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Abstract

Models are generally developed at the micro level. Data are generally gathered at the macro level. Obtaining the macrom
which is the natural consequence of the underlying micro model is generally not feasible. SIMEST gives a means wh
micromodel is used to generate, for a given assumed set of parameters, simulated sets of macro data. These data ar
with the actual clinical macro data. The parameters are then adjusted to obtain concordance with the clinical data. In this man
simulation gives us a means of parameter estimation without the necessity of generating the macro model.To cite this article:
J.R. Thompson, C. R. Biologies 327 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.
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1. The SIMEST paradigm

Following the argument developed in [1], we sh
be creating pseudo-datasets for given assumed p
meters of a micromodel for a set of input model pa
meters. As we note from Fig. 1, these pseudo-data
be compared with actual clinical data and the assu
parameters adjusted to bring the simulated pseu
data in concordance with the clinical data.

2. Poisson process modeling

In 1837, well before there were the plethora of te
nological processes which suit his modeling strate

E-mail address:thomp@rice.edu (J.R. Thompson).
1631-0691/$ – see front matter 2004 Published by Elsevier SAS on
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Fig. 1. The SIMEST paradigm.
behalf of Académie des sciences.
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Poisson [2] proposed the following model to deal w
Pk(t) = Prob[k events in[0, t)]. Everything flows from
the following four axioms:

(1) Pr[1 event in[t, t + h)] = λh + o(h)

(2) Pr[2 or more events in[t, t + h)] = o(h)

(3) Pr[j events in[t1, s1) andk in [t2, s2)] = Pr[j in
[t1, s1)]Pr[k in [t2, s2)] if [t1, s1) ∩ [t2, s2)] = φ

(4) λ is constant over time.

Then

Pk(t + h) = Pk(t)P0(h) + Pk−1(t)P1(h)

= Pk(t)
[
1− λh + o(h)

]
+ Pk−1(t)

[
λh + o(h)

]
so

(1)Pk(t + h) − Pk(t) = λh
[
Pk−1(t) − Pk(t)

] + o(h)

Dividing by h and lettingh → ∞, we have

(2)
dPk(t)

dt
= λ

[
Pk−1(t) − Pk(t)

]
Simple substitution in (2) verifies Poisson’s solution

(3)Pk(t) = e−λt (λt)k

k!
The mean and variance ofk are easily shown both t
be equal toλt .

Let us consider an early application of Poisso
model. The German statistician von Bortkiewicz e
amined the number of suicides of women in eight G
man States in 14 years. His results are shown in
ble 1 [3]. Now, there it is an interesting question
to whether it can plausibly be claimed that the suic
data follows Poisson’s model. If we compute the sa
ple mean of the number of suicides per year, we fi
that it is 3.473. We can then use this value as an
timate forλt . In Table 1, we also show the expect
numbers of suicides using the Poisson model.

One of the oldest statistical tests is Karl Pearso
goodness of fit. When data is naturally categorized,
Table 2
Actual and expected numbers of suicides per year

Suicides �1 2 3 4 5 6 �7 Sum
Freq. 28 17 20 15 11 8 13 11
E (Freq.) 15.6 21 24.3 21 14.6 8.5 7 112

it is here, ink bins (the number of suicides per sta
per year), if the number observed in a bin isXi and the
expected number, according to a model, isEi , then

(4)
k∑

i=1

(Xi − Ei)
2

Ei

≈ χ2(k − 1)

For the von Bortkiewicz data, we compute a value
χ2 of 54.9. This is well beyond the limit ofχ2

0.990(10)
value of 23.21, so we might reject the applicabil
of the Poisson model. On the other hand, the Pea
approximation is asymptotic. We require a minimu
number for eachEi of 5. In the present example, th
would mean that we would have to pool the first tw
bins and the last four. That would give the revis
Table 2.

This gives us aχ2 value of 19.15, which is abov
the χ2

0.990(6) value of 16.81, but below theχ2
0.998(6)

value of 20.79. Depending upon the use we inten
make of the Poisson model, we might choose to ac
it. Yet, the relatively small sample involved mig
make us wish to try other approaches. For exam
we know we have totals of suicides per year giv
in Table 1. We might decide to employ the followin
strategy.

Algorithm. Resampled data compared with model-
generated data.

1. Create an ‘urn’ with nine0 balls, nineteen1 balls,
seventeen2 balls, and so on.

2. With replacement, sample from the urn 10
samples of size 112, noting the results.

3. For each of the 1000 samples, compute theχ2

statistic in (4) using the original values in Table
for theEi .
2

Table 1
Actual and expected numbers of suicides per year

Suicides 0 1 2 3 4 5 6 7 8 9 �10 Sum
Freq. 9 19 17 20 15 11 8 2 3 5 3 11
E (Freq.) 3.5 12.1 21 24.3 21 14.6 8.5 4.2 1.9 0.7 0.2 112
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4. Using the estimate forλt of 3.473, divide the line
segment from zero to 1 according to the Pois
model. Thus the probability of finding a state wi
zero suicides in a year is exp(−λt) = 0.031. The
0 Poisson bin then is[0,0.031). The probability
of finding a state with one suicide in a year
exp(−λt)λt/1! = 0.108. So the1 Poisson bin is
[0.031,0.031+ 0.108), and so on.

5. Repeat 1000 times 112 draws of a uniform[0,1]
random variable.

6. Using theEi values from the third row in Table 1
compute theχ2 statistic in (4).

7. Compute histograms for both the resampling s
ulation and that of the Poisson model. If the ov
lap is, say 5%, accept the hypothesis that the P
son model fits the data.

Uses of the Poissonian framework are seen, v
frequently, in the simulation of a train of time-index
events. Now,

(5)1− F(t) = P
[
0 events in[0, t)

] = exp[−λt]
But F(t), the probability that an event occurs o
or before t , is a continuous cumulative distributio
function and is distributed as a uniform variate
[0,1]. So, also,is 1− F(t). Thus, it is an easy matte
starting at time zero, to simulate the time of the n
event. We generateu from U [0,1]. Then the time of
the next simulated event is given by

(6)t = −1

λ
log(u)

Thus, it is possible to create a series ofn simulated
events by simply generatingu1, u2, . . . , un and then
using

(7)ti = ti−1 − 1

λ
log(ui)

Next, let us consider what might be done in if w
relax the axiom that states thatλ must be constant
We can easily do this for the special case where
are consideringP0(t), that is, the probability that n
events happen in the time interval[0, t)

(8)P0(t + h) − P0(t) = λh
[−P0(t)

] + o(h)

Dividing by h and taking the limit ash goes to zero
we have

(9)
1 dP0(t) = −λ(t)
P0(t) dt
Integrating from 0 tot , we have

(10)P0(t) = exp

[
−

t∫
0

λ(τ)dτ

]

We are now able to carry out simulations in rath
complicated situations. Let us suppose for exam
that a tumor, starting with one cell, grows expon
tially according to:

(11)v(t) = c eαt , wherec is the volume of one cell

Next, let us suppose that this tumor will throw o
metastases at a ratea proportional to the volume o
the tumor. So, then the probability a metastasis wil
produced on or before timet is given by

(12)FM(t) = 1− exp

[
−ac

α
eαtM

]
From (12) we can easily write a simulation for t
origination times of metastases starting from a tum
with given values ofc, α, anda.

3. SIMEST: an oncological example

The power of the computer as an aid to model
does not get the attention it deserves. Part of the
son is that the human modeling approach tends to
analog rather than digital.Analog computers were re
placed by digital computers 40 years ago. Most sta
ticians remain fascinated by the graphical capabili
of the digital computer. The exploratory data ana
sis route tends to attempt to replace modeling by
sual displays which are then interpreted, in a more
less instinctive fashion, by an observer. Statistici
who proceed in this way are functioning somew
like prototypical cyborgs. After over two decades
seeing data spun, colored, and graphed in a my
of ways, I have to admit to being disappointed wh
comparing the promise of EDA with its reality. Its in
fluence amongst academic statisticians has been
mous. Visualization is clearly one of the major are
in the statistical literature. But the inferences dra
from these visualizations in the real world are, r
atively speaking, not so numerous. Moreover, wh
visualization-based inferences are drawn, they ten
give results one might have obtained by classical te
niques.
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Of course, as in the case of using the compute
a nonparametric smoother, some uses are better
others. It is extremely unfortunate that some are
multicultural in their outlook that they rearrange th
research agenda in order to accommodate thems
to our analog-challenged friends, the digital comp
ers. Perhaps the greatest disappointment is to se
modeling aspect of our analog friends, the hum
beings, being disregarded in favor of using them
gestaltic image processors. This really will not do. W
need to rearrange the agenda so that the human b
can gain the maximal assistance from the compu
in making inferences from data. That is the purpose
SIMEST.

There is an old adage to the effect that quantita
change carried far enough may produce qualita
change. The fact is that we now have computers
fast and cheap that we can proceed (almost) as tho
computation were free and instantaneous (with infin
accessible memory thrown in as well). This sho
change, fundamentally, the way we approach d
analysis in the light of models.

There are now a number of examples in seve
fields where SIMEST has been used to obtain
timates of the parameters characterizing a market
related applied stochastic process. Below we cons
an oncological application to motivate and to explic
SIMEST. We shall first show a traditional model-bas
data analysis, note the serious (generally insurmo
able) difficulties involved, and then give a simulatio
based, highly computer-intensive way to get what
require to understand the process and act upon tha
derstanding.

3.1. An exploratory prelude

In the late 1970s, my colleague Barry W. Brown,
the University of Texas M.D. Anderson Cancer Ce
ter, and I had started to investigate some conject
concerning reasons for the relatively poor performa
of oncology in the American ‘War on Cancer’. Hug
amounts of resources had been spent with less enc
aging results than one might have hoped. It was
view that part of the reason might be that the basic
thodoxy for cancer progression was, somehow, flaw

This basic orthodoxy can be summarized briefly
follows.
s

e

s

-

-

At some time, for some reason, a single cell g
wild. It, and its progeny, multiply at rates great
than that required for replacement. The tumor t
formed grows more or less exponentially. Fro
time to time, a cell may break off (metastasiz
from the tumor and start up a new tumor at so
distance from the primary (original) tumor. The o
jective of treatment is to find and excise the prima
before it has had a chance to form metastases. If
is done, then the surgeon (or radiologist) will ha
“gotten it all” and the patient is cured. If metastas
are formed before the primary is removed, the
cure is unlikely, but the life of the patient may b
extended and ameliorated by aggressive adm
tration of chemotherapeutic agents which will k
tumor cells more vigorously than normal cells. U
fortunately, since the agents do attack normal c
as well, a cure of metastasized cancer is unlik
since the patient’s body cannot sustain the dos
required to kill all the cancer cells.

For some cancers, breast cancer, for example, l
term cure rates had not improved very much for ma
years.

3.2. Model and algorithms

One conjecture, consistent with a roughly const
intensity of display of secondary tumors, is tha
patient with a tumor of a particular type is n
displaying breakaway colonies only, but also n
primary tumors due to suppression of a patien
immune system to attack tumors of a particular ty
We can formulate axioms at the micro level which w
incorporate the mechanism of new primaries.

Such an axiomitization has been formulated b
Bartoszýnski et al. [4]. The first five axioms are co
sistent with the classical view as to metastatic p
gression. Hypothesis 6 is the mechanism we introd
to explain the nonincreasing intensity function of s
ondary tumor display.

Hypothesis 1. For any patient, each tumor originat
from a single cell and grows at exponential rateα.

Hypothesis 2. The probability that the primary tumo
will be detected and removed in[t, t + �t) is given
by bY0(t)�t + o(�t), and until the removal of the
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primary, the probability of a metastasis in[t, t + �t)

is aY0(t)�t + o(�t), whereY0(t) is the size of the
primary tumor at timet .

Hypothesis 3. For patients with no discovery o
secondary tumors in the time of observation,S, put
m1(t) = Y1(t) + Y2(t) + · · · , whereYi(t) is the size
of the ith originating tumor. After removal of th
primary, the probability of a metastasis in[t, t +
�t) equalsam1(t) + o(�t), and the probability of
detection of a new tumor in[t, t + �t), is bm1(t) +
o(�t).

Hypothesis 4. For patients who do display a seconda
tumor, after removal of the primary and before
moval of Y1, the probability of detection of a tumo
in [t, t + �t) equalsbY1(t) + o(�t), while the proba-
bility of detection of a metastasis isaY1(t) + o(�t).

Hypothesis 5. For patients who do display a seconda
tumor, the probability of a metastasis in[t, t + �t) is
am2(t)�t + o(�t), while the probability of detection
of a tumor is bm2(t)�t + o(�t), where m2(t) =
Y2(t) + · · · .

Hypothesis 6. The probability of a systemic occu
rence of a tumor in[t, t + �t) equalsλ�t + o(�t),
independent of the prior history of the patient.

Essentially, we shall attempt to develop the like
hood function for this model so that we can find t
values ofa, b, α, andλ which maximize the likeli-
hood of the data set observed. It turns out that this
formidable task indeed. The SIMEST algorithm whi
we develop later gives a quick alternative to finding
likelihood function. However, to give the reader som
feel as to the complexity associated with model agg
gation from seemingly innocent axioms, we shall g
some of the details of getting the likelihood functio
First of all, it turns out that in order to have any hope
obtaining a reasonable approximation to the likeliho
function, we will have to make some further simplif
ing assumptions. We shall refer to the period prior
detection of the primary as Phase 0. Phase 1 is the
riod from detection of the primary toS′, the first time
of detection of a secondary tumor. For those patie
without a secondary tumor, Phase 1 is the time of
servation,S. Phase 2 is the time, if any, betweenS′
-

andS. Now for the two simplifying axioms.T0 is de-
fined to be the (unobservable) time between the or
nation of the primary and the time when it is detec
and removed (at timet = 0). T1 andT2 are the times
until detection and removal of the first and seco
of the subsequent tumors (times to be counted f
t = 0). We shall letX be the total mass of all tumor
other than the primary att = 0.

Hypothesis 7. For patients who do not display
secondary tumor, growth of the primary tumor, and
all tumors in Phase 1, is deterministically exponen
with the growth of all other tumors treated as a p
birth process.

Hypothesis 8. For patients who display a seconda
tumor, the growth of the following tumors is treated
deterministic: in Phase 0, tumorsY0(t) andY1(t); in
Phase 1, tumorY1(t) and all tumors which originate
in Phase 0; in Phase 2, all tumors. The growth
remaining tumors in Phases 0 and 1 is treated as a
birth process.

We now define

H(s; t, z) = exp

{
az

α
eαt

(
es − 1

)
× log

[
1+ (

e−αt − 1
)
e−s

]
(13)+ λ

α
s − λ

α
log

[
1+ eαt

(
es − 1

)]}
and

(14)p(t; z) = bzeαt exp

[
−bz

α

(
eαt − 1

)]
Further, we shall define

(15)w(y) = λ

[ y∫
0

e−ν(u) du − y

]

whereν(u) is determined from

(16)u =
ν∫

0

(
a + b + αs − a e−s

)−1 ds

Then, we can establish the following propositio
and from these, the likelihood function:

p(T0 > τ) = exp

[
−b

τ∫
eαt dt

]

0
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(17)= exp

[
− b

α

(
eατ − 1

)]
For patients who do not display a secondary tumor,
have

(18)P(T1 > S|X = x) = exp
[−xν(S) + w(S)

]
For patients who develop metastases, we have

P(T1 > S) = P
(
no secondary tumor in(0, S)

)
(19)=

∞∫
0

ew(s)p(t;1)H
(
ν(s); t,1

)
dt

Similarly, for patients who do display a seconda
tumor, we have

P(T1 = S′, T2 > S)

=
∞∫

0

t∫
0

ew(S−S ′)p(t;1)p
(
S′;eαu

)(
λ + a eα(t−u)

)

× exp

[
−λ(t − u) − a

α

(
eα(t−u) − 1

)]
× H

(
ν(S − S′);S′,eαu

)
× H

(
ν(S − S′)eαS ′ ;u, eα(t−u)

)
dudt

+
∞∫

0

S ′∫
0

ew(S−S ′)p(t;1)

× exp

[
−λt − a

α

(
eαt − 1

)]
λe−λup(S′ − u;1)

(20)× H
(
ν(S − S′);S′ − u,1

)
dudt

Finding the likelihood function, even a quadratu
approximation to it, is more than difficult. Furthe
more, current symbol manipulation programs (e
Mathematica, Maple) do not have the capability of d
ing the work. Accordingly, it must be done by han
Approximately 1.5 person years were required to
tain a quadrature approximation to the likelihood. B
fore starting this activity, we had no idea of the rath
practical difficulties involved. However, the activi
was not without reward.

We found estimates for the parameter values us
a data set consisting of 116 women who presented
primary breast cancer at the Curie-Sklodowska Can
Institute in Warsaw (time units in months, volum
units in cells):a = 0.17×10−9, b = 0.23×10−8, α =
0.31, andλ = 0.0030. Using these parameter valu
we found excellent agreement between the propor
free of metastasis versus time obtained from the d
and that obtained from the model, using the param
values given above. When we tried to fit the mo
to the data with the constraint thatλ = 0 (that is,
disregarding the systemic process as is generally d
in oncology), the attempt failed.

One thing one always expects from a model-ba
approach is that, once the relevant parameters
been estimated, many things one had not planne
look for can be found. For example, tumor doubli
time is 2.2 months. The median time from prima
origination to detection is 59.2 months and at this ti
the tumor consists of 9.3× 107 cells. The probability
of metastasis prior to detection of the primary
0.069, and so on. A model-based approach gene
yields such serendipitous results, as a nonparam
approach generally does not. It is worth mention
that, more frequently than one realizes, we need
analysis which is flexible, in the event that at so
future time we need to answer questions different fr
those originally posed. The quadrature approxima
of the likelihood is relatively inflexible compare
to the simulation-based approach we shall deve
shortly.

Insofar as the relative importance of the system
and metastatic mechanisms, in causing secondar
mors associated with breast cancer, it would app
from Fig. 2 that the systemic one is the more imp
tant. This result is surprising, but is consistent w
what we have seen in our exploratory analysis of
other tumor system (melanoma). Interestingly, it is
no means true that for all tumor systems the syste
term has such dominance. For primary lung cancer
example, the metastatic term appears to be far m
important.

It is not clear how to postulate, in any definitiv
fashion, a procedure for testing the null hypothe
of the existence of a systemic mechanism in
progression of cancer. We have already noted
when we suppress the systemic hypothesis, we ca
obtain even a poor maximum likelihood fit to the da
However, someone might argue that a different
of nonsystemic axioms should have been propo
Obviously, we cannot state that it is simply impossi
to manage a good fit without the systemic hypothe
However, it is true that the nonsystemic axioms
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Fig. 2. Metastatic and systemic effects.! log[(prob(metastatic tu-
mor originating by timet))], 1 log[(prob(systemic tumor originating
by time t))].

have proposed are a fair statement of traditio
suppositions as to the growth and spread of cance

As a practical matter, we had to use data that w
oriented toward the life of the patient rather than
ward the life of a tumor system. This is due to the f
that humanin vivocancer data is seldom collected w
an idea toward modeling tumor systems. For a num
of reasons, including the difficulty mentioned in o
taining the likelihood function, deep stochastic mo
eling has not traditionally been employed by many
vestigators in oncology. Modeling frequently preced
the collection of the kinds of data of greatest use
the estimation of the parameters of the model. Any
who has gone through a modeling exercise such as
covered in this section is very likely to treat such
exercise as a once in a lifetime experience. It sim
is too frustrating to have to go through all the flailin
around to come up with a quadrature approximatio
the likelihood function. As soon as a supposed like
hood function has been found, and a corresponding
rameter estimation algorithm constructed, the inve
gator begins a rather lengthy ‘debugging’ experien
The algorithm’s failure to work might be due to an
number of reasons (e.g., a poor approximation to
likelihood function, a poor quadrature routine, a m
take in the code of the algorithm, inappropriaten
of the model, etc.). Typically, the debugging proce
is time consuming and difficult. If one is to have a
t

Fig. 3. Two possible paths from primary to secondary.

hope for coming up with a successful model-based
vestigation, an alternative to the likelihood proced
for aggregation must be found.

In order to decide how best to construct an al
rithm for parameter estimation which does not ha
the difficulties associated with the classical clos
form approach, we should try to see just what cau
the difficulty with the classical method of aggregati
from the microaxioms to the macro level, where t
data lives. A glance at Fig. 3 reveals the problem w
the closed-form approach.

The axioms of tumor growth and spread are e
enough to implement in the forward direction. Inde
they follow the natural forward formulation used sin
Poisson’s work of 1837. Essentially, we are overlay
stochastic processes, one on top of the other,
interdependently to boot. But when we go throu
the task of finding the likelihood, we are essentia
seeking all possible paths by which the observab
could have been generated.

The secondary tumor, originating at timet3, could
have been thrown off from the primary at timet3, or it
could have been thrown off from a tumor which its
was thrown off from another tumor at timet2 which
itself was thrown off from a tumor at timet1 from the
primary which originated at timet0. The number of
possibilities is, of course, infinite.

In other words, the problem with the classic
likelihood approach in the present context is tha
is a backward look from a database generated
the forward direction. To scientists before the pres
generation of fast, cheap computers, the backw
approach was, essentially, unavoidable unless
avoided such problems (a popular way out of
dilemma). However, we need not be so restricted.
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Once we realize the difficulty when one uses
backward approach with a concatenation of forwardly
axiomitized mechanisms, the way out of our difficu
is rather clear. We need to analyze the data usin
forward formulation. The most obvious way to car
this out is to pick a guess for the underlying vec
of parameters, put this guess in the micro-axiomiti
model and simulate many times of appearance
secondary tumors. Then, we can compare the se
simulated quasidata with that of the actual data.

The greater the concordance, the better we
believe we have done in our guess for the underly
parameters. If we can quantitize this measure
concordance, then we will have a means for guid
us in our next guess. One such way to carry this
would be to order the secondary occurrences in
data set from smallest to largest and divide them ink
bins, each with the same proportion of the data. Th
we could note the proportions of quasidata points
each of the bins.

If the proportions observed for the quasidata, c
responding to parameter valueΘ, were denoted by
{πj (Θ)}kj=1, then a Pearson goodness-of-fit statis
would be given by:

(21)χ2(Θ) =
k∑

j=1

(πj (Θ) − 1/k)2

πj (Θ)

The minimization ofχ2(Θ) provides us with a mean
of estimatingΘ.

Typically, the sample size,n, of the data will be
much less thanN , the size of the simulated quas
data. With mild regularity conditions, assuming the
is only one local maximum of the likelihood func
tion, Θ0, as n → ∞ (which function we of course
do not know), then asN → ∞, asn becomes large
andk increases in such a way that limn→∞ k = ∞ and
limn→∞ k/n = 0, the minimumχ2 estimator forΘ0
will have an expected mean square error which
proaches the expected mean square error of the m
imum likelihood estimator. This is, obviously, qui
a bonus. Essentially, we will be able to forfeit t
possibility of knowing the likelihood function an
still obtain an estimator with asymptotic efficien
equal to that of the maximum likelihood estimat
The price to be paid is the acquisition of a co
puter swift enough and cheap enough to carry
a very great number,N , of simulations, say 10 000
-

This ability to use the computer to get us out
the ‘backward trap’ is a potent but, as yet seld
used, bonus of the computer age. Currently, the
thor is using SIMEST on a 400 MHz personal co
puter, amply adequate for the task, which now co
around $1000.

First, we observe how the forward approach
ables us to eliminate those hypotheses which w
essentially a practical necessity if a likelihood fun
tion was to be obtained. Our new axioms are s
ply:

Hypothesis 1. For any patient, each tumor originat
from a single cell and grows at exponential rateα.

Hypothesis 2. The probability that the primary tumo
will be detected and removed in[t, t + �t) is given
by bY0(t)�t + o(�t). The probability that a tumor o
size Y (t) will be detected in[t, t + �t) is given by
bY (t)�t + o(�t).

Hypothesis 3. The probability of a metastasis in[t, t +
�) is a�t × (total tumor mass present).

Hypothesis 4. The probability of a systemic occu
rence of a tumor in[t, t + �t) equalsλ�t + o(�t),
independent of the prior history of the patient.

In order to simulate, for a given value of(α, a, b,λ),
a quasidata set of secondary tumors, we must firs
fine:

tD = time of detection of primary tumor;
tM = time of origin of first metastasis;
tS = time of origin of first systemic tumor;
tR = time of origin of first recurrent tumor;
td = time from tR to detection of first recurren
tumor;
tDR = time from tD to detection of first recurren
tumor.

Now, generating a random numberu from the
uniform distribution on the unit interval, ifF(·) is
the appropriate cumulative distribution function for
time, t , we sett = F−1(u). Then, assuming that th
tumor volume at timet is:

(22)v(t) = c eαt , wherec is the volume of one cell
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we have

(23)FM(t) = 1− exp

(
−a c

α
eαtM

)

Similarly, we have

(24)

FD(tD) = 1− exp

(
−

tD∫
0

b c eατ dτ

)

= 1− exp

(
−b c

α
eαtD

)
,

(25)FS = 1− e−λtS

and

(26)Fd(td) = 1− exp

(
−b c

α
eαtd

)

Using the actual times of discovery of secondary
mors t1 � t2 � · · · � tn we generatek bins. In actual
tumor situations, because ofrecording protocols, we
may not be able to put the same number of secon
tumors in each bin. Let us suppose that the obse
proportions are given by(p1,p2, . . . , pk). We shall
generateN recurrencess1 < s2 < · · · < sN . The ob-
served proportions in each of the bins will be deno
π1,π2, . . . , πk. The goodness of fit corresponding
(α,λ, a, b) will be given by:

(27)χ2(α,λ, a, b) =
k∑

j=1

(πj (α,λ, a, b) − pj )
2

πj (α,λ, a, b)

As a practical matter, we may replaceπj (α,λ, a, b)

by pj , since with (α,λ, a, b) far away from truth,
πj (α,λ, a, b) may well be zero. Then the followin
algorithm generates the times of detection of qu
secondary tumors for the particular parameter va
(α,λ, a, b).

Algorithm. Secondary tumor simulation (α,λ, a, b).

GeneratetD
j = 0
i = 0
Repeat untiltM(j) > tD
j = j + 1
GeneratetM(j)

GeneratetdM(j)

tdM(j) ← tdM(j) + tM(j)
If tdM(j) < tD, thentdM(j) ← ∞
Repeat untiltS > 10tD
i = i + 1
GeneratetdS(i)

tdS(i) ← tdS(i) + tS(i)

s ← min[tdM(j), tdS(i)]
Returns

End repeat

The algorithm above does still have some simpli
ing assumptions. For example, we assume that me
tases of metastases will probably not be detected
fore the metastases themselves. We assume tha
primary will be detected before a metastasis, and
on. Note, however, that the algorithm utilizes mu
less restrictive simplifying assumptions than tho
which led to the terms of the closed-form likelihoo
Even more importantly, the Secondary Tumor Sim
lation algorithm can be discerned in a few minut
whereas a likelihood argument is frequently the w
of months.

Another advantage of the forward simulation a
proach is its ease of modification. Those who are
miliar with ‘backward’ approaches based on the lik
lihood or the moment generating function are only
familiar with the experience of a slight modificatio
causing the investigator togo back to the start and be
gin anew. This is again a consequence of the tan
required to be examined if a backward approach
used. However, a modification of the axioms gener
causes slight inconvenience to the forward simulat

For example, we might add the following

Hypothesis 5. A fraction γ of the patients cease
to be at systemic risk at the time of removal of t
primary tumor if no secondary tumors exist at th
time. A fraction 1− γ of the patients remain a
systemic risk throughout their lives.

Clearly, adding Hypothesis 5 will cause consid
able work if we insist on using the classical aggre
tion approach of maximum likelihood. However, in t
forward simulation method we simply add the follow
ing lines to the secondary tumor simulation code:

Generateu from U(0,1)

If u > γ , then proceed as in the secondary tum
simulation code
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If u < γ , then proceed as in the secondary
mor simulation code except replace the step ‘R
peat untiltS > 10tD’ with the step ‘Repeat unti
tS(i) > tD’.

In the discussion of metastasis and systemic oc
rence of secondary tumors, we have used a model
ported by data to try to gain some insight into a par
the complexities of the progression of cancer in a
tient. Perhaps this sort of approach should be term
speculative data analysis.

In the current example, we were guided by
nonparametric intensity function estimate, which w
surprisingly nonincreasing, to conjecture a mod
which enabled us to test systemic origin agai
metastatic origin on something like a level playi
field. The fit without the systemic term was so bad t
anything like a comparison of goodness-of-fit statis
was unnecessary.

It is interesting to note that the implementati
of SIMEST is generally faster on the computer th
working through the estimation with the closed-fo
likelihood. In the four-parameter oncological exam
we have considered here, the running time of SIME
was 10% of the likelihood approach. As a very pra
cal matter, then, the simulation-based approach wo
appear to majorize that of the closed-form likeliho
method in virtually all particulars. The running tim
for SIMEST can begin to become a problem as
dimensionality of the response variable increases
one. Up to this point, we have been working with t
situation where the data consists of failure times
the systemic versus metastatic oncogenesis exam
we managed to estimate four parameters based on
kind of one-dimensional data. As a practical mat
for tumor data, the estimation of five or six paramet
for failure time data is the most one can hope for.
deed, in the oncogenesis example, we begin to obs
the beginnings of singularity for four parameters, d
to a near trade-off between the parametersa and b.
Clearly, it is to our advantage to be able to increase
dimensionality of our observables. For example, w
cancer data, it would be to our advantage to util
not only the time from primary diagnosis and remo
to secondary discovery and removal, but also the
mor volumes of the primary and the secondary. S
information enables one to postulate more individ
growth rates for each patient. Thus, it is now appro
-

,

ate to address the question of dealing with multivar
response data.

Gaussian template criterion.In many cases, it will
be possible to employ a procedure using a criter
function. Such a procedure has proved quite succe
in another context (see [5], pp. 275–280). First,
transform the data{Xi}ni=1 by a linear transformation
such that for the transformed data set{Ui}ni=1 the
mean vector becomes zero and the covariance m
becomesI :

(28)U = AX + b

Then, for the current best guess forΘ, we simulate a
quasidata set of sizeN . Next, we apply the same tran
formation to the quasidata set{Yj (Θ)}Nj=1, yielding

{Zj(Θ)}Nj=1. Assuming that both the actual data s
and the simulated data set come from the same
sity, the likelihood ratioΛ(Θ) should increase asΘ
gets closer to the value ofΘ, sayΘ0, which gave rise
to the actual data, where,

(29)Λ(Θ) =
∏n

i=1 exp[−1
2(u2

1i + · · · + u2
pi)]∏N

i=1 exp[−1
2(z2

1i + · · · + z2
pi)]

As soon as we have a criterion function, we are abl
develop an algorithm for estimatingΘ0. The closerΘ
is toΘ0, the smaller willΛ(Θ) tend to be.

The procedure above which uses a single Gaus
template will work well in many cases where the d
has one distinguishable center and a falling off aw
from that center which is not too ‘taily’. Howeve
there will be cases where we cannot quite get aw
with such a simple approach. For example, it is p
sible that a data set may have several distinguish
modes and/or exhibit very heavy tails. In such a ca
we may be well advised to try a more local approa
Suppose that we pick one of then data points at ran
dom – sayx1 – and find them nearest neighbor
amongst the data.

We then treat thism nearest-neighbor cloud as
it came from a Gaussian distribution centered at
sample mean of the cloud and with covariance ma
estimated from the cloud. We transform thesem + 1
points to zero mean and identity covariance matrix,

(30)U = A1X + b1

Now, from our simulated set ofN points, we find
theN(m + 1)/n simulated points nearest to the me
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of the m + 1 actual data points. This will give us a
expression like

(31)Λ1(Θ) =
∏m+1

i=1 exp[−1
2(u2

1i + · · · + u2
pi)]∏N(m+1)/n

i=1 exp[−1
2(z2

1i + · · · + z2
pi)]

If we repeat this operation for each of then data
points, we will have a set of local likelihood ratio
{Λ1,Λ2, . . . ,Λn}. Then one natural measure of co
cordance of the simulateddata with the actual dat
would be

(32)Λ(Θ) =
n∑

i=1

log
(
Λi(Θ)

)
We note that this procedure is not equivalent
one based on density estimation, since the nea
neighbor ellipsoids are not disjoint. Nevertheless, w
have a level playing field for each of the guesses foΘ

and the resulting simulated data sets.

A simple counting criterion. Fast computing not
withstanding, withn in the 1000 range andN around
10,000, the template procedure can become pro
itively time consuming. Accordingly, we may opt fo
a subset counting procedure:

For data sizen, pick a smaller value, saynn.
Pick a random subset of the data points

sizenn.
Pick a nearest neighbor outreach parametem,

typically 0.02n.
For each of thenn data points,Xj , find the

Euclidean distance to themth nearest neighbo
saydj,m.

For an assumed value of the vector parameteΘ,
generateN simulated observations.

For each of the data points in the rando
subset of the data, find the number of simula
observations withindj,m, sayNj,m.

Then the criterion function becomes

χ2(Θ) =
nn∑

j=1

((m + 1)/n − Nj,m/N)2

(m + 1)/n

Experience indicates that whatevernn size subse
of the data points is selected should be retai
throughout the changes ofΘ. Otherwise, practica
instability may obscure the path to the minimum va
of the criterion function.
A SIMDAT-SIMEST stopping rule.We may use the
resampling algorithm SIMDAT to compare the resu
from resampled data points with those from mod
based simulations. SIMDAT is not a simple resa
pling so much as it is a stochastic interpolator. We
take the original data and use SIMDAT to generat
SIMDAT pseudodata set ofN values.

Then, for a particular guess ofΘ, we can compute
a SIMEST pseudodata set ofN values. For any regio
of the space of the vector observable, the num
of SIMEST-generated points should be approxima
equal to the number of SIMDAT-generated points. F
example, let us suppose that we picknn of the n

original data points and find the radiusdj,m of the
hypersphere which includesm of the data points for
say, pointXj . Let Nj,SD be the number of SIMDAT-
generated points falling inside the hypersphere an
Nj,SE be the number of SIMEST-generated poi
falling inside the hypersphere. Consider the empir
goodness-of-fit statistic for the SIMDAT cloud abo
pointXj :

χ2
j,SD(Θ) = ((m + 1)/n − Nj,SD/N)2

(m + 1)/n

For the SIMEST cloud, we have

χ2
j,SE(Θ) = ((m + 1)/n − Nj,SE/N)2

(m + 1)/n

If the model is correct and if our estimate forΘ
is correct, thenχ2

j,SE(Θ) should be, on the averag

distributed similarly toχ2
j,SE(Θ). Accordingly, we can

construct a sign test. To do so, let:

Wj = +1 if χ2
j,SD(Θ) � χ2

j,SE(Θ)

= −1 if χ2
j,SD(Θ) < χ2

j,SE(Θ)

So, if we let:

Z =
∑nn

j=1 Wj√
nn

we might decide to terminate our search for estima
Θ when the absolute value ofZ falls below 3 or 4.
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