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Abstract

Microchip arrays have become one of the most rapidly growing techniques for monitoring gene expression at the genomic
level and thereby gaining valuable insight about various important biological mechanisms. Examples of such mechanisms are:
identifying disease-causing genes, genes involved in the regulation of some aspect of the cell cycle, etc. In this article, we
discuss the problem of estimating gene expression based on a proper statistical model. More precisely, we show how the mode
introduced by Li and Wong can be used in its full bivariate generality to provide a new measure of gene expression from high-
density oligonucleotide arrays. We also present a second genession index based on a new way of reducing the model into
a simpler univariate model. In both cases, the gene expression indices are shown to be unbiased and to have lower variance th:
the established ones. Moreover, we present a bootstrap method aiming at providing non-parametric confidence intervals for the
expression indexto cite thisarticle: Z. Taib, C. R. Biologies 327 (2004).
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Résumé

Analyse statistique de données de puces d’ ADN a base d’oligonucléotides. Les puces d’ADN sont devenues I'une des
techniques les plustiliséespour observer I'expression gérgiie a I'échelon génomue et ainsi mieux comprendre certains
mécanismes biologiques. Comme exemples de ces mécanismes, citons l'identification de genes causant certaines maladi
héréditaires, ou l'identification de genes impliqués dans la régulation de certains aspects du cycle cellulaires etc. Dans ce
article, nous discutons le probleme d’estimation de I'expression génétique a I'aide d’'un modele statistique adéquat. En effet,
nous montrons comment le modele introduf i et Wong peut étretilisé dans toute sa généralité multivariée pour obtenir
une nouvelle mesure de I'expression génétique dans le cas de puces d’ADN d'oligonucléotide a haute densité. D’autre part
nous présentons une autre mesure de I'expression génétigée var un nouveau concept réduisant le modéle en un autre,
univarié et plus simple. Nousantrons que les nouvelles mesusesit sans biais et que leurs iaarces sont plupetites que les
variances des mesures existantes. Nous présentons aussi une méthmmlsirdp qui vise a créer des intervalles de confiance
non-parameétriques pour les mesures d’expression généRoquieciter cet article: Z. Taib, C. R. Biologies 327 (2004).
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1. Introduction subsequence (25 bases long), which is assumed to be
specific for a particular gene, the expression of which
In recent years, it has become possible to make we want to measure. The mismatch probe is identical
simultaneous measurements of the expression levelsto the perfect match probe, except for the base in the
of tens of thousands of genes using the so-called middle (13th) position.
microarray technology. Through various microarray The oligonucleotides in the probes are typically
experiments, scientists try to answer various basic chosen from the so-called 3 prime end of the gene, but
biological questions ranging from understanding some have been until recently unknown to the user. The ex-
aspect of the cell cycle mechanism of a given organism pression level of the gene has to be inferred from the
to the identification of individual genes involved in  amount of hybridisation of the PM and MM probes.
some biochemical pathway related to some biological The latter are measured using a scanner, which is
function or some disease of interest. sensible to the fluorescence intensities of the probes.
In this article, we discuss statistical modelling of Up to now, expression indices have been based on
data from high-density oligonucleotide arrays of the PM-MM differences at the probe level. Contrary to
type manufactured by Affymetrix. The point of view what one expects, such differences are often negative.
we adopt is that statistical methods can and should be A trial study reveals that although very few probe sets
used in order to achieve a better understanding of ex- will only have negative differences, a vast majority
perimental data. Although statistical methods can be will have some. In fact, the median number of negative
useful at all the stages of a typical microarray exper- probes per probe set is around 8 (out of a total of 20).
iment (experimental design, image analysis and arte- In many cases, the overall average of these differ-
fact detection, normalizen, calculation of gene ex-  ences for a probe set will be negative. Since this means
pression, making comparisons between arrays, dimen-that the corresponding gene has negative expression,
sion reduction, clustering, etc.), we will only discuss it is obvious that such an average difference cannot
the fundamental problem of estimating the expression be used. Various conditions are often imposed to pre-
index (cf. [1,2]). vent this from happening. These include using PM val-
The article is organized as follows. In Section 2, ues only (cf. [1,2,5]), excluding probe pairs with neg-
we describe how the data arise in some detail. The ative differences, using PM ¢ MM with some suit-
bivariate Li-Wong model (cf. [3,4]) is presented in ably chosen constant(cf. [6]), treating negative dif-
Section 3. This model is used in Section 4 to provide ferences as missing data and using imputation, etc. All
maximum likelihood estimates of various parameters. these methods suffer from drawbacks such as being ad
A new way of reducing the model into a univariate one hoc, being inconsistent in that not all probe pairs are
and the resulting estimates are discussed in Section 5.used in the same way, etc. This obscures the analysis.
Comparisons between these two estimates as well as At the most basic level, the data is in the form of
others are discussed in the discussion section. pixel intensities (36 pixs/cell for the Mullk mouse
The main conclusion of the article is that the new chip) for the individual probe cells. It goes without
estimates seem to be better than previously establishedsaying that one can (and should) try to model the
ones. data already at this level using ideas from statistical
image analysis. In these notes, however, we will only
consider models on the next level, namely that of
2. Thenatureof thedata PM and MM intensities. Another issue that we will
not discuss here is that of background calculation and
First we take a look at some of the features subtraction.
of oligonucleotide-based microarrays. A single array
(1.28 cmx 1.28 cm) can contain probe sets for
tens of thousands of genes and ESTs. Every probe3. The model
set consists of 10-20 probe pairs. Every probe pair
contains a perfect match (PM) probe and a mismatch  The basic idea behind the Li-Wong model (cf. [3,
probe (MM). The perfect match probe is a small DNA 4]) is that the PM intensities are expected to be higher
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than the MM intensities. One can thus assume the
following model:

Mjj = vij + Oict + &}
Py =vij +0iaj + 0,0 +&];
i=12....,1,andj=1,...,J Q)

frequency

- N W b~ O O ~N

where I is the number of arrays and is the num-
ber probe pairs (usually 20),stands for the base line
intensity of a probe pair due to non-specific hybridi-
sation,« is the rate of increase in MM intensity of a 0
probe pair andp is the additional rate of increase in 03 04 05 06 07 08 09 1
the corresponding PM response. The error terms are rho

assumed to havg zero mean and some Co.mmon Va.m-Fig. 1. Shows the distribution of the PM/MM correlation for 30
ance. The mOSj[ Important parameter of this model is probe setsf on thex-axis and the frequency on theaxis).

the expression index.

All these quantities are assumed to be non-negative.
Moreover in order to avoid ‘unidentifiability’, we  reader will find more information about this at the end
impose some additional conditions IiRe ; ¢12. =J. of the next section.
Although this model was introduced in [3], the authors
have only treated the reduced case

ru 4. Theestimates
Yij=Pij — Mij =0i¢j +¢;; —¢;; (2)

The authors of [7] use (1) explicitly, but assume  Given data(P;;, M;;), we can find parameter es-
that the PM and MM values are independent; so timates using the maximum-likelihood method. The
their model describes the marginal distributions. We likelihood function has the form:
propose to augment the model so as to take into )
account the empirically observed correlation between L(Pija Mij. 0., p,vij, ¢j, 0 ) = l_[ K
PM and MM, which is usually rather high. For Lj
example, the average correlation coeff_lcu_ant for 30 1/(P;j vij + Oict; + O T
probe sets was 0.77 with a standard deviation of 0.14.  x exp S\ ) T v 4 s
The maximum value was 0.94 and the minimum 0.36 ! Yon e

(cf. Fig. 1). . : 1 Pij vij +0ictj + Oip
The rationale for this is that the probe pairs corre- XX -

sponding to the same gene are scattered all over the ' Vo
array, while the two components of the same probe are The corresponding log likelihood function is
always adjacent to each other. More precisely, we as-

sume that the error terms in (1) follow a bivariate nor- [ = l0a K — 1
mal distribution according to: Z Xj: g Xl: 2]: 202(1 — p?)

i

o 0\ /o2 o
(;)NN<<0><GC UCZ>> (3) x ((Pij — (vj +6icej +6;0)))

i + (Mij — (v +6:a))° = 20(Mij — (vj + 6ir)))
\;vhere'c is the covariance t'erm ang is the corre- « (Pz'j — () + 00 +9i¢j)))
ponding correlation coefficient.
How do we know that such a model fits the data? Taking the partial derivatives with respect to the
It is possible to examine the adequacy of the model parameters and setting the resulting expression equal
by using the residuals to measure the lack of fit. The to zero leads to maximume-likelihood estimates of the
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parameters. Notice also that the common PM/MM variance can
be (ML) estimated by:
o= > 0i(Pij — pMij — (1= p)(vij + 6;atj)) (ML) j R
! >, 02 52 > X (P = P2 4 3 X (M — Mij)?
é‘_Zj(Pij_Vj_p(Mij_Vij))(Olj + ;) 2”@\‘ £?) R
T Y, (pjz_ +2(1—p) Y aj(ej +¢)) B 203 ;> (Pij — Pij)(Mij — Mij)
_ 52
2 (Mij —vij — p(Pij — vij)e; 217(1=p%
+ > 21 21— p) S (e + o)) (4) and that variants of this can be used for outlier
i % j AT detection, i.e. we can classify a probe pair as an outlier
P >_i(Pij —vij — 0i9)6: (L— p) if its residual is much higher than expected. Lack of
! 2a; Y 02(1— p) fit can be measured using the residuals and standard
S (Mi; — vi))0; (L= p) methods of model fitting. Iressence, standardized
+ ’2 .] 92] 1 versions of the residuals should behave as independent
o 2671 =p) drawings from a bivariate normal distribution.
o @2=p) 2 (PMij —bi(@) +¢)))
v 21
+ > i (Mij —6a)) 5. Reduced models
21

As mentioned earlier, the Li-Wong model has, until
now, been only used in its reduced form (2). This has
{ the advantage of being a much simpler model than the

full one. This reduced model has been implemented
in dChip (one of the most popular tools for analysing
this type of data). Other ways to get reduced models
have also been investigated: using PM only values or
the average difference. It is possible to formulate a
reduced version of the Li-Wong model along the lines
proposed in [6], i.e. by considering;; — cM;; for

These formulas have to be understood as steps
in an iterative procedure that will lead to the final
estimates. Nonetheless they are quite useful when i
comes to deriving various properties. It is thus easy
to see that the estimaté; of the expression index
is unbiased, i.e. thak[d] = 6;. The usual expression
index (the average difference of = %ZJ(PZ-J- —
M;;) advocated by Affymetrix) lacks this property, as
is seen by the following argument. In terms of the
Li and Wong model, we hav&[Y;] = 6; JJ-=1¢J-. :

some suitable value af

From Steiner’s theorem, we know thal i1 ¢, <1 In what follows, we present a new way of reducing
SO E[Y;]=6;¢ < 6;,1.e.Y; is unbiased. the full model. The rationale of this method is that
To obtain non-parametric confidence intervals for the MM values can, in a sense, be considered as
the expression level, we propose the following boot- containing help information only. One way to use this
strap method. First, estimate the parameters using thenelp information is to condition on it, i.e. to consider
above maximum likelihood estimates; then, estimate the conditional distribution of the PM values given the

the means: MM values. Under the assumption that the bivariate
M =0 +6:a; values are normal, the conditional distribution is also
! ! / (5) normal according to (cf. [8]):

i’;j = \A),'j +éi&j +9A,'(]A5j
o P;j|Mij ~ N (vij +ajb; + ¢;0;
Itis now possible to estimate the residuéls= (,;)- + p(Myj — vij — aj0), 02(1— p?))

1] .
These can be used to generate new observations by Again, maximum likelihood estimates of the para-

adding (bivariate) bootstrap errors to the expectations oters can be based on this model. The resulting esti-
in (5). For every new set of observations, the expres- mate of the expression level is:

sion level can be estimated, so we end up with a large
number of possible expression values, which can then b — > j(Pij — pMij —vij(L— p)) (et (1= p) + ¢;)
be used to calculate a confidence interval. T Y (ej(1—p)+ $,)?
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It is rather easy to verify that this estimate is high correlation coefficients, it is quite similar to the
unbiased. estimate based on the Li-Wong reduced model.

6. Discussion Appendix

We have thus seen that using the Li-Wong model  In this appendix we give the variances of the
as a basis, one has the choice of using either the full different estimators mentioned in the article.
bivariate model or some reduced univariate version.

To make a rational decision as to the choice of a 1. The estimate based on the full model:
model, one can use both theoretical and empirical

201 _ 2
criteria as is done in [9]. One such criterion is varf;] = 5 i Sl
unbiasedness. But perhaps the most natural of these 25 +2A—p) el +¢))
criteria is the variance, i.e. preferring an estimate with (6)

a low variance over one with a large variance. Simple 2. The estimate based on the conditional model
calculations show that accong) to this criterion the 5 )

best model is the full bivariate model followed by varf;] = o (1-p%) @)
the conditional and the reduced models in that order 2@ +tajdl—p)

(cf. the Appendix). The comparison with the average
difference is, however, not straightforward since that

3. The estimate based on the reduced Li-Wong

estimate has to be transformed to become unbiased. model

The transformed average difference has the largest ~ o 20%(1—p)

variance of all reduced models. vano:] = Y 2 ®)
A quite different way of comparing models is to use .

special experiments where known amounts of MRNA 4. The transformed average difference

are used. Such data will become more available in the 262(1— p)

future. _ 9
It is interesting that the gene expression estimate J9

based on the conditional model is of the type proposed
by [6], i.e. of the formP;; — cM;;. In this estimate,
the constant is simply taken a®, the correlation co-
efficient. The conditional estimate has one additional
nice feature, namely that it is a weighted average of
P;j — pM;; differences. Probe pairs with higher sensi-

tIVI'Fy (measurEd b.Wj (1-p) +¢j) are given a hlgher [1] R.A. Irizarry, B. Hobbs, F. Collin, Y.D. Beazer-Barclay,
weight. The special casgs=0 andp = 1 give the K.J. Antonellis, U. Scherf, T.P. Speed, Exploration, normaliza-
PM-only case and the reduced Li-Wong model respec-  tion, and summaries of high-detysoligonucleotide array probe
tively. To gain insight as to why is a good choice of level data, Biostatistics 4 (2) (2002) 249-264.
constant in the approach used in [6], one can argue asl?] ?-Q- gizargy, g-'\"- BO_'Stad'f FA-f;O"":’_ '—-g- Conre]:_, B. Hgbt;sv |
; ) e aim .P. Speed, Summaries o metrix GeneChip probe-leve
foIIovxés. Thezvarlance of e'ach' t?@f —cM;; is sim data, Nucleic Acids Res, 31 (4) (2003).
ply 0°(1+ ¢ —2pc) and is minimized Wh_e =p- [3] C. Li, W.H. Wong, Model based analysis of oligonucleotide
To conclude, we have argued that, in the sense  arrays: expression index cqutation and outlier detection,
of unbiased estimates having low variance, the best  Proc. Natl Acad. Sci. USA 98 (2001) 31-36.
estimate is simply the one based on the full bivariate [4] C. Li, W.H. Wong, Model-based analysis of oligonucleotide
model. Should one choose to use a univariate reduced = &7Tays (I1): model validation, design issues and standard error
. . application, Genome Biol. 2 (8) (2001) 1-11.
m_Od_eI’ j[hen_ the estimate based_ on the conditional [5] F. Naef, D.A. Lim, N. Patil, M.O. Magnasco, From features
distribution is the next best choice. The latter has = (o expression: high-density oligonucleotide array analysis revis-

many desirable properties and for probe sets having ited, LANL e-print physics/0102010, 2001.

It is now not so difficult to show that (6X (7) < (8)
< (9).
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