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Abstract

Neighbouring plants generally compete for the limiting resources in order to grow and reproduce. Some resources, e.g.,
light, may be monopolised by the larger plants and this may leadto asymmetric competition where a plant, which is twic
as large, grows more than twice as fast. A previously published individual-based Richards growth model that desc
asymmetric growth of individual plants is here generalised with respect to a variable mean plant density and an explic
setting.To cite this article: C. Damgaard, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Neighbouring plants generally compete for the li
iting resources and, in order to understand the effec
neighbouring plants, it is essential to compare and
different hypotheses of the effect of neighbours. I
possible to test many simple hypotheses using in
mal and verbal models, but verbal models may be s
ceptible to vagueness and logical pitfalls, especiall
the model is complicated. On the other hand, by c
structing a mathematical model, which encapsula
the hypothesis that we want to test, we are forced
be precise in the description of the functional relatio
ships.

E-mail address: cfd@dmu.dk (C. Damgaard).
1631-0691/$ – see front matter 2004 Académie des sciences. Publis
doi:10.1016/j.crvi.2003.05.001
Two fundamentally different approaches can
made when modelling plant growth.

(1) The expected effects of the abiotic and biotic envi
ronment, including effects of neighbouring plan
on plant growth may be modelled usingmecha-
nistic plant models. In a mechanistic plant mod
[1–4], the growth rate of different plant species
modelled as a function of the limiting resource(
Such mechanistic plant models ideally contain de
tailed information of how plants respond to d
ferent environments, which enables predictions
plant growth as a function of the environment.
reality, the models necessarily contain many m
or less alleged functional relationships and ma
parameters that are difficult or impossible to e
mate jointly.
hed by Elsevier SAS. All rights reserved.
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(2) A less ambitious approach, which will be followe
here, is to describe plant growth usingempirical
models that are fitted to plant growth data. E
pirical models are mathematically simple mod
with relatively few biologically interpretable pa
rameters, and due to their simplicity it is pos
ble to jointly estimate all the parameters in t
model from a single dataset. The joint estimat
of parameters is important if there is any cova
ability between parameters. The empirical mod
rely heavily on data and the model will never
better than the underlying data; thus, it is imp
tant to be conscious of the limitations of empiric
models, e.g., it is not possible to make predictio
outside the domain of the data. Since plant gro
data typically has been obtained at a fixed en
ronment, empirical models have been criticis
for having limited predictive power; however, th
limitation may be circumvented by obtaining ec
logical data along an environmental gradient.
constructing empirical plant growth models, the
is a delicate balance between keeping models s
ple and describing the biological system in su
cient detail to obtain the desired information, i.
performing tests of investigated hypotheses or
taining posterior distributions of biological par
meters.

2. Richards growth model

Several sigmoidal or saturated growth models h
been proposed to describe growth of individual pla
e.g., Gompertz, and logistic growth models where
main difference between the models is when the p
experiences its maximum growth rate [5]. The ma
imum growth rate occurs at the point when the s
moidal growth curve shifts from being convex to b
ing concave (the inflection point) and, in the Richa
growth model [6], this inflection point is modelled b
a free parameter. The determination of the inflect
point by a free parameter makes the Richards gro
model relatively flexible and inclusive of the other s
moidal growth models (Fig. 1). Rather than assum
a fixed point of inflection, the Richards growth mod
is assumed in the following, since there is no gene
theory that predicts at whatgrowth stage plants expe
Fig. 1. Curves of Richards growth model for variousδ, w = 1
and κ is 0.75, 0.5, 0.375 and 0.25, respectively. The parameteγ

is changed each time so that the curves do not sit on top of
another. The variable inflectionpoint controlled by the parameterδ

makes the Richards growth model inclusive of the other sigmo
growth functions, e.g., the logistic model (δ = 2), the Gompertz
model (δ = 1), and the monomolecular model (δ = 0). From [6].

rience their maximum growth rate, and the inflect
point has been shown to depend on density [7].

Individual plant growth will in the following be
measured by the absolute growth rate, which is
increase in some measure of plant size, e.g., biom
per time. In the Richards growth model the growth
a plant at timet , is assumed to be proportional to t
plant size at timet multiplied by a saturating functio
of the plant size at timet .

(1)
dv(t)

dt
= κ

1− δ
v(t)

((
v(t)

w

)δ−1

− 1

)
, δ �= 1

wherev(t) is the plant size at timet , κ is a growth
parameter, andw is the final plant size. The initia
growth rate isκ/(δ − 1) and if δ > 1 the initial growth
is exponential. The shape of the growth curve
mainly determined byδ. If δ > 0, then the growth
curve is sigmoidal and the point of inflection is
the proportionδ1/(1−δ) of the final size. The slop
of the tangent at the point of inflection decrea
with δ. The plant experiences the maximum grow
rate,κw· δδ/(1−δ), at the inflection point. The saturatin
term is analogous with the competition term in t
logistic model of population growth of individua
towards a carrying capacity [8].

The variable inflection point of the Richards grow
model includes other sigmoidal growth functions
special cases (Fig. 1) [5], i.e., the monomolecu
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model (δ = 0), the von Bertalanffy model (δ = 2/3),
the logistic model (δ = 2), and by taking the limit as
δ → 1 the Gompertz model:

(2)
dv(t)

dt
= κv(t)

(
logw − logv(t)

)
The Richards growth differential equation may
solved under the condition that forδ < 1, (1 − δ)

× exp(κγ ) � 1 [5]:

(3)v(t) = w
(
1+ (δ − 1)exp

(−κ(t − γ )
))1/(1−δ)

whereγ is the time of the inflection point.

3. Size-asymmetric growth

The Richards growth model (1) adequately d
scribes the growth of a single plant or plant growth
a monoculture of identical plants. However, the pla
in a monoculture are rarely identical. There may
variation in the time of germination, distance to ne
est neighbour, or in the microenvironment that lea
to variable plant sizes. If the plant growth is limited
a resource that may be monopolised, e.g., light, t
asymmetric competition may occur and the variat
among plant sizes may increase with time more t
expected under a Richards growth model [7,9–12]

In the Richards growth model, the growth of
plant is assumed to be proportional to the pl
size multiplied by a saturating function. In order
allow for size-asymmetric growth, the assumption
proportional growth may be generalised so that
growth of plants is proportional to a power functio
of their size [7,13–15]:

(4)f
(
v(t), a

) =
{1, a = 0

v(t)a, a > 0

1 or 0, a = ∞
Fig. 2. Richards growth model for two interacting plants with a
initial size of one and two, respectively at two levels of the deg
of size-asymmetry. Full line:a = 1,w = 10,κ = 0.1, δ = 2. Dashed
line: a = 1.5, w = 10, κ = 0.0667, δ = 2. Notice that the size
difference increases witha.

where the effect of plant size on growth is summari
by a size-asymmetry parameter,a, which measures
the degree of curvature of the size-growth relations
over the entire growth curve and takes values betw
0 and∞ (Table 1, Fig. 2).

In order to take the effect of plant size variati
on the growth of individual plants into account,
individual-based Richards growth model may be f
mulated by generalising (1) and (2) with respect
size-asymmetric growth (4). Assume a monoculture
n competitively interacting plants of variable size, th
the growth of planti at timet may be expressed byn
coupled differential equations:

(5)
dvi(t)

dt
=




κ
1−δ

f
(
vi(t), a

)(( 1
nw

∑n
j=1 vj (t)

)δ−1

− 1
)
, δ �= 1

κf
(
vi(t), a

)(
log(nw)

− log
(∑n

vj (t)
))

, δ = 1
j=1

16]

e
ant

g;
Table 1
Classification of the degree of size-asymmetry based on the relationship between size and growth rate. Terminology adapted after [

Parameter value Definition

Complete symmetry a = 0 All plants have the same growth rate irrespective of their siz
Partial size-symmetry 0< a < 1 The growth rate is less than proportional to the size of the pl
Perfect size-symmetry a = 1 The growth rate is proportional to the size of the plant
Partial size-asymmetry a > 1 The growth rate is more than proportional to the size
Complete size-asymmetry a = ∞ Limiting case where only a few dominating plants are growin

all other plants have stopped growing



258 C. Damgaard / C. R. Biologies 327 (2004) 255–260

-

e
ize
.

hen
nd

n-
fit

be
ues

he
has
ll at

of
ity

ts

o

ses

lant

the
tric

the
ore,

e
ally.
r

ts
ile
ays

(5)
en-
the
of
,
sity
-
n-

o

e-
ec-

e-
me-
io-
th

an-
tly
me
ther
ace
ns
ut
ty,
the
ill
the

be-
eti-
[7], wherevi(t) is the size of planti at time t , and
w is the average plant size at the end of the grow
ing season. The initial growth rate is(κa)/(δ − 1),
and the saturating term(( 1

nw

∑n
j=1 vj (t))

δ−1 − 1) or
(log(nw) − log(

∑n
j=1 vj (t))), if δ = 0, measures th

decrease in individual plant growth due to the s
and competitive effects of then interacting plants
The saturation term, which is equal for alln plants
at a given time, reduces as the plants grow and w∑n

j=1 vj (t) = nw the saturation term equals zero a
growth stops (Fig. 2).

The individual-based Richards growth model ca
not be solved in the general case, and in order to
the growth model to growth data, the model has to
solved numerically for each set of parameter val
used in a maximum-likelihood fitting procedure [7].

4. Effect of plant density

In a number of empirical studies (e.g., [17–20]) t
class of hyperbolic size-density response functions
been demonstrated to fit plant competition data we
different growth stages and for different measures
plant size. [21] introduced a hyperbolic size-dens
response function for a single species:

(6)v(x) = (
α + βxφ

)−1/θ
, α,β > 0

wherex is the density of plants or number of plan
in a unit area. The shape parametersφ and θ make
the response function quite flexible, but only tw
cases are biologically relevant [5,22]. Ifφ = θ = 1,
the cumulative size of plants per unit area,xv(x),
increases asymptotically withx towardsβ−1. If θ < φ,
the cumulative size of plants per unit area increa
towards an optimum at(αθ/β(φ − θ))1/φ after which
the cumulative size decrease. Generally, at low p
density (x → 0) and for φ > 0, v = α−1/θ . The
Bleasdale–Nelder model (6) may be derived from
Richards growth model (1) by assuming an allome
relationship between the size and density,vxρ = c,
where c is a constant andθ = δ − 1, φ = (δ −
1) ρ [5].

It has been found that it is primarily the ratioθ/φ

in the Bleasdale–Nelder model (6) that determines
shape of the plant size-density curve [5,22]. Theref
a simpler model has been proposed [23,24]:

(7)v(x) = vm

1+ βxφ

whereθ in (6) is set to 1. In this simpler model, th
shape parameters are easier to interpret biologic
vm(≈ α−1) is the size of isolated plants (i.e., fo
x → 0), β is a measure of competition, including i
intensity and the area within which it operates, wh
φ is a measure of the rate at which competition dec
as a function of distance between plants [24].

The individual-based Richards growth model
may be extended to include growth at different d
sities by generalising the four parameters in
individual-based growth model (5) to functions
density. It is apparent that the average final sizew

in (5), may be generalised by a plant size-den
model, e.g., (7),w(x) = wm/(1+ βxφ), and assum
ing that the initial growth rate is independent of de
sity, (κa)/(δ − 1) = c, thenκ may be generalised t
κ(x) = c(δ(x) − 1)/a(x), wherec is a constant. The
functionsδ(x) and a(x) may be expected to be d
creasing and increasing functions of density, resp
tively, and likely candidate functions may beδ(x) =
δ0 exp(−δ1x) anda(x) = a0 + a1x. Generalising the
individual-based Richards growth model (5) with r
spect to density requires at least four new free para
ters, thus the fitting and especially the testing of b
logical hypotheses will require very good plant grow
data and has not been done yet.

5. Modelling spatial effects

The plant size-density models (6) and (7) are me
field models [25,26], where it is assumed implici
that all individuals at a certain density have the sa
size, and every plant has the same effect of any o
plant. The mean-field approach is a sensible pl
to begin in the modelling of plant–plant interactio
[27], but it ignores much of what is important abo
the dynamics of plant communities [25]. In reali
interactions typically are restricted to a subset of
individuals as and the likelihood that two plants w
interact is most probably a decreasing function of
distance between them [28].

As explained above, the negative interactions
tween neighbouring plants are caused by comp
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tion for the same resources. The ways the limiting
sources are distributed among the neighbouring pl
depend on the type of resource that is limiting
growth, the interacting plant species and their s
Different theoretical models, which describe the d
tribution of resources, have been proposed. Howe
the development of theory in this area has been m
rapid than the compilation of relevant ecological d
and it is difficult to assess the validity of the differe
models.

The ‘zone of influence’ model is a resource-upta
based model, which allows for differences in pla
size [29–32]. Each plant is assumed surrounded
an imaginary circle, which symbolises the area fr
which the plant may extract resources. When the p
grows, the radius of the circle expands accord
to some species-specific rules. After a while,
imaginary circles of two neighbouring plants m
overlap and the resources in the overlapping area
shared among the plants according to species-specifi
rules of sharing resources. For example, the lar
plant may get all the resources in the overlapping a
(complete size-asymmetric competition), or pla
may share the resources in the overlapping a
proportionally to their size (perfect size-symmet
competition). The ‘zone of influence’ model may
generalised by assuming that the influence of the p
within the zone is a decreasing function of the dista
from the plant [33].

An empirical spatial model called the neighbo
hood model assumes that a plant only competes
the neighbours that are positioned within a fitted fix
radius of the plant [34,35]. The competitive effect
the neighbours and the plant itself (self-shading)
the growth of the plant is described by a mean-fi
plant size-density model. The neighbourhood mo
has the advantage that it is readily fitted to data [3
However, in a comparative test between different s
tial models on natural populations ofLasallia pustu-
lata [37], the neighbourhood model (number of plan
within a circle with fixed radius) was a worse pred
tor than the distance to the nearest neighbour, whic
also a conceptually simpler model.

Using the distances between plants and a g
functional relationship that describes the effect
interplant distances on the competitive interactio
U, such a competitive neighbourhood function m
be used to generalise the individual-based Richa
growth models (5) with respect to the spatial settin

(8)
dvi(t)

dt
=




κ
1−δ

f
(
vi(t), a

)
× (( 1

wm

∑n
j=1 vj (t)U

(
λ, r(i, j)

))δ−1

− 1
)
, δ �= 1

κf
(
vi(t), a

)(
log(wm)

− log
(∑n

j=1 vj (t)U
(
λ, r(i, j)

)))
δ = 1

Since the competitive interactions only takes place
a local scale, the terms

∑n
j=1 vj (t) andnw in the satu-

rating terms in (5) is replaced by
∑n

j=1 vj (t)U(λ, r(i,
j)) andwm, respectively, wherewm is the final size
of an isolated plant. The competitive neighbourho
function is a two-dimensional density function that d
scribes the negative effect of plantj on plant i as
a function of the distance between the two plan
r(i, j), whereλ is a scale parameter of the effect
distance. The competitive neighbourhood function
analogous to a competition kernel [38], except th
since local growth is saturated by the final size of
isolated plant, the ‘spatial effect’ of self-shading is d
fined as being equal to 1. One of the likely can
date functions that describe the effect of interplant d
tances on the competitive effect is the two-dimensio
exponential density function [39]; thus, a candid
competitive-neighbourhood function may be:

(9)U
(
λ, r(i, j)

) = exp
(−λr(i, j)

)
The fitting of such a spatial explicit individua

based Richards growth model (8) requires growth d
of individual plants with a known spatial positio
the growth model will probably be valuable in th
analysis of tree growth, where spatially explicit lon
term growth data exist (e.g., [40]).

Acknowledgements

Thanks to Jacob Weiner for inspiring discussio
and two anonymous reviewers for fruitful suggestio

References

[1] D. Tilman, Dynamics and Structure of Plant Communiti
Princeton University Press, Princeton, NJ, 1988.

[2] D.H. Deutschman, S.A. Levin, C. Devine, L.A. Butte
Scaling from trees to forests: analysis of a complex s
ulation model, Science Online 277 (1997),http://www.
sciencemag.org/feature/data/deutschman/index.htm.

http://www.sciencemag.org/feature/data/deutschman/index.htm
http://www.sciencemag.org/feature/data/deutschman/index.htm
http://www.sciencemag.org/feature/data/deutschman/index.htm


260 C. Damgaard / C. R. Biologies 327 (2004) 255–260

obe,
nts:
66

se
epts

ew

e,

ual
of
–

on
113–

s,

f

in

ize
)

nt
a

es
5)

h-
un-
3–

gree
113

two

of
3.
er
h.,

the-
79

p

70)

la-

ela-

ing
iva
ton,

d

th,
ds

ng
tz
e

es
ns,

pe-
.
he

etry
58

-
)

ex-
gh-
32

lant
Am.

he
, us-
lant

ula-
60

ive
f

for
ann,
-
r-

try
y,

sures
)

[3] S. Pacala, C. Canham, J. Saponara, J. Silander, R. K
E. Ribbens, Forest models defined by field measureme
estimation, error analysis and dynamics, Ecol. Monogr.
(1996) 1–44.

[4] A. Cernusca, U. Tappeiner, N. Bayfield (Eds.), Land-U
Changes in European Ecosystems: ECOMONT – Conc
and Results, Blackwell Wissenshafts-Verlag, Berlin, 1999.

[5] G.A.F. Seber, C.J. Wild, Nonlinear Regression, Wiley, N
York, 1989.

[6] F.J. Richards, A flexible growth function for empirical us
J. Exp. Bot. 10 (1959) 290–300.

[7] C. Damgaard, J. Weiner, H. Nagashima, Modelling individ
growth and competition in plant populations: growth curves
Chenopodium album at two densities, J. Ecol. 90 (2002) 666
671.

[8] J.H. Verhulst, Notice sur la loi que la population suit dans s
accroissement, Correspondance Math. Phys. 10 (1838)
121.

[9] J. Weiner, Asymmetric competition in plant population
Trends Ecol. Evol. 5 (1990) 360–364.

[10] J. Weiner, Size hierarchies in experimental populations o
annual plants, Ecology 66 (1985) 743–752.

[11] J. Weiner, S.C. Thomas, Size variability and competition
plant monocultures, Oikos 47 (1986) 211–222.

[12] J. Weiner, How competition for light and nutrients affects s
variability in Ipomoea tricolor populations, Ecology 67 (1986
1425–1427.

[13] C. Damgaard, A test of asymmetric competition in pla
monocultures using the maximum likelihood function of
simple growth model, Ecol. Model. 116 (1999) 285–292.

[14] S. Schwinning, G.A. Fox, Population dynamic consequenc
of competitive symmetry in annual plants, Oikos 72 (199
422–432.

[15] T. Wyszomirski, I. Wyszomirska, I. Jarzyna, Simple mec
anisms of size distributions dynamics in crowded and
crowded virtual monocultures, Ecol. Model. 115 (1999) 25
273.

[16] S. Schwinning, J. Weiner, Mechanisms determining the de
of size asymmetry in competition among plants, Oecologia
(1998) 447–455.

[17] R. Law, A.R. Watkinson, Response-surface analysis of
species competition: an experiment onPhleum arenarium and
Vulpia fasciculata., J. Ecol. 75 (1987) 871–886.

[18] R. Cousens, Aspects of the design and interpretation
competition experiments, Weed Technol. 5 (1991) 664–67

[19] K. Shinozaki, T. Kira, Intraspecific competition among high
plants. VII. Logistic theory of the C–D effect, J. Inst. Polytec
Osaka City University 7 (1956) 35–72.

[20] C. Damgaard, Plant competition experiments: testing hypo
ses and estimating the probability of coexistence, Ecology
(1998) 1760–1767.

[21] J.K.A. Bleasdale, J.A. Nelder, Plant populations and cro
yield, Nature 188 (1960) 342.

[22] R. Mead, Plant density and crop yield, Appl. Stat. 19 (19
64–81.

[23] A.R. Watkinson, Density-dependence in single species popu
tions of plants, J. Theor. Biol. 83 (1980) 345–357.
[24] J. Vandermeer, Plant competition and the yield–density r
tionship, J. Theor. Biol. 109 (1984) 393–399.

[25] S.A. Levin, S.W. Pacala, Theories of simplification and scal
of spatially distributed processes, in: D. Tilman, P. Kare
(Eds.), Spatial Ecology, Princeton University Press, Prince
NJ, 1997, pp. 271–295.

[26] R. Durrett, S. Levin, The importance of being discrete (an
spatial), Theor. Popul. Biol. 46 (1994) 363–394.

[27] B.M. Bolker, D.H. Deutschman, G. Hartvigsen, D.L. Smi
Individual-based modelling: what is the difference?, Tren
Ecol. Evol. 12 (1997) 111.

[28] P. Stoll, J. Weiner, A neighborhood view of interactions amo
individual plants, in: U. Dieckmann, R. Law, J.A.J. Me
(Eds.), The Geometry of Ecological Interactions, Cambridg
University Press, Cambridge, 2000, pp. 11–27.

[29] T. Hara, T. Wyszomirski, Competitive asymmetry reduc
spatial effects on size-structure dynamics in plant populatio
Ann. Bot. 73 (1994) 173–190.

[30] D.J. Gates, M. Westcott, Zone of influence models for com
tition in plantations, Adv. Appl. Probab. 10 (1978) 299–537

[31] J. Weiner, P. Stoll, H. Muller-Landau, A. Jasentuliyana, T
effects of density, spatial pattern and competitive symm
on size variation in simulated plant populations, Am. Nat. 1
(2001) 438–450.

[32] T. Wyszomirski, A simulation model of the growth of com
peting individuals of a plantpopulation, Ekol. Pol. 31 (1983
73–92.

[33] U. Berger, H. Hildenbrandt, A new approach to spatially
plicit modelling of forest dynamics: spacing, ageing and nei
bourhood competition of mangrove trees, Ecol. Model. 1
(2000) 287–302.

[34] S.W. Pacala, J.A. Silander, Neighbourhood models of p
population dynamics. I. Single species models of annuals,
Nat. 125 (1985) 385–411.

[35] D.A. Coomes, M. Rees, L. Turnbull, S. Ratcliffe, On t
mechanisms of coexistence among annual-plant species
ing neighbourhood techniques and simulation models, P
Ecol. 163 (2002) 23–38.

[36] S.W. Pacala, J.A. Silander, Field tests of neighborhood pop
tion dynamic models of two annual species, Ecol. Monogr.
(1990) 113–134.

[37] N. Sletvold, G. Hestmark, A comparative test of the predict
power of neighbourhood modelsin natural populations o
Lasillia pustulata, Can. J. Bot. 77 (1999) 1655–1661.

[38] B.M. Bolker, S.W. Pacala, S.A. Levin, Moment methods
ecological processes in continuous space, in: U. Dieckm
R. Law, J.A.J. Metz (Eds.), TheGeometry of Ecological Inter
actions: Simplifying Spatial Complexity, Cambridge Unive
sity Press, Cambridge, 2000, pp. 388–411.

[39] U. Dieckmann, R. Law, J.A.J. Metz (Eds.), The Geome
of Ecological Interactions: Simplifying Spatial Complexit
Cambridge University Press, Cambridge, 2000.

[40] P. Soares, M. Tomé, Distance-dependent competition mea
for eucalyptus plantations in Portugal, Ann. For. Sci. 56 (1999
307–319.


	Modelling individual plant growth at a variable mean density  or at a specific spatial setting
	Introduction
	Richards growth model
	Size-asymmetric growth
	Effect of plant density
	Modelling spatial effects
	Acknowledgements
	References


