sont considérés. Ces niveaux
d’organisation correspondent en fait & des niveaux d'observation différents, c’est-a-dire & des échelles d’espace et de temp
différentes : les niveaux plus microscopiques correspondent a des échelles de temps plus rapides et a des échelles d’'espa
plus petites. Ainsi, la dynamique globale d'un systeme biologique est le résultat des dynamiques couplées de chacun de se
niveaux d'organisation, dynamiques qui se déroulent & différentes échelles de temps. Les méthodes d’agrégation de variable
tirent partie de I'existence de ces différentes échelles de temps afin de réduire la dimension des modeles mathématiques comn
les systemes d'équations différentielles ordinaires. Nous étudierons la dynamique d'un systéme présentant une structure hié
rarchique, c’est-a-dire composée de groupes d’éléments, eux-méme constitués de sous-groupes qui peuvent a leur tour ét
structurés en parties plus petites et ainsi de suite. La structure hiérarchique du systéme provient du fait que I'on suppose que le
interactions intra-groupe sont rapides par rapport aux interactions de type inter-groupe. Nous présenterons la méthode d'agré
gation qui permet de construire un modele global gouvernant la dynamique de quelques variables macroscopiques a une échel
de temps lentePour citer cet article: P. Auger, C. Lett, C. R. Biologies 326 (2003).
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1. Introduction

The dynamics of mathematical models of complex
systems generally involves a very large number of
variables evolving according to a set of nonlinear dif-
ferential equations that cannot be treated analytically.
Therefore, it is necessary to look for approximation
methods that enable to simplify the model. A hierar-
chically organized system is an interesting case be-
cause the structure of such a system shows a partial de-
coupling between degrees of freedom belonging to dif-
ferent levels in the hierarchy or to different groups at Fig. 1. Schematic view of a hierarchical system. The system shown
the same level. Consequently, models of complex hi- is composed of three groups that are themselves divided into three
erarchical systems can be simplified, however the sim- subgroups. The interactions within a group are strong and the
plification is generally based on approximation meth- interactions between the groups are weak.
ods and thus the question of its validity has to be ex-

amined. In a hierarchical system, the state variables can
Roughly speaking, in biology, one considers the pe considered as belonging to groups (Fig. 1). We

molecular level, the biochemical level, the cellular genote groups by an index calling A the number

level, the organic level, and the organism level [1-3]. of groups, we haver € {1,2, ..., A}. Of course, the

In ecology, one can think of the individual, the popula- number of groups is assumed to be smaller than the

tion, the community and the ecosystem levels. The hi- humber of state variables, i.e4, < N. The variables
erarchical structure of systems in biology and ecology are now designated by®, « € {1,2,..., A}, j €
has been particularly studied by Allen et al. [4] and (1,2, ... N®}, with an {Jpper index labelling the
Auger [5]. Slow—fast models and perturbation meth- group and a lower index labelling the variable within
ods permit some simplifications [6-8]. In this article, the group, and we ha\)gofj:l N® = N.

we focus on a method known as variables aggregation  |n order to emphasize the hierarchical structure of
method. The main goal of this method is to reduce the system, (1) is rewritten as follows:

the dimension of a mathematical model of a system

so that it becomes handled analytically. The aggrega- dn‘}‘ . A WBa B

tion of the model consists in defining a small number —~ =/; (") +&- > fi (%, n")

of global variables, which are functions of the state g:oll

variables of the model, and then building a new sys- ) N

tem describing the dynamics of these global variables fOr@ €{1,2,...,Ayandje{1,2,....N%}  (2)
[9—.16]. This paper gives a prlef synthesis of the aggre- wheren® = (n%,n4, ...,n%,), ¢ is a dimensionless
gation method for time continuous systems of ordinary narameter and is the fast time unit.

differential equations (ODEs). For time discrete mod- ~ Tne (intra-group) parif® of the differential equa-
els, we refer to [17-21]. tions, which contains only variables belonging to the
groupa of the particular variable“, has been sepa-
rated from the remaining (inter-group) part, which in-
cludes the coupling with the other groups. The basic
assumption that defines a hierarchical system is that
the intra-group part is much larger than the inter-group
part, i.e., that the parameteis small. In other words,

in a hierarchical system the interactions within a group
dn, are strong while the coupling between different groups
rT fi(na,nz,...,ny,t) forie{l,2,...,N} (1) is weak. As a consequence, the inter-group part in sys-

2. The complete dynamical system

We consider a dynamical system characterized by
N time dependent state variables?), i € {1,2,...,
N}, evolving according to a set @f first order ODEs:
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tem (2) can be regarded as perturbations with respectreaches an asymptotically stable equilibrium, denoted

to the intra-group one.

3. Choice of global variables

An important step in the aggregation method is to
introduce for each group a global variable/*. V¥ is
a function ofn‘;? and the dynamics of * is expressed
in terms Ofn‘}‘ as:

dve X aye dnd
= -—= for 1,2,...,A 3
dr Z on% dr o€l } 3)
j=1 J
and introducing equations (2):
dv¢
g =I+¢-E forae{l, 2, ... A} 4)
T
where
NO{
ove
1= 5 110" (5)
, ny
j=1 J
describes the dynamics due to internal effects and
A N¢
ove
E=3) > oo ' (6)
p=1 =1 "
BFo

describes the role of variables external to the group.
The global variable¥“ have to be chosenin such a
way that their dynamics is slow with respect to that of
the intra-group variables’. An efficient way to define
these variables is to Ioof< for conserved quantities for
the intra-group dynamics, i.e., quantities that would
remain constant if the inter-group interaction was
turned off. The mathematical consequence for the
choice of such variables is that the internal part
vanishes, i.e.] = 0. Consequently, the dynamics of
the variables/“ is only governed by the slow pai
of the complete system. It is therefore convenient to
introduce a slow time unit= ¢ - . Then, at the slow
time scale, the system (4) becomes:

dve
dr

=F forae{l,2 ..., A} )

4. The aggregated model

The last step of the aggregation method is to ex-
pressE in terms of the global variablg® only. A suf-
ficient condition is that the fast part dynamics quickly

n®". For everya, n®" is the equilibrium of the com-
plete system (2) when is set to 0.n*" is a function

of V¢ (constant at the fast time scale), which can be
substituted into equations (7) leading to the following
system for the global variables:

A N¢
dve Ve
dr Z Z on
p=1j=1 J
o
forae{l,2,..., A}

vey- [P V2L v

(8)

This method has been extended to systems where
the fast part dynamics shows a stable limit cycle [22]
and in some cases of infinite dimensional dynamical
systems (systems of partial derivative equations) [23,
24].

In system (8), the dynamics of each global variable
V* depends on global variables only: this system is
called the aggregated model. The aggregated model is
a set ofA equations only while the complete system
(2) is composed ofN equations. For instance, in
the case of a partition into three groups, each one
containing three subgroups, like in Fig. 1, we get three
global equations in (8) instead of nine equations in
(2). This clearly shows how this method can lead to
an important reduction in the number of equations.

An aggregated model is different from the initial
complete model. However, it can be shown that the
dynamics of the aggregated model is a good approx-
imation of the dynamics of the complete oneiif £
is small enough andij the aggregated model is struc-
turally stable. If the second proposal does not hold, one
has to calculate further terms of the aggregated model
that can be expressed as a Taylor expand in function of
increasing powers of the small paramet¢t3,14,16].

5. Applicationsto population dynamics

In the context of population dynamics, the state
variablesn® are population densities. For instance,
index j ref]ers to different spatial patches and index
« to different species. The intra-group dynamics is
the migration between the patches for each species,
which is conservative; the inter-group dynamics is the
interaction between the species. The global variables
Ve = Z?zln‘}‘ are the total populations per species,
the partial derivatives of the global variables are
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simply 8% =1 for any « and j, and system (8)
simplifies:
dve <N of 1 y,2 A
= YO Pt vE v
p=1 j=1
pra

fora e{l1,2,..., A} 9)

In order to illustrate the general method, we are
now going to present a new and original application to
population dynamics. We consider a population that is
distributed on two spatial patches. Lat(r) andna(¢)

be, respectively, the sub-populations densities on patch

1 and 2 at time. The complete model is composed of
the two following equations:

dn
8d_tl = (k1ono — ko1ny) + erini(n1 — M)(K — na)

dno

e = (k211 — k1ono) + eronp (10)

where all parameters are positiv€,> M ande is a
small positive dimensionless parameter.

The model is composed of two components, a
fast part corresponding to migrations between the
two patches and a slow part that relates to the sub-
population growth on each patch. The fast part de-
scribes the migration between the two patches with
constant migration ratelg; from patch; to patchi.
Imagine that the two patches would not be connected,
i.e., the migration rates are equal to zero. Then sub-
population dynamics on patch 1 would show an Allee
effect [25]: for any positive initial condition below the
thresholdM, the population would decay and go to
extinction; otherwise it would tend to the carrying ca-
pacity K . Patch 2 would be a source or a sink accord-
ing to the sign of the growth raie. We now study the
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andn(t) = n1(t) + n2(¢) is the total population den-
sity. Substitution of the fast equilibrium into the com-
plete model leads to the following aggregated model
governing the total population:
dn
dr
Right-hand side of (12) is a polynomial equation of
degree 3. Therefore, the model (12) can have one, two
or three equilibria. The origin 0 is always equilibrium.
Two more equilibria can occur according to the sign of
A=r1(v)3rv (M — K)? + 4rav}).

There are three different cases.

= [r2v§ +rivi(vin — M)(K — vfn)]n (12)

* - 2 . e - .
(i) ro < —%. This condition is equivalent
1

to A < 0. The origin is the unique equilibrium
and it is asymptotically stable. The total popula-
tion goes to extinction (Fig. 2A): the global dy-
namics is siznk-like. X
—% rllviték . This condition im-
plies thatA > 0. There exist three equilibria, the
origin (stable) and two positive ones, the smallest
being unstable and the largest stable (Fig. 2B). In
this case, the global dynamics shows an Allee ef-
fect.

ro > 2K This condition implies that > 0.

There exilst three equilibria, the origin and two
others, one positive and one negative. The ori-
gin is unstable and the positive equilibrium is
stable. Thus, the global dynamics is logistic-like
(Fig. 2C).

(i)

<rp<

(iii)

The three previous cases are represented on Fig. 2D
with respect to parameteng and r2. In the sink-
like and Allee effect cases, the total population has a
global behaviour that is similar to the local behaviour

situation where the two patches are connected by fastof one of its sub-populations. However, in the logistic-
migration. In this case, the aggregation method pre- |ike case, the total population behaviour is different
sented above can be applied. First, it is easy to showfrom its sub-populations behaviours. This example
that the fast part has a positive and asymptotically sta- shows that, in generaL the g|oba| model may have a
ble equilibrium: qualitatively different dynamics than the local ones.

i} k1o i} Regarding other applications to population dynam-

ny= Yio+ ka1 =vn ics, aggregation methods have been used in the follow-
A ing cases: i} modelling a trout fish population in an

nh= " ilkﬂ vin (12) arborescent river network composed of patches con-

nected by fast migration [26,27]ii) studying the ef-
fects of different individual decisions on the global dy-
namics of a prey-predator system in an heterogeneous

where the constants’ represent the proportions of in-
dividuals on patcli, i € {1, 2}, at the fast equilibrium,
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Fig. 2. (A)—(C) Time evolution of the total population density in the aggregated model (12)rwith0.2, M = 0.5, K = 2, vi‘ =0.5,
v =1—vj =05 and (A)r, = —0.5, (B) r, = 0.05, (C)r, = 0.5. (D) The three types of dynamics shown by the aggregated model [12]
with respect to] andr; (the curves shown correspond to the particular values of the paramgtei@2, M = 0.5 andK = 2, but their shapes

are general).

environment composed of patches connected by fastto build a reduced system which dynamics is easier

migration [28-32]; iii) modelling a sole larvae pop-
ulation with a continuous age with fast migration be-
tween different spatial patches [23}ymodelling the
influence of different individual strategies on the dy-
namics of a population of two competing populations
using fast game dynamics [33—-36}) (studying the
effect of frequent migrations on the stability and per-
sistence of host—parasitoid systems [37].

6. Conclusion

Starting from a complex dynamical system, the

to analyse. This method relies on the existence of
different time scales, i.e., the dynamics of the system
involves fast and slow components. Then, the method
allows to investigate the effects of the fast processes
on the slow dynamics and reciprocally.

The method is general and can be applied in many
contexts where hierarchical dynamical systems are
used, i.e., in most fields of biology and ecology. Mole-
cular biology made recent important improvements in
understanding biological processes at the microscopic
level. The next challenge is to develop an integrative
approach to assess the influences of these processes at

aggregation method presented in this paper enablesa macroscopic level. In this perspective, aggregation
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methods can be used as they are based on mutual dep19] E. Sanchez, R. Bravo de la Parra, P. Auger, Discrete models

pendence of the intra- and inter-level dynamics.
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