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Abstract

In this paper we consider cell cycle models for which the transition operator for the evolution of birth mass density is a simple,
linear dynamical system with a stochastic perturbation. The convolution model for a birth mass distribution is presented. Density
functions of birth mass and tail probabilitiessinth generation are calculated by a saddle-point approximation method. With
these probabilities, representing the probability of exceeding an acceptable mass value, we have more control over pathologice
growth. A computer simulation is presented for cell proliferation in the age-dependent cell cycle model. The simulation takes
into account the fact that the age-dependent model with a linear growth is a simple linear dynamical system with an additive
stochastic perturbation. The simulated data as well as the experimental data (generation times fdr)racei$igted by the
proposed convolution modelo citethisarticle: J. Tyrcha, C. R. Biologies 327 (2004).
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1. Introduction Many mathematical models were proposed which
explain the asymptotic stability of the cell cycle.
The cell cycle is normally defined as the period I_By the stability concept we mean the stability of the
from cell birth to its division into two daughter cells. lIné:  mother-daughter-granddaughter—great-grand-—
The most significant agmt of cell growth is the daughter, etc. We derive a recursion relation for the

synthesis of new cellular material, such as proteins, distribution of cell mass at birth in a sample of cells
and the initiation of DNA synthesis is one of the N the generatiom given the distribution in the gen-

first observable cell cycle landmarks. There are cells €rationn — 1. We prove the existence of a unique,
that are characterized by uncontrolled growth. It is @Symptotically stable, limiting mass distribution. An
of greatest interest to find answer to the question alterpaﬂve convention S“QQGSted’ among others, by
what causes the cell to begin initiation of DNA Harris [1] and Jagers [2] is to choose samples from

synthesis, since this problem is closely connected with all cells present in the culta at a particular instant of

explaining the cause of pathological growth, such as in “”.‘e' gnd |nvest|gat'e stab|!|zat|on of the mass distrib-
ution in the population as time passes.

cancer :
The cell cycle is one of many examples of systems

that have a mixture of deterministic and probabilistic

E-mail addressjoanna@math.su.se (J. Tyrcha). dynamics. Many other examples may be found in [3].
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In this paper we develop a general modelling frame-  In the paper by Lasota, Mackey and Tyrcha [9],
work for such systems. we developed a general modelling framework for
First, we shortly review previous cell cycle mod- the treatment of the statistical dynamics of systems
els and the mathematicaldls used to investigate the in which easily identifiable events occur at irregular
asymptotic stability of the mass distribution at birth. times. The desired recurrence relation between succes-
We concentrate on the mddethat represent linear  sive mass levels at event occurrence is given by:
dynamical systems with a stochastic perturbation. In 1421
Section 3, we present the convolution model for esti- T = 27H(Q7HQ0m) + 7))
mating distributions of cell mass at birth. In Section4, forn=0,1,... 2)
we describe our simulation procedure. In Section 5, we where, by assumptiony, and z, are independent
present the maximum likelihood method for estimate stochastic variables. We assume tigaand 1 satisfy
parameters in our convolution model and finally show the following conditions:
how the theoretical density functions of cell mass birth
fit both our simulated and experimental data. — the functionsQ : R, — R, andi: R, — R, are
non-decreasing and absolutely continuous on each
subintervalO, c] on the half-lineR,;
2. Background — Q00)=A(0)=0and lim Q)= lim A(x) =
0. n—oQ X—>0Q
The cell mass at birtlix) may be considered as
a random variable. If we denote by the density In interpreting the cell division cycle within the
function of the mass distribution at birth for a mother context of the general model presented in [9], we
cell thenPf denotes the density function of the mass associate the occurrence of an event with a triggering
distribution at birth for daughter cells. In general the of the process, which ultimately leads to mitosis and
operatorP has the form cytokinesis.
The class of models proposed by Lasota and Mac-

7 key [4], Tyson and Hannsgen [5] and Tyrcha [8]
Pf(x) Z/K(X’Y)f(Y) dy (1) satisfies all of the conditions of the general model
0 described above and in [9]. Furthermore, the quantities

of mass in consecutive generations of newly born
cells satisfy the recurrence relation (2) withhaving

a survival function &*. Settingz, = Q[A(x,)], the
transition operator for the evolution of mass density
(2) is given by:

whereK is to be thought of as the conditional prob-
ability that, given a mass in the previous generation,
we will have a mass in the current generatiork is

a stochastic Markov kernel, which means:

o
/K(x,r)dx:l forr =0 and ZWFI:Q[}‘ l(Q 1(Z"))]+T” (3)

As another example, extensions proposed by Tyson
and Hannsgen [7] and Hannsgen et al. [6] of the well-
known cell cycle models of Smith and Martin [10] and

The particular form of the kerndt (x, y) depends Shields [11] also fall within the general framework of
on the assumptions concerning the mass growth andthis paper. In this situation, we assume that the cell
the probability of division. Depending on these as- goes through phases A and B, and that the leffgth
sumptions we can distinguish, among others, the fol- of phase B is constant. The end of the B phase marks
lowing models of the cell cycle: the mitogen model [4], cell division. The lengtt¥a of phase A is considered
the tandem model [5], the probabilistic model [6,7], to be a random variable with a density functibrso
and the generalized mitogen model [8]. In all these as:
models, the authors studied asymptotic properties of

0.¢]
the sequence of iteratg"} (P" denotes the mass  Prob(7a > 1) :/h(z) dz fort>0 (4)
density function in ther-th generation). /

0
K(x,r)>0 forx>0,r>0
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The mass is produced with dynamics described by be expressed as:

equation d/dr = g(x), g > 0, is assumed to not affect

Ta, and divides equally between daughter cells at f(x) =aex

division. Thus, by assumptiofa andx(0) (x(0) is
a cell mass at time = 0) are independent. So, the
dynamical system (3) reduces to [12]:

in+l = Ezn + 5 (5)
wherezg is the cell mass at birth in 0-th generation and
7, (n=0,1,...)is a stochastic mass increment during
the timeTa, + Tg. This is a simple, linear dynamical
system with a stochastic perturbation.

Tn

3. Convolution model

We considered before [8,12] the asymptotic stabil-

Cl202
> —a(x—u)}

_ 2
x¢<7x “U "“) (6)

where @ denotes the standard Gaussian cumulative
distribution function.

When cell masses above a maximum valuare
not taken into consideration, it means that distribution
in Eg. (6) is truncated ir". The truncated density
function fr (x) looks as follows:

fx) ’ A <T

frx)=1{ F(T) @)
0, otherwise

where

T —
ity of the cell mass at birth for both mass-dependent F(T) = <D< ““)
o

and age-dependent models of the cell cycle. In this

paper, we describe a cell mass distribution at birth in

nth generation if we assume a cell mass distribution at

birth in 0-th generation and distribution of stochastic
perturbations (Egs. (3) and (5)).

Let xo, 70, 71, 'K’ be a sequence of independent
stochastic variables wherg is a Gaussian stochas-
tic variable and ther,, are exponentially distributed.
Our model for the first cell generation is a truncated
distribution of the convolution of the Gaussian and
the exponential distributions. Such a model is a re-
sult of discussion with a group of biologists lead by
Prof. Anders Zetterberg (Karolinska Institute, Stock-
holm, Sweden). From experimental investigations, it
follows the assumption aboutitial cell mass distrib-
ution at birth being Gaussian (see also [13]). Starting
from the initial mass, a cell is growing up but, even
if it grows up according to a deterministic equation,

ac? } <T—/L—02a>
—— —a(T —p) | —
2 o

is the cumulative distribution function corresponding
to f.

If we assume that Eq. (7) holds, then our model
for the n-th cell generation is the truncated convolu-
tion of n copies of the distribution for one generation.
The convolution of fr with itself cannot be explic-
itly given. Usually calculations for convolutions are
made via Fourier transforms and Fourier inversion,
since a convolution of distributions corresponds to
multiplication of their Fourier transforms. However,
the truncated distribution (7) for the-th cell gener-
ation has no explicit Fourier transform.

Instead, we have calculated the distribution for
the n-th cell generation by a saddle-point approxi-
mation [14-16]. This is a very accurate distribution

one can observe some stochastic perturbations. A sto-gpproximation in many situations. The saddle-point
chastic mass increment is assumed to be exponentiallyapproximation method uses the Laplace transform (the
distributed. We are interested in the truncated distribu- moment generating function), and not the Fourier
tion, because we would like to eliminate cells with an  transform. The Laplace transformn(6) of (6) can be

extremely high mass. explicitly calculated:
The distribution of the convolution of the Gaussian

and the exponential distributions depend on three v (0) =
parameters: the mean value (equal to the standard
deviation) Ya of the exponential, where is the

intensity parameter, and the mearand the standard o262
deviationo of the Gaussian component. Its density can b1(6) :‘EXP{W + 2

[616) — b2(6)]

o)

F(T)Y(1-06/a)
where
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and
(1202
b2(0) = ex - +apn+TO — a)}
‘@ < T—pn— 02a>
o
LetXy,..., X, beindependentand identically distrib-

uted random variables, copies of a random variable
with density fr (x) and Laplace transforms (6). Con-
sider:

Sn:X1+"'+Xn
The density functiory, of S, is then-fold convolution
of fr:
Fuls) = f7 ()
As a technical trick (exponential tilting), we associate
with £, (s) the exponential family:
Fu(s:0) =€ fu(5) /9 (6)"
=exp{6s — K(0)} fu(s) 8)

where K (6) = nlogy(0) is the cumulant transform
(the cumulant generating function) f§§. We have the

formulas
© 9K 20 92K
= — o e —
H YR 362
K(m)(g)
m = 2
Cn(8) 7 ) (m>2)

where 1(0) and 02(9) denote respectively the ex-

pected value and the variance for the exponential

family £, (s; 8), andk ™ andC,, are raw and normal-
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The second derivative of the cumulant transfokin
has the form:

a?(60) = +[0%h1(0)

(a—0)2
+ (1 +002) | (n +602)b1(6) — b3(6)}
— T%b2(0) — Tb3(®)] - (b1(6) — bz(@))_l
{1 +602b1(8) — Th2(6) — b3(6))?

{b1(6) — b2(6)}?
We require a good approximation to the tail probabil-
ity Prob(S, > s) because it is interesting to be able
to calculate the probability that a cell mass exceeds
some level. However, we start by giving an approxi-
mation to the densityf,, of S,, which is analogous,
but slightly simpler. For any such the corresponding
root 6 = 6(s) of the equationk’(9) = s (the saddle
point) has a crucial role. Suppose now that we wish

to calculate a good approximation f(s) = f,,(s; 0)
for a given value of. We write:

fu(s) =exp{—0s + K (0)} fu(s: 6)
and then choose = 4 (s), that is the ML estimator in
the exponential family (8). The approximation
¥ (0)" exp(—bs)
a(é)«/ 2mn
is the saddle-point approximation to the density func-
tion f, of S,. A refined version is:
¥ (6)" exp(—6s)
o (0)v/2mn

1[Ca6) 5 . ~,

fuls) =

fuls) =

ized cumulants, respectively. These formulae are well see [14] (formula (2.2.4)). Our model of the cell birth

known from the general theory of exponential fami-

lies, see, for example, [14,17]. In particular, note that

u = u(0) ando = o (0). More explicitly, in our case:
1
a—=~0
(1 +002)b1(0) — Tha(0) — b3(0)
b1(0) — b2(0)
where the functions; andb; are given above and

n(0) =

9)

ba(6) = —— PT—(T-w?/(20%

V2

mass im-th generation is thetincated convolution of
n copies of the distribution given by (7), so the density
function £, (s) for the truncated is:

) Fn(s)
i) =1 FTr)y
0,

<s<Tr

otherwise

where F(Tr) is the cumulative distribution function
corresponding tg, (s). Before presenting the formula
for the cumulative distribution functiod(s) or tail
probabilities, we would like to make the following
remark.
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In many applications, the saddle-point equation
u(#) = s cannot be solved analytically, although the
solution § exists. This is also the case here. The
saddle-point method can still be applied by solving
the equation numerically. Often one uses Newton—
Raphson derivative-based methods to calculate the
saddle-point. These methods in general will work well
since the functionK () — 0s to be minimized is
convex. The second derivative exists and is always
positive. An initial approximatiodg is chosen and an
iterative procedure is then used to calculate the saddle-
point.

Let us turn then to the tail probabilities. We
considerProb(S,, > s), wheres > u(0). Then the
solution 6 of equation (0) = s satisfiesd > 0.

For 6 > 0, we can calculate the tail probability (or
risk) that the cell mass exceeds any specified level
according to the formula

¥ ()" exp(—0s) s

Prob(S, > s) = — o(m) (10)

Vnlflo )
or the refined version
Prob(s, > s) = L0) EXA=05)

Vnlflo (9)

sgnd) C3(0)
B B
X{ o(m) + N 3(n)}
whereBo(n) and B3(n) are the Esscher functions:
o0
1 2\ (in)*

Bi(n) = — -
= /exF)( 2>1+iz/x

see [14] (formula (2.2.6)). The Esscher functions can
be expressed in terms df by:

)[1— ()]

2

Bo(n) =n eXIO(%

and

B3(n) = —[1®Bo(n) — (n® - n)(2n)Y/?]

Observe that the Edgeworth approximation meth-
ods provide reasonably good approximations in the
centre of the density, but not in the tails, where the ap-
proximating density can even be negative. The saddle-
point method gives good approximations farther out
in the tail and quite good approximations to small-tail
probabilities.
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4, Datasimulation

To see how our analytical formula f(fg;*(s) com-
pares with a birth-mass histogram from a finite cell
population, we have simulated an ideal cellular pop-
ulation by Monte Carlo methods. In particular, 550
cells were allowed to grovinearly and divide accord-
ing to the assumptions in the age-dependent model.
We chose the age-dependent model because it was
shown [12] that together with a linear growth, this
model is a simple linear dynamical system with an
additive stochastic perturbation (see formula (5)). So,
we assume that at division each mother cell divides
equally between two daughter cells. The lengthof
phase A is a random variable exponentially distributed
(formula (4)). At division, one daughter was removed
from the culture, so that there were always 550 cells in
each generation. From an initial arbitrary distribution
of birth masses of the 550 cells, the culture was simu-
lated for 20 generations. A histogram of 550 cell birth
masses is shown in Fig. 1. The analysis presented in
this paper assumes that thenflamentally discrete his-
togram of cell birth masses in a finite population can
be approximated by a ctinuous probability density
function £ *(s).

5. Parameter estimation
5.1. Maximum likelihood method

We here discuss the estimation of model parameters
from a sample of cell masses, specifically the sample
illustrated in Fig. 1. We first assume that the model
is given by (6), that is a three-parametric convolution
of an exponential distribution with a Gaussian one.
In the next section we allow occasional high masses,
occurring with a probabilityd, which is then an
additional parameter to be estimated.

Let the sample be1, x2, ‘A", xy. The likelihood
function is:

N
L@, p,0) =[] f(xi a1, 0)

i=1

where
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fxia, p,0)

ao? Xi—p—o2a
=aexp — —alx; —pu) t&| ———
2 o
(11)

The maximum likelihood estimates satisfy the likeli-
hood equations:

alogL_0 alogL_0 dlogL
da o do
We have, taking natural logarithms,

0

k]

a0
logL(a,u,0)=Nloga + NT

N N 2
—ain +Nau+2|og¢<x'i70a>
i=1 i=1

and we obtain the following equations:

l 1
E xi=N{pn+ -
‘ a
i=1

(zi)
N/L+N02a —GZ Ld =
= P(zi)
- (i)
No? —i—N(,u — aza) — (,u +02a) !
i=1 QD(Zi)
Y )
o > L N(u2 4 0?) (12)

70

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11 1.15 12

Fig. 1. Histogram of cell masse¥, = 550.

where

These equations, which can be simplified, are
expressed above in the forf(-|x1,...,x,) = E(.),
for a representation of the minimal sufficient statistic
of the ‘complete’ exponential family we would have
had if we could have observed the exponential and
the Gaussian separately. It is impossible to solve
these equations explicitly, so some iterative method is
required. One possibility is to use the EM algorithm
[18,19], which will iterate between the left- and right-
hand sides of (12), but it will be quite slow. Therefore,
we instead eliminategt (u = x — 1/a) from the first
equation and obtained the following profile-likelihood
function for(a, o):

252 )

— Nax

logL(a,0) = Nloga +

2

(+-2)

+ Nal|x — —
a

N = 2
+Z|Og¢><xl (x —1/a) oa>

o
i=1

We calculated the above log-likelihood function
over a grid of different values of the parameters
and o. The maximum point was found by making
the grid successively finer. Based on the complete
cell mass data shown in Fig. 1, the parameters were
estimated to bez = 11.6, u = 0.6656,0 = 0.0079.
This estimated distribution did not fit the data well
(solid line in Fig. 2).

5.2. Modified maximum-likelihood method

The following modified ML iterative procedure was
found to be practical and adequate for dealing with
the high cell masses in the large sample of data that
was available § = 550). As the first step, model (6)
is fitted by ML to all of data, as described above. In
the fitted model, the (high) valueis determined such
that only one observation should have been expected
abover, according to (6). In our case, an explicit and
close approximation tois given by:

exp(—a(t — ) +a%6?%/2) =1/N
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70

0.75

0.8 0.85

Fig. 2. Histogram and two density functions.

because in the tail of (6) theé-factor will be close

to 1. Now, all but one of the (say) actual observations
abover are assumed to represent what we call high
losses, and consequently the probabilitfor high
losses can be estimated &s= (d — 1)/N. If exactly
one observation were to be found aboyits expected
value in the fitted distribution would be approximately
t 4+ 1/4. Hence, as the second step, thactual obser-
vations above are replaced by a single observation at
t +1/4, and the parameters of (6) are re-estimated.

This procedure is repead until convergence.

With the actual data shown in Fig. 1, the parameters
were estimated to ber = 15.0, u = 0.6673,0 =
0.0089. Fig. 2 shows the fit of this distribution to the
data truncated at 1.05.

6. Generation times

In the previous sections, we considered the cell
mass at division for models of the cell cycle. Knowing

0.5 1

1.5 2

Fig. 3. Histogram (experimentalata) and density function esti-
mated by maximum-likehood technique.

the maximume-likelihood technique described in Sec-
tion 5.1, we estimate parasters in the convolution
modeltobea =3.2,u =0.5178,0 = 0.02. The theo-
retical density function fits the experimental data quite
well (see Fig. 3). The same experimental data (mouse
L) was used before to check the sister cell model de-
scribed in [12]. The fitting of the data by the density
function in the convolution model is much better than
it was in the sister cell model (see Fig. 4 in [12]).

7. Conclusion

We have estimated the cell cycle models that have
a mixture of determinigc and probabilistic dynam-
ics. We proposed to estimate a distribution of cell
birth masses with truncatezbnvolution of Gaussian
and exponential distributions. It was shown that our

the distribution of birth masses, we can also determine convolution model fits well both the Monte Carlo sim-

the distribution of generation times, i.e. the time from
cell birth to division. In the particular case when
fn= fuln =0,1,...) is atime-independent stationary

ulated data and experimental data (molgdt is very
important to be able to calculate the probability that
a cell mass exceeds some level. The ability to con-

sequence, the distribution of generation time has the trol a pathological growth has a big significance in

same property.

We tried to verify our convolution model using ex-
perimental data from mousk. We received the data
from Prof. Michael C. Mackey (McGill University,

Montreal, Canada). The data contain 89 pairs of gener-

ation times for respective daughter (sister) cells. Using

the biology. The saddle-point approximation method
presented here is very useful in calculating such tail
probabilities. Thisnethod is good not only in our con-
volution model, but in many other possible models,
since it gives good approximations to small tail proba-
bilities.
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