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Abstract

Neighbouring plants genalty compete for the limiting resources in ordergrow and reproduce. Some resources, e.g., sun
light, may be monopolised by the larger plants and this may teaasymmetric comgtition where a plant, which is twice
as large, grows more than twice as fast. A previously published individual-based Richards growth model that describes the
asymmetric growth of individual plants is here generalised with respect to a variable mean plant density and an explicit spatial
setting.To citethisarticle: C. Damgaard, C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction Two fundamentally different approaches can be
made when modelling plant growth.

Neighbouring plants generally compete for the lim-
iting resources and, in order to understand the effect of
neighbouring plants, it is essential to compare and test
different hypotheses of the effect of neighbours. It is
possible to test many simple hypotheses using infor-
mal and verbal models, but verbal models may be sus- ) oot
ceptible to vagueness and logical pitfalls, especially if modelled as a function of the limiting resource(s).
the model is complicated. On the other hand, by con- ~ SUch mechanistic plantadels ideally contain de-
structing a mathematical model, which encapsulates  tailed information of how plants respond to dif-
the hypothesis that we want to test, we are forced to ferent environments, which enables predictions of

be precise in the description of the functional relation- plant growth as a function of the environment. In
ships. reality, the models necessarily contain many more

or less alleged functional relationships and many
parameters that are difficult or impossible to esti-
E-mail address: cfd@dmu.dk (C. Damgaard). mate jointly.

(1) The expected effects di¢ abiotic and biotic envi-
ronment, including effects of neighbouring plants,
on plant growth may be modelled usimgecha-
nistic plant models. In a mechanistic plant model
[1-4], the growth rate of different plant species is
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(2) Aless ambitious approach, which will be followed
here, is to describe plant growth usiegpirical
models that are fitted to plant growth data. Em-
pirical models are mathematically simple models
with relatively few biologically interpretable pa-
rameters, and due to their simplicity it is possi-
ble to jointly estimate all the parameters in the
model from a single dataset. The joint estimation
of parameters is important if there is any covari-
ability between parameters. The empirical models
rely heavily on data and the model will never be
better than the underlying data; thus, it is impor-
tant to be conscious of the limitations of empirical
models, e.g., it is not possible to make predictions
outside the domain of the data. Since plant growth
data typically has been obtained at a fixed envi-
ronment, empirical models have been criticised
for having limited predictive power; however, this
limitation may be circumvented by obtaining eco-
logical data along an environmental gradient. In
constructing empirical plant growth models, there
is a delicate balance between keeping models sim-
ple and describing the biological system in suffi-
cient detall to obtain the desired information, i.e.,
performing tests of investigated hypotheses or ob-
taining posterior distributions of biological para-
meters.

2. Richardsgrowth model

Several sigmoidal or saturated growth models have
been proposed to describe growth of individual plants,
e.g., Gompertz, and logistic growth models where the
main difference between the models is when the plant
experiences its maximum growth rate [5]. The max-
imum growth rate occurs at the point when the sig-
moidal growth curve shifts from being convex to be-
ing concave (the inflection point) and, in the Richards
growth model [6], this inflection point is modelled by
a free parameter. The determination of the inflection
point by a free parameter makes the Richards growth
model relatively flexible and inclusive of the other sig-
moidal growth models (Fig. 1). Rather than assuming
a fixed point of inflection, the Richards growth model
is assumed in the following, since there is no general
theory that predicts at whgrowth stage plants expe-
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Fig. 1. Curves of Richards growth model for variobisw = 1
and« is 0.75, 0.5, 0.375 and 0.25, respectively. The parameter

is changed each time so that the curves do not sit on top of one
another. The variable inflectigmoint controlled by the parametér
makes the Richards growth model inclusive of the other sigmoidal
growth functions, e.g., the logistic moddl £ 2), the Gompertz
model ¢ = 1), and the monomolecular modél 0). From [6].

rience their maximum growth rate, and the inflection
point has been shown to depend on density [7].
Individual plant growth will in the following be
measured by the absolute growth rate, which is the
increase in some measure of plant size, e.g., biomass,
per time. In the Richards growth model the growth of
a plant at time, is assumed to be proportional to the
plant size at time multiplied by a saturating function

of the plant size at time.
dv(t)  « -1
O o((B2) ). s w

wherew(z) is the plant size at time, « is a growth
parameter, andv is the final plant size. The initial
growth rate isc/(8 — 1) and if§ > 1 the initial growth
is exponential. The shape of the growth curve is
mainly determined bys. If § > 0, then the growth
curve is sigmoidal and the point of inflection is at
the proportions/1=% of the final size. The slope
of the tangent at the point of inflection decreases
with 8. The plant experiences the maximum growth
rate,cws® =9 at the inflection point. The saturating
term is analogous with the competition term in the
logistic model of population growth of individuals
towards a carrying capacity [8].

The variable inflection point of the Richards growth
model includes other sigmoidal growth functions as
special cases (Fig. 1) [5], i.e., the monomolecular

v(t)

w
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model ¢ = 0), the von Bertalanffy models(= 2/3),
the logistic model { = 2), and by taking the limit as
8 — 1 the Gompertz model:

dv ()
& 2)

The Richards growth differential equation may be
solved under the condition that fér < 1, (1 — §)
x expiky) <1[5]:

= kv(t)(logw — logv(t))

(1) =w(l+ (6 — 1) exp(—k (t — )Y

wherey is the time of the inflection point.

3)

3. Size-asymmetric growth

The Richards growth model (1) adequately de-
scribes the growth of a single plant or plant growth in
a monoculture of identical plants. However, the plants
in a monoculture are rarely identical. There may be
variation in the time of germination, distance to near-
est neighbour, or in the microenvironment that leads
to variable plant sizes. If the plant growth is limited by
a resource that may be monopolised, e.g., light, then
asymmetric competition may occur and the variation
among plant sizes may increase with time more than
expected under a Richards growth model [7,9-12].

In the Richards growth model, the growth of a
plant is assumed to be proportional to the plant
size multiplied by a saturating function. In order to
allow for size-asymmetric growth, the assumption of
proportional growth may be generalised so that the
growth of plants is proportional to a power function
of their size [7,13-15]:

1, a=0
f(v(t), a) =3v®)?* a>0 4)
lorO a=o0

Table 1
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Size v(t)
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Fig. 2. Richards growth model for two interacting plants with and
initial size of one and two, respectively at two levels of the degree
of size-asymmetry. Full linet = 1, w = 10,k = 0.1,5 = 2. Dashed
line: @ = 1.5, w = 10, « = 0.0667, § = 2. Notice that the size
difference increases witi.

where the effect of plant size on growth is summarised
by a size-asymmetry parameter, which measures
the degree of curvature of the size-growth relationship
over the entire growth curve and takes values between
0 andoo (Table 1, Fig. 2).

In order to take the effect of plant size variation
on the growth of individual plants into account, an
individual-based Richards growth model may be for-
mulated by generalising (1) and (2) with respect to
size-asymmetric growth (4). Assume a monoculture of
n competitively interacting plants of variable size, then
the growth of plant at timet may be expressed hy
coupled differential equations:

25 £ (00 @) (7% Xy v;0)"
—1), §#1

Kf(vi o), a)(log(nw)
—log(Xi_1v;)), §=1

dvi (1)
dr

()

Classification of the degree of size-asymmetry based on the relationship between size and growth rate. Terminology adapted after [16]

Parameter value

Definition

Complete symmetry a=0
Partial size-symmetry @a<1
Perfect size-symmetry a=1
Partial size-asymmetry a>1
Complete size-asymmetry a =00

All plants have the same growth rate irrespective of their size
The growth rate is less than proportional to the size of the plant
The growth rate is proportional to the size of the plant

The growth rate is more than proportional to the size

Limiting case where only a few dominating plants are growing;
all other plants have stopped growing
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[7], wherev;(¢) is the size of plani at time¢, and a simpler model has been proposed [23,24]:
w is the average plant size at the end of the grow- Um
ing season. The initial growth rate iga)/(8 — 1), v(x) = 15 gt (7)
and the saturating terrﬁ% Z’}Zl vj )Y1-1) or . _ o
(log(nw) —log(}_}_1 v;(1))), if 8 =0, measures the whered in (6) is set to 1. In this simpler model, the
decrease in individual plant growth due to the size ShapPe p?rameters are easier to interpret biologically.
and competitive effects of the interacting plants. ~ vm(* @) is the size of isolated plants (i.e., for
The saturation term, which is equal for allplants ¥ — 0). B IS @ measure of competition, including its
at a given time, reduces as the plants grow and when intensity and the area within which it operates, while
S i) = m’u the saturation term equals zero and ¢ is a measure of the rate at which competition decays
gré\Tv%h jstops (Fig. 2) as a function of distance between plants [24].

The individual-based Richards growth model can- The individual-bas'ed Richards growth model (5)
not be solved in the general case, and in order to fit may be extended to include growth at different den-

the growth model to growth data, the model has to be sities by generalising the four parameters in the

solved numerically for each set of parameter values indvidual-based growth model (5) to functions of
used in a maximume-likelihood fitting procedure [7].

density. It is apparent that the average final size,
in (5), may be generalised by a plant size-density
model, e.g., (7)w(x) = wm/(1+ Bx?), and assum-
ing that the initial growth rate is independent of den-
sity, (ka)/(8 — 1) = ¢, thenk may be generalised to
k(x) =c(6(x) — 1) /a(x), wherec is a constant. The
In a number of empirical studies (e.g., [17-20]) the functionss(x) anda(x) may be expected to be de-
class of hyperbolic size-density response functions hascreasing and increasing functions of density, respec-
been demonstrated to fit plant competition data well at tively, and likely candidate functions may l§éx) =
different growth stages and for different measures of §gpexp(—81x) anda(x) = ag + a1x. Generalising the
plant size. [21] introduced a hyperbolic size-density individual-based Richards growth model (5) with re-

4. Effect of plant density

response function for a single species: spect to density requires at least four new free parame-
ters, thus the fitting and especially the testing of bio-
v(x) = (a+ ﬁxtb)—l/@, @, >0 (6) logical hypotheses will require very good plant growth

data and has not been done yet.
wherex is the density of plants or number of plants
in a unit area. The shape parametgrand 6 make
the response function quite flexible, but only two 5 Modelling spatial effects
cases are biologically relevant [5,22].¢f=6 = 1,
the cumulative size of plants per unit area;(x), The plant size-density models (6) and (7) are mean-
increases asymptotically withtowardsg . If 6 < ¢, field models [25,26], where it is assumed implicitly
the cumulative size of plants per unit area increases that all individuals at a certain density have the same
towards an optimum &&6 /(¢ — 6))/¢ after which size, and every plant has the same effect of any other
the cumulative size decrease. Generally, at low plant plant. The mean-field approach is a sensible place
density (x — 0) and for¢ > 0, v =a~ VY. The  to begin in the modelling of plant—plant interactions
Bleasdale—Nelder model (6) may be derived from the [27], but it ignores much of what is important about
Richards growth model (1) by assuming an allometric the dynamics of plant communities [25]. In reality,

relationship between the size and density? = c, interactions typically are restricted to a subset of the

where ¢ is a constant and =8 — 1, ¢ = (8§ — individuals as and the likelihood that two plants will

1) p [5]. interact is most probably a decreasing function of the
It has been found that it is primarily the ratig¢ distance between them [28].

in the Bleasdale—Nelder model (6) that determinesthe  As explained above, the negative interactions be-
shape of the plant size-density curve [5,22]. Therefore, tween neighbouring plants are caused by competi-
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tion for the same resources. The ways the limiting re- growth models (5) with respect to the spatial setting:
sources are distributed among the neighbouring plants Lf(v'(t) a)

depend on the type of resource that is limiting for 1-g AR ED
growth, the interacting plant species and their size. X ((ﬁ > i1 vj(t)U(k,f”(i,j)))a_1
Different theoretical models, which describe the dis- dvi(r) —1), 8#1 (8)
tribution of resources, have been proposed. However, dr Kf(vi ), a)(log(wm)

the development of theory in this area has been more

n . .
rapid than the compilation of relevant ecological data —l0g(Xj=1 v, (DU (2, G, 1))
and it is difficult to assess the validity of the different =1
models. Since the competitive interactions only takes place on

The ‘zone of influence’ model is a resource-uptake- alocalscale, the ternjs’;_; v; () andnw in the satu-
based model, which allows for differences in plant rating terms in (5) is replaced By _, v; (1)U (1, 1,
size [29-32]. Each plant is assumed surrounded by j)) andwm, respectively, wherevn, is the final size
an imaginary circle, which symbolises the area from of an isolated plant. The competitive neighbourhood
which the plant may extract resources. When the plant function is a two-dimensional density function that de-
grows, the radius of the circle expands according scribes the negative effect of plaiton planti as
to some species-specific rules. After a while, the @ function of the distance between the two plants,
imaginary circles of two neighbouring plants may (i, j), wherei is a scale parameter of the effect of
overlap and the resources in the overlapping area aredistance. The competitive neighbourhood function is
shared among the plants aeding to species-specific ~ analogous to a competition kernel [38], except that,
rules of sharing resources. For example, the largestsince local growth is saturated by the final size of an
plant may get all the resources in the overlapping area isolated plant, the ‘spatial effect’ of self-shading is de-

(complete size-asymmetric competition), or plants fined as being equal to 1. One of the likely candi-
may share the resources in the Over|apping areadate functions that describe the eﬁeCtOfinterplant dis-

proportionally to their size (perfect size-symmetric tances on_the com_petitive eﬁ‘ect isthe two-dimens_ional
competition). The ‘zone of influence’ model may be exponential density function [39]; thus, a candidate
generalised by assuming that the influence of the plant COmpetitive-neighbourhood function may be:

within the zone is a decreasing function of the distance ;;(; i ) = exo(—Ar(i. i 9
from the plant [33]. ( 7 (’_]?) p( (’])) : C .( )
An empirical spatial model called the neighbour- The fitting of such a spatial explicit individual-

hood model assumes that a plant only competes with Pased Richards growth model (8) requires growth data
the neighbours that are positioned within a fitted fixed Of individual plants with a known spatial position;
radius of the plant [34,35]. The competitive effect of he growth model will probably be valuable in the
the neighbours and the plant itself (self-shading) on @nalysis of tree growth, where spatially explicit long-
the growth of the plant is described by a mean-field €M growth data exist (e.g., [40]).

plant size-density model. The neighbourhood model

has the advantage that it is readily fitted to data [36]. Acknowledgements
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