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Abstract

In this paper we consider cell cycle models for which the transition operator for the evolution of birth mass density is a
linear dynamical system with a stochastic perturbation. The convolution model for a birth mass distribution is presented
functions of birth mass and tail probabilities inn-th generation are calculated by a saddle-point approximation method.
these probabilities, representing the probability of exceeding an acceptable mass value, we have more control over pa
growth. A computer simulation is presented for cell proliferation in the age-dependent cell cycle model. The simulatio
into account the fact that the age-dependent model with a linear growth is a simple linear dynamical system with an
stochastic perturbation. The simulated data as well as the experimental data (generation times for mouseL) are fitted by the
proposed convolution model.To cite this article: J. Tyrcha, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The cell cycle is normally defined as the peri
from cell birth to its division into two daughter cell
The most significant aspect of cell growth is the
synthesis of new cellular material, such as prote
and the initiation of DNA synthesis is one of th
first observable cell cycle landmarks. There are c
that are characterized by uncontrolled growth. It
of greatest interest to find answer to the ques
what causes the cell to begin initiation of DN
synthesis, since this problem is closely connected w
explaining the cause of pathological growth, such a
cancer.

E-mail address:joanna@math.su.se (J. Tyrcha).
1631-0691/$ – see front matter 2004 Académie des sciences. Publis
doi:10.1016/j.crvi.2003.05.002
Many mathematical models were proposed wh
explain the asymptotic stability of the cell cycl
By the stability concept we mean the stability of t
line: mother–daughter–granddaughter–great-gra
daughter, etc. We derive a recursion relation for
distribution of cell mass at birth in a sample of ce
in the generationn given the distribution in the gen
erationn − 1. We prove the existence of a uniqu
asymptotically stable, limiting mass distribution. A
alternative convention suggested, among others
Harris [1] and Jagers [2] is to choose samples fr
all cells present in the culture at a particular instant o
time, and investigate stabilization of the mass dist
ution in the population as time passes.

The cell cycle is one of many examples of syste
that have a mixture of deterministic and probabilis
dynamics. Many other examples may be found in
hed by Elsevier SAS. All rights reserved.
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In this paper we develop a general modelling fram
work for such systems.

First, we shortly review previous cell cycle mo
els and the mathematical tools used to investigate th
asymptotic stability of the mass distribution at bir
We concentrate on the models that represent linea
dynamical systems with a stochastic perturbation
Section 3, we present the convolution model for e
mating distributions of cell mass at birth. In Section
we describe our simulation procedure. In Section 5,
present the maximum likelihood method for estim
parameters in our convolution model and finally sh
how the theoretical density functions of cell mass b
fit both our simulated and experimental data.

2. Background

The cell mass at birth(x) may be considered a
a random variable. If we denote byf the density
function of the mass distribution at birth for a moth
cell thenPf denotes the density function of the ma
distribution at birth for daughter cells. In general t
operatorP has the form

(1)Pf (x) =
∞∫

0

K(x,y)f (y)dy

whereK is to be thought of as the conditional pro
ability that, given a massy in the previous generation
we will have a massx in the current generation.K is
a stochastic Markov kernel, which means:

∞∫
0

K(x, r)dx = 1 for r � 0 and

K(x, r) � 0 for x � 0, r � 0

The particular form of the kernelK(x,y) depends
on the assumptions concerning the mass growth
the probability of division. Depending on these a
sumptions we can distinguish, among others, the
lowing models of the cell cycle: the mitogen model [
the tandem model [5], the probabilistic model [6,
and the generalized mitogen model [8]. In all the
models, the authors studied asymptotic propertie
the sequence of iterates{Pn} (Pn denotes the mas
density function in then-th generation).
In the paper by Lasota, Mackey and Tyrcha [
we developed a general modelling framework
the treatment of the statistical dynamics of syste
in which easily identifiable events occur at irregu
times. The desired recurrence relation between suc
sive mass levels at event occurrence is given by:

xn+1 = λ−1(Q−1(Q(xn) + τn

))
(2)for n = 0,1, . . .

where, by assumption,xn and τn are independen
stochastic variables. We assume thatQ andλ satisfy
the following conditions:

– the functionsQ :R+ → R+ andλ :R+ → R+ are
non-decreasing and absolutely continuous on e
subinterval[0, c] on the half-lineR+;

– Q(0) = λ(0) = 0 and lim
n→∞ Q(x) = lim

x→∞λ(x) =
∞.

In interpreting the cell division cycle within th
context of the general model presented in [9],
associate the occurrence of an event with a trigge
of the process, which ultimately leads to mitosis a
cytokinesis.

The class of models proposed by Lasota and M
key [4], Tyson and Hannsgen [5] and Tyrcha
satisfies all of the conditions of the general mo
described above and in [9]. Furthermore, the quant
of mass in consecutive generations of newly b
cells satisfy the recurrence relation (2) withτn having
a survival function e−x . Settingzn = Q[λ(xn)], the
transition operator for the evolution of mass dens
(2) is given by:

(3)zn+1 = Q
[
λ−1(Q−1(zn)

)] + τn

As another example, extensions proposed by Ty
and Hannsgen [7] and Hannsgen et al. [6] of the w
known cell cycle models of Smith and Martin [10] an
Shields [11] also fall within the general framework
this paper. In this situation, we assume that the
goes through phases A and B, and that the lengthTB
of phase B is constant. The end of the B phase m
cell division. The lengthTA of phase A is considere
to be a random variable with a density functionh so
as:

(4)Prob(TA � t) =
∞∫

h(z)dz for t � 0
t
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The mass is produced with dynamics described
equation dx/dt = g(x), g > 0, is assumed to not affec
TA, and divides equally between daughter cells
division. Thus, by assumption,TA andx(0) (x(0) is
a cell mass at timet = 0) are independent. So, th
dynamical system (3) reduces to [12]:

(5)zn+1 = 1

2
zn + 1

2
τn

wherez0 is the cell mass at birth in 0-th generation a
τn (n = 0,1, . . .) is a stochastic mass increment duri
the timeTAn + TB. This is a simple, linear dynamica
system with a stochastic perturbation.

3. Convolution model

We considered before [8,12] the asymptotic sta
ity of the cell mass at birth for both mass-depend
and age-dependent models of the cell cycle. In
paper, we describe a cell mass distribution at birth
nth generation if we assume a cell mass distributio
birth in 0-th generation and distribution of stochas
perturbations (Eqs. (3) and (5)).

Let x0, τ0, τ1, ‘K ’ be a sequence of independe
stochastic variables wherex0 is a Gaussian stocha
tic variable and theτn are exponentially distributed
Our model for the first cell generation is a trunca
distribution of the convolution of the Gaussian a
the exponential distributions. Such a model is a
sult of discussion with a group of biologists lead
Prof. Anders Zetterberg (Karolinska Institute, Stoc
holm, Sweden). From experimental investigations
follows the assumption about initial cell mass distrib-
ution at birth being Gaussian (see also [13]). Start
from the initial mass, a cell is growing up but, ev
if it grows up according to a deterministic equatio
one can observe some stochastic perturbations. A
chastic mass increment is assumed to be exponen
distributed. We are interested in the truncated distr
tion, because we would like to eliminate cells with
extremely high mass.

The distribution of the convolution of the Gaussi
and the exponential distributions depend on th
parameters: the mean value (equal to the stan
deviation) 1/a of the exponential, wherea is the
intensity parameter, and the meanµ and the standar
deviationσ of the Gaussian component. Its density c
be expressed as:

f (x) = a exp

{
a2σ 2

2
− a(x − µ)

}

(6)× Φ

(
x − µ − σ 2a

σ

)

whereΦ denotes the standard Gaussian cumula
distribution function.

When cell masses above a maximum valueT are
not taken into consideration, it means that distribut
in Eq. (6) is truncated inT . The truncated densit
functionfT (x) looks as follows:

(7)fT (x) =



f (x)

F (T )
, 0 � x � T

0, otherwise

where

F(T ) = Φ

(
T − µ

σ

)

− exp

{
a2σ 2

2
− a(T − µ)

}
Φ

(
T − µ − σ 2a

σ

)

is the cumulative distribution function correspondi
to f .

If we assume that Eq. (7) holds, then our mo
for the n-th cell generation is the truncated convo
tion of n copies of the distribution for one generatio
The convolution offT with itself cannot be explic
itly given. Usually calculations for convolutions a
made via Fourier transforms and Fourier inversi
since a convolution of distributions corresponds
multiplication of their Fourier transforms. Howeve
the truncated distribution (7) for then-th cell gener-
ation has no explicit Fourier transform.

Instead, we have calculated the distribution
the n-th cell generation by a saddle-point appro
mation [14–16]. This is a very accurate distributi
approximation in many situations. The saddle-po
approximation method uses the Laplace transform
moment generating function), and not the Fou
transform. The Laplace transformψ(θ) of (6) can be
explicitly calculated:

ψ(θ) = 1

F(T )(1− θ/a)

[
b1(θ) − b2(θ)

]
where

b1(θ) = exp

{
µθ + σ 2θ2

2

}
Φ

(
T − µ − σ 2θ

σ

)
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b2(θ) = exp

{
a2σ 2

2
+ aµ + T (θ − a)

}

× Φ

(
T − µ − σ 2a

σ

)

Let X1, . . . ,Xn be independent and identically distri
uted random variables, copies of a random variablX

with densityfT (x) and Laplace transformψ(θ). Con-
sider:

Sn = X1 + · · · + Xn

The density functionfn of Sn is then-fold convolution
of fT :

fn(s) = f n∗
T (s)

As a technical trick (exponential tilting), we associa
with fn(s) the exponential family:

fn(s; θ) = eθsfn(s)/ψ(θ)n

(8)= exp
{
θs − K(θ)

}
fn(s)

whereK(θ) = n logψ(θ) is the cumulant transform
(the cumulant generating function) forSn. We have the
formulas

µ(θ) = ∂K

∂θ
, σ 2(θ) = ∂2K

∂θ2

Cm(θ) = K(m)(θ)

σm(θ)
(m > 2)

where µ(θ) and σ 2(θ) denote respectively the ex
pected value and the variance for the exponen
family fn(s; θ), andK(m) andCm are raw and normal
ized cumulants, respectively. These formulae are w
known from the general theory of exponential fam
lies, see, for example, [14,17]. In particular, note t
µ = µ(0) andσ = σ(0). More explicitly, in our case:

µ(θ) = 1

a − θ

(9)+ (µ + θσ 2)b1(θ) − T b2(θ) − b3(θ)

b1(θ) − b2(θ)

where the functionsb1 andb2 are given above and

b3(θ) = σ√ eθT −(T −µ)2/(2σ 2)
2π
The second derivative of the cumulant transformK

has the form:

σ 2(θ) = 1

(a − θ)2 + [
σ 2b1(θ)

+ (
µ + θσ 2){(µ + θσ 2)b1(θ) − b3(θ)

}
− T 2b2(θ) − T b3(θ)

] · (b1(θ) − b2(θ)
)−1

− {(µ + θσ 2)b1(θ) − T b2(θ) − b3(θ)}2

{b1(θ) − b2(θ)}2

We require a good approximation to the tail proba
ity Prob(Sn > s) because it is interesting to be ab
to calculate the probability that a cell mass exce
some level. However, we start by giving an appro
mation to the densityfn of Sn, which is analogous
but slightly simpler. For any suchs, the corresponding
root θ̂ = θ̂ (s) of the equationK ′(θ) = s (the saddle
point) has a crucial role. Suppose now that we w
to calculate a good approximation tofn(s) = fn(s;0)

for a given value ofs. We write:

fn(s) = exp
{−θs + K(θ)

}
fn(s; θ)

and then chooseθ = θ̂ (s), that is the ML estimator in
the exponential family (8). The approximation

f̂n(s) = ψ(θ̂)n exp(−θ̂s)

σ (θ̂)
√

2πn

is the saddle-point approximation to the density fu
tion fn of Sn. A refined version is:

f̂n(s) = ψ(θ̂)n exp(−θ̂s)

σ (θ̂)
√

2πn

×
{

1+ 1

n

[
C4(θ̂ )

8
− 5

24
C3(θ̂ )2

]}

see [14] (formula (2.2.4)). Our model of the cell bir
mass inn-th generation is the truncated convolution o
n copies of the distribution given by (7), so the dens
functionf̂ ∗

n (s) for the truncateds is:

f̂ ∗
n (s) =




f̂n(s)

F (T r)
, 0 � s � T r

0, otherwise

whereF(T r) is the cumulative distribution functio
corresponding tof̂n(s). Before presenting the formu
for the cumulative distribution functionF(s) or tail
probabilities, we would like to make the followin
remark.
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In many applications, the saddle-point equat
µ(θ) = s cannot be solved analytically, although t
solution θ̂ exists. This is also the case here. T
saddle-point method can still be applied by solv
the equation numerically. Often one uses Newto
Raphson derivative-based methods to calculate
saddle-point. These methods in general will work w
since the functionK(θ) − θs to be minimized is
convex. The second derivative exists and is alw
positive. An initial approximationθ0 is chosen and a
iterative procedure is then used to calculate the sad
point.

Let us turn then to the tail probabilities. W
considerProb(Sn � s), where s � µ(0). Then the
solution θ̂ of equation µ(θ) = s satisfies θ̂ � 0.
For θ̂ � 0, we can calculate the tail probability (o
risk) that the cell mass exceeds any specified levs
according to the formula

(10)Prob(Sn � s) = ψ(θ̂ )n exp(−θ̂s)√
n|θ̂ |σ(θ̂)

B0(η)

or the refined version

Prob(Sn � s) = ψ(θ̂ )n exp(−θ̂s)√
n|θ̂ |σ(θ̂)

×
{
B0(η) + sgn(θ̂ )√

n

C3(θ̂ )

6
B3(η)

}

whereB0(η) andB3(η) are the Esscher functions:

Bk(η) = 1

2π

∞∫
−∞

exp

(
− t2

2

)
(it)k

1+ it/λ
dt

see [14] (formula (2.2.6)). The Esscher functions c
be expressed in terms ofΦ by:

B0(η) = η exp

(
η2

2

)[
1− Φ(η)

]

and

B3(η) = −[
η3B0(η) − (

η3 − η
)
(2π)−1/2]

Observe that the Edgeworth approximation me
ods provide reasonably good approximations in
centre of the density, but not in the tails, where the
proximating density can even be negative. The sad
point method gives good approximations farther
in the tail and quite good approximations to small-t
probabilities.
4. Data simulation

To see how our analytical formula for̂f ∗
n (s) com-

pares with a birth-mass histogram from a finite c
population, we have simulated an ideal cellular p
ulation by Monte Carlo methods. In particular, 5
cells were allowed to growlinearly and divide accord
ing to the assumptions in the age-dependent mo
We chose the age-dependent model because it
shown [12] that together with a linear growth, th
model is a simple linear dynamical system with
additive stochastic perturbation (see formula (5)).
we assume that at division each mother cell divi
equally between two daughter cells. The lengthTA of
phase A is a random variable exponentially distribu
(formula (4)). At division, one daughter was remov
from the culture, so that there were always 550 cell
each generation. From an initial arbitrary distributi
of birth masses of the 550 cells, the culture was sim
lated for 20 generations. A histogram of 550 cell bi
masses is shown in Fig. 1. The analysis presente
this paper assumes that the fundamentally discrete his
togram of cell birth masses in a finite population c
be approximated by a continuous probability density
functionf̂ ∗

n (s).

5. Parameter estimation

5.1. Maximum likelihood method

We here discuss the estimation of model parame
from a sample of cell masses, specifically the sam
illustrated in Fig. 1. We first assume that the mo
is given by (6), that is a three-parametric convolut
of an exponential distribution with a Gaussian o
In the next section we allow occasional high mass
occurring with a probabilityδ, which is then an
additional parameter to be estimated.

Let the sample bex1, x2, ‘Λ’, xN . The likelihood
function is:

L(a,µ,σ) =
N∏

i=1

f (xi, a,µ,σ )

where
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(11)

= a exp

{
a2σ 2

2
− a(xi − µ)

}
Φ

(
xi − µ − σ 2a

σ

)

The maximum likelihood estimates satisfy the like
hood equations:

∂ logL

∂a
= 0,

∂ logL

∂µ
= 0,

∂ logL

∂σ
= 0

We have, taking natural logarithms,

logL(a,µ,σ) = N loga + N
a2σ 2

2

− a

N∑
i=1

xi + Naµ +
N∑

i=1

logΦ

(
xi − µ − σ 2a

σ

)

and we obtain the following equations:

N∑
i=1

xi = N

(
µ + 1

a

)

Nµ + Nσ 2a − σ

N∑
i=1

ϕ(zi)

Φ(zi)
= Nµ

Nσ 2 + N
(
µ − σ 2a

)2 − (
µ + σ 2a

) N∑
i=1

ϕ(zi)

Φ(zi)

(12)− σ

N∑
ui

ϕ(zi)

Φ(zi)
= N

(
µ2 + σ 2)

Fig. 1. Histogram of cell masses,N = 550.
where

zi = xi − µ − σ 2a

σ

These equations, which can be simplified,
expressed above in the formE(·|x1, . . . , xn) = E(·),
for a representation of the minimal sufficient statis
of the ‘complete’ exponential family we would hav
had if we could have observed the exponential
the Gaussian separately. It is impossible to so
these equations explicitly, so some iterative metho
required. One possibility is to use the EM algorith
[18,19], which will iterate between the left- and righ
hand sides of (12), but it will be quite slow. Therefo
we instead eliminatedµ (µ = x̄ − 1/a) from the first
equation and obtained the following profile-likeliho
function for(a, σ ):

logL(a,σ ) = N loga + Na2σ 2

2
− Nax̄

+ Na

(
x̄ − 1

a

)

+
N∑

i=1

logΦ

(
xi − (x̄ − 1/a) − σ 2a

σ

)

We calculated the above log-likelihood functio
over a grid of different values of the parametersa

and σ . The maximum point was found by makin
the grid successively finer. Based on the comp
cell mass data shown in Fig. 1, the parameters w
estimated to be:a = 11.6, µ = 0.6656,σ = 0.0079.
This estimated distribution did not fit the data w
(solid line in Fig. 2).

5.2. Modified maximum-likelihood method

The following modified ML iterative procedure wa
found to be practical and adequate for dealing w
the high cell masses in the large sample of data
was available (N = 550). As the first step, model (6
is fitted by ML to all of data, as described above.
the fitted model, the (high) valuet is determined such
that only one observation should have been expe
abovet , according to (6). In our case, an explicit a
close approximation tot is given by:

exp
(−â(t − µ̂) + â2σ̂ 2/2

) = 1/N
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Fig. 2. Histogram and two density functions.

because in the tail of (6) theΦ-factor will be close
to 1. Now, all but one of thed (say) actual observation
abovet are assumed to represent what we call h
losses, and consequently the probabilityδ for high
losses can be estimated asδ̂ = (d − 1)/N . If exactly
one observation were to be found abovet , its expected
value in the fitted distribution would be approximate
t + 1/λ̂. Hence, as the second step, thed actual obser-
vations abovet are replaced by a single observation
t + 1/λ̂, and the parameters of (6) are re-estimated

This procedure is repeated until convergence.
With the actual data shown in Fig. 1, the parame

were estimated to be:a = 15.0, µ = 0.6673, σ =
0.0089. Fig. 2 shows the fit of this distribution to th
data truncated at 1.05.

6. Generation times

In the previous sections, we considered the
mass at division for models of the cell cycle. Knowi
the distribution of birth masses, we can also determ
the distribution of generation times, i.e. the time fro
cell birth to division. In the particular case whe
fn = f∗(n = 0,1, . . .) is a time-independent stationa
sequence, the distribution of generation time has
same property.

We tried to verify our convolution model using e
perimental data from mouseL. We received the dat
from Prof. Michael C. Mackey (McGill University
Montreal, Canada). The data contain 89 pairs of ge
ation times for respective daughter (sister) cells. Us
Fig. 3. Histogram (experimentaldata) and density function est
mated by maximum-likehood technique.

the maximum-likelihood technique described in S
tion 5.1, we estimate parameters in the convolution
model to be:a = 3.2,µ = 0.5178,σ = 0.02. The theo-
retical density function fits the experimental data qu
well (see Fig. 3). The same experimental data (mo
L) was used before to check the sister cell model
scribed in [12]. The fitting of the data by the dens
function in the convolution model is much better th
it was in the sister cell model (see Fig. 4 in [12]).

7. Conclusion

We have estimated the cell cycle models that h
a mixture of deterministic and probabilistic dynam
ics. We proposed to estimate a distribution of c
birth masses with truncatedconvolution of Gaussian
and exponential distributions. It was shown that
convolution model fits well both the Monte Carlo sim
ulated data and experimental data (mouseL). It is very
important to be able to calculate the probability th
a cell mass exceeds some level. The ability to c
trol a pathological growth has a big significance
the biology. The saddle-point approximation meth
presented here is very useful in calculating such
probabilities. Thismethod is good not only in our con
volution model, but in many other possible mode
since it gives good approximations to small tail prob
bilities.
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