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Abstract

Microchip arrays have become one of the most rapidly growing techniques for monitoring gene expression at the
level and thereby gaining valuable insight about various important biological mechanisms. Examples of such mechan
identifying disease-causing genes, genes involved in the regulation of some aspect of the cell cycle, etc. In this a
discuss the problem of estimating gene expression based on a proper statistical model. More precisely, we show how
introduced by Li and Wong can be used in its full bivariate generality to provide a new measure of gene expression fro
density oligonucleotide arrays. We also present a second gene expression index based on a new way of reducing the model
a simpler univariate model. In both cases, the gene expression indices are shown to be unbiased and to have lower va
the established ones. Moreover, we present a bootstrap method aiming at providing non-parametric confidence interv
expression index.To cite this article: Z. Taib, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse statistique de données de puces d’ADN à base d’oligonucléotides. Les puces d’ADN sont devenues l’une d
techniques les plus utiliséespour observer l’expression génétique à l’échelon génomique et ainsi mieux comprendre certai
mécanismes biologiques. Comme exemples de ces mécanismes, citons l’identification de gènes causant certaine
héréditaires, ou l’identification de gènes impliqués dans la régulation de certains aspects du cycle cellulaires etc.
article, nous discutons le problème d’estimation de l’expression génétique à l’aide d’un modèle statistique adéquat.
nous montrons comment le modèle introduit par Li et Wong peut être utilisé dans toute sa généralité multivariée pour obte
une nouvelle mesure de l’expression génétique dans le cas de puces d’ADN d’oligonucléotide à haute densité. D’a
nous présentons une autre mesure de l’expression génétique basée sur un nouveau concept réduisant le modèle en un a
univarié et plus simple. Nous montrons que les nouvelles mesuressont sans biais et que leurs variances sont pluspetites que les
variances des mesures existantes. Nous présentons aussi une méthode debootstrap qui vise à créer des intervalles de confian
non-paramétriques pour les mesures d’expression génétique.Pour citer cet article : Z. Taib, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In recent years, it has become possible to m
simultaneous measurements of the expression le
of tens of thousands of genes using the so-ca
microarray technology. Through various microarr
experiments, scientists try to answer various ba
biological questions ranging from understanding so
aspect of the cell cycle mechanism of a given organ
to the identification of individual genes involved
some biochemical pathway related to some biolog
function or some disease of interest.

In this article, we discuss statistical modelling
data from high-density oligonucleotide arrays of t
type manufactured by Affymetrix. The point of vie
we adopt is that statistical methods can and shoul
used in order to achieve a better understanding of
perimental data. Although statistical methods can
useful at all the stages of a typical microarray exp
iment (experimental design, image analysis and a
fact detection, normalization, calculation of gene ex
pression, making comparisons between arrays, dim
sion reduction, clustering, etc.), we will only discu
the fundamental problem of estimating the express
index (cf. [1,2]).

The article is organized as follows. In Section
we describe how the data arise in some detail.
bivariate Li–Wong model (cf. [3,4]) is presented
Section 3. This model is used in Section 4 to prov
maximum likelihood estimates of various paramete
A new way of reducing the model into a univariate o
and the resulting estimates are discussed in Sectio
Comparisons between these two estimates as we
others are discussed in the discussion section.

The main conclusion of the article is that the n
estimates seem to be better than previously establi
ones.

2. The nature of the data

First we take a look at some of the featur
of oligonucleotide-based microarrays. A single ar
(1.28 cm× 1.28 cm) can contain probe sets f
tens of thousands of genes and ESTs. Every p
set consists of 10–20 probe pairs. Every probe
contains a perfect match (PM) probe and a misma
probe (MM). The perfect match probe is a small DN
.

subsequence (25 bases long), which is assumed
specific for a particular gene, the expression of wh
we want to measure. The mismatch probe is ident
to the perfect match probe, except for the base in
middle (13th) position.

The oligonucleotides in the probes are typica
chosen from the so-called 3 prime end of the gene,
have been until recently unknown to the user. The
pression level of the gene has to be inferred from
amount of hybridisation of the PM and MM probe
The latter are measured using a scanner, whic
sensible to the fluorescence intensities of the pro
Up to now, expression indices have been based
PM–MM differences at the probe level. Contrary
what one expects, such differences are often nega
A trial study reveals that although very few probe s
will only have negative differences, a vast major
will have some. In fact, the median number of nega
probes per probe set is around 8 (out of a total of 2
In many cases, the overall average of these dif
ences for a probe set will be negative. Since this me
that the corresponding gene has negative expres
it is obvious that such an average difference can
be used. Various conditions are often imposed to
vent this from happening. These include using PM v
ues only (cf. [1,2,5]), excluding probe pairs with ne
ative differences, using PM− c MM with some suit-
ably chosen constantc (cf. [6]), treating negative dif-
ferences as missing data and using imputation, etc
these methods suffer from drawbacks such as bein
hoc, being inconsistent in that not all probe pairs
used in the same way, etc. This obscures the analy

At the most basic level, the data is in the form
pixel intensities (36 pixels/cell for the Mu11k mouse
chip) for the individual probe cells. It goes witho
saying that one can (and should) try to model
data already at this level using ideas from statist
image analysis. In these notes, however, we will o
consider models on the next level, namely that
PM and MM intensities. Another issue that we w
not discuss here is that of background calculation
subtraction.

3. The model

The basic idea behind the Li–Wong model (cf.
4]) is that the PM intensities are expected to be hig
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than the MM intensities. One can thus assume
following model:

Mij = νij + θiαj + εM
ij

Pij = νij + θiαj + θiφj + εP
ij

(1)i = 1,2, . . . , I, andj = 1, . . . , J

whereI is the number of arrays andJ is the num-
ber probe pairs (usually 20),ν stands for the base lin
intensity of a probe pair due to non-specific hybri
sation,α is the rate of increase in MM intensity of
probe pair andφ is the additional rate of increase
the corresponding PM response. The error terms
assumed to have zero mean and some common
ance. The most important parameter of this mode
the expression indexθ .

All these quantities are assumed to be non-nega
Moreover in order to avoid ‘unidentifiability’, we
impose some additional conditions like

∑
j φ2

j = J .
Although this model was introduced in [3], the autho
have only treated the reduced case

(2)Yij = Pij − Mij = θiφj + εP
ij − εM

ij

The authors of [7] use (1) explicitly, but assum
that the PM and MM values are independent;
their model describes the marginal distributions.
propose to augment the model so as to take
account the empirically observed correlation betw
PM and MM, which is usually rather high. Fo
example, the average correlation coefficient for
probe sets was 0.77 with a standard deviation of 0
The maximum value was 0.94 and the minimum 0
(cf. Fig. 1).

The rationale for this is that the probe pairs cor
sponding to the same gene are scattered all ove
array, while the two components of the same probe
always adjacent to each other. More precisely, we
sume that the error terms in (1) follow a bivariate n
mal distribution according to:

(3)

(
εM
ij

εP
ij

)
≈ N

((
0

0

)
,

(
σ 2 c

c σ 2

))
where c is the covariance term andσ is the corre-
sponding correlation coefficient.

How do we know that such a model fits the da
It is possible to examine the adequacy of the mo
by using the residuals to measure the lack of fit. T
Fig. 1. Shows the distribution of the PM/MM correlation for 3
probe sets (ρ on thex-axis and the frequency on they-axis).

reader will find more information about this at the e
of the next section.

4. The estimates

Given data(Pij ,Mij ), we can find parameter e
timates using the maximum-likelihood method. T
likelihood function has the form:

L
(
Pij ,Mij , θi, αj , ρ, νij , ϕj , σ

2) =
∏
i,j

K

× exp

[
−1

2

((
Pij

Mij

)
−

(
νij + θiαj + θiϕ

νij + θiαj

))T

× Σ−1
((

Pij

Mij

)
−

(
νij + θiαj + θiϕ

νij + θiαj

))]
The corresponding log likelihood function is

l =
∑

i

∑
j

logK −
∑

i

∑
j

1

2σ 2(1− ρ2)

× ((
Pij − (νj + θiαj + θiϕj )

)2

+ (
Mij − (νj + θiαj )

)2 − 2ρ
(
Mij − (νj + θiαj )

)
× (

Pij − (νj + θiαj + θiϕj )
))

Taking the partial derivatives with respect to t
parameters and setting the resulting expression e
to zero leads to maximum-likelihood estimates of
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ϕ̂j =
∑

i θi(Pij − ρMij − (1− ρ)(νij + θiαj ))∑
i θ

2
i

(4)

θ̂i =
∑

j (Pij − νj − ρ(Mij − νij ))(αj + ϕj )∑
j ϕ2

j + 2(1− ρ)
∑

j αj (αj + ϕj )

+
∑

j (Mij − νij − ρ(Pij − νij ))αj∑
j ϕ2

j + 2(1− ρ)
∑

j αj (αj + ϕj )

α̂j =
∑

i (Pij − νij − θiϕj )θi(1− ρ)

2αj

∑
i θ

2
i (1− ρ)

+
∑

i (Mij − νij )θi(1− ρ)

2αj

∑
i θ

2
i (1− ρ)

ν̂ij = (2− ρ)
∑

i (PMij − θi(αj + ϕj ))

2I

+
∑

i (Mij − θiαj )

2I

These formulas have to be understood as s
in an iterative procedure that will lead to the fin
estimates. Nonetheless they are quite useful whe
comes to deriving various properties. It is thus e
to see that the estimate,θ̂i of the expression inde
is unbiased, i.e. thatE[θ̂] = θi . The usual expressio
index (the average difference or�Yi = 1

J

∑
j (Pij −

Mij ) advocated by Affymetrix) lacks this property,
is seen by the following argument. In terms of t
Li and Wong model, we haveE[�Yi] = θi

1
J

∑J
j=1 φj .

From Steiner’s theorem, we know that1
J

∑J
j=1 φj � 1

soE[�Yi] = θiφ̄ � θi , i.e.�Yi is unbiased.
To obtain non-parametric confidence intervals

the expression level, we propose the following bo
strap method. First, estimate the parameters using
above maximum likelihood estimates; then, estim
the means:

(5)
M̂ij = ν̂ij + θ̂i α̂j

P̂ij = ν̂ij + θ̂i α̂j + θ̂i φ̂j

It is now possible to estimate the residualsε̂ij = ( ε̂P
ij

ε̂M
ij

)
.

These can be used to generate new observation
adding (bivariate) bootstrap errors to the expectati
in (5). For every new set of observations, the expr
sion level can be estimated, so we end up with a la
number of possible expression values, which can t
be used to calculate a confidence interval.
Notice also that the common PM/MM variance c
be (ML) estimated by:

σ̂ 2 =
∑

i

∑
j (Pij − P̂ij )2 + ∑

i

∑
j (Mij − M̂ij )2

2IJ (1− ρ̂2)

− 2ρ̂
∑

i

∑
j (Pij − P̂ij )(Mij − M̂ij )

2IJ (1− ρ̂2)

and that variants of this can be used for out
detection, i.e. we can classify a probe pair as an ou
if its residual is much higher than expected. Lack
fit can be measured using the residuals and stan
methods of model fitting. Inessence, standardize
versions of the residuals should behave as indepen
drawings from a bivariate normal distribution.

5. Reduced models

As mentioned earlier, the Li–Wong model has, un
now, been only used in its reduced form (2). This h
the advantage of being a much simpler model than
full one. This reduced model has been implemen
in dChip (one of the most popular tools for analysi
this type of data). Other ways to get reduced mod
have also been investigated: using PM only value
the average difference. It is possible to formulat
reduced version of the Li–Wong model along the lin
proposed in [6], i.e. by consideringPij − cMij for
some suitable value ofc.

In what follows, we present a new way of reduci
the full model. The rationale of this method is th
the MM values can, in a sense, be considered
containing help information only. One way to use th
help information is to condition on it, i.e. to consid
the conditional distribution of the PM values given t
MM values. Under the assumption that the bivari
values are normal, the conditional distribution is a
normal according to (cf. [8]):

Pij |Mij ≈ N
(
υij + αj θi + φjθi

+ ρ(Mij − υij − αj θi), σ
2(1− ρ2))

Again, maximum likelihood estimates of the pa
meters can be based on this model. The resulting
mate of the expression level is:

θ̂i =
∑

j (Pij − ρMij − υij (1− ρ))(αj (1− ρ) + φj )∑
(αj (1− ρ) + φj )2 .
j
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It is rather easy to verify that this estimate
unbiased.

6. Discussion

We have thus seen that using the Li–Wong mo
as a basis, one has the choice of using either the
bivariate model or some reduced univariate vers
To make a rational decision as to the choice o
model, one can use both theoretical and empir
criteria as is done in [9]. One such criterion
unbiasedness. But perhaps the most natural of t
criteria is the variance, i.e. preferring an estimate w
a low variance over one with a large variance. Sim
calculations show that according to this criterion the
best model is the full bivariate model followed b
the conditional and the reduced models in that or
(cf. the Appendix). The comparison with the avera
difference is, however, not straightforward since t
estimate has to be transformed to become unbia
The transformed average difference has the lar
variance of all reduced models.

A quite different way of comparing models is to u
special experiments where known amounts of mR
are used. Such data will become more available in
future.

It is interesting that the gene expression estim
based on the conditional model is of the type propo
by [6], i.e. of the formPij − cMij . In this estimate
the constantc is simply taken asρ, the correlation co-
efficient. The conditional estimate has one additio
nice feature, namely that it is a weighted average
Pij − ρMij differences. Probe pairs with higher sen
tivity (measured byαj (1−ρ)+φj ) are given a highe
weight. The special casesρ = 0 andρ = 1 give the
PM-only case and the reduced Li–Wong model resp
tively. To gain insight as to whyρ is a good choice o
constant in the approach used in [6], one can argu
follows. The variance of each termPij − cMij is sim-
ply σ 2(1+ c2 − 2ρc) and is minimized whenc = ρ.

To conclude, we have argued that, in the se
of unbiased estimates having low variance, the b
estimate is simply the one based on the full bivari
model. Should one choose to use a univariate redu
model, then the estimate based on the conditio
distribution is the next best choice. The latter h
many desirable properties and for probe sets ha
.

high correlation coefficients, it is quite similar to th
estimate based on the Li–Wong reduced model.

Appendix

In this appendix we give the variances of t
different estimators mentioned in the article.

1. The estimate based on the full model:

(6)

var[θ̂i] = σ 2(1− ρ2)∑
j φ2

j + 2(1− ρ)
∑

j αj (αj + φj )

2. The estimate based on the conditional model

(7)var[θ̂i] = σ 2(1− ρ2)∑
j (φj + αj (1− ρ))

3. The estimate based on the reduced Li–W
model

(8)var[θ̂i] = 2σ 2(1− ρ)∑
j φ2

j

4. The transformed average difference

(9)
2σ 2(1− ρ)

J φ̄

It is now not so difficult to show that (6)� (7) � (8)
� (9).
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