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Abstract

RNA editing, which results in the creation of RNA molecules that differ from the template from which they were
is a highly specific process. Alterations include converting one base to another, removal of one nucleotide and subs
another, deletion of encoded residues, and insertion of non-templated nucleotides. Such changes have marked effe
expression, ranging from defined amino acid changes to the de novo creation of entire open reading frames. Editin
regulated in a developmental or tissue-specific manner, and is likely to play a role in the etiology of human disease.To cite this
article: J.M. Gott, C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Expansion de la capacité du génome par l’édition d’ARN. L’édition de l’ARN est un processus hautement spécifiq
qui produit des molécules d’ARN qui diffèrent de la matrice dont elles sont issues. Les altérations incluent la con
d’une base en une autre, la soustraction d’un nucléotide et la substitution d’un autre, la délétion de résidus, et l’ins
nucléotides absents de la matrice. De tels changements ont des effets marqués sur l’expression génique, allant de c
précis d’acides aminés à la création de cadres de lecture complets. L’édition peut être régulée d’une manière s
du développement ou d’un tissu, et joue vraisemblablement un rôle dans l’étiologie de maladies humaines.Pour citer cet
article : J.M. Gott, C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

One of the early surprises to emerge from geno
sequencing projects was the small number of ge
relative to the number of known proteins. Mu
of the complexity of the proteosome can be

E-mail address:jmg13@po.cwru.edu (J.M. Gott).
1631-0691/$ – see front matter 2003 Académie des sciences. Publis
doi:10.1016/j.crvi.2003.09.004
tributed to alternative splicing [1]; in the most e
treme case of alternative splicing described to date
Dscam gene alone could potentially encode more t
38,000 different protein isoforms [2]. There are ad
tional sources of diversity within the genome, ho
ever, including the use of alternative promoters a
polyadenylation sites [3], which can lead to diffe
ences at the 5′ and 3′ ends of mRNAs, and RNA
hed by Elsevier SAS. All rights reserved.
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Table 1
Editing distribution: base substitutions

Organism Editing type Examples References

Mammals C to U apolipoprotein B mRNA [18,19]
A to I serotonin receptor and [5,8,49,50

ion channel mRNAs
Marsupials C to U mitochondrial tRNAs [51]
Plants C to U chloroplast mRNAs, [31,37,38

and mitochondrial mRNAs,
U to C rRNAs, and tRNAs

Hepatitus delta virus A to I HDV antigenome [52]
Drosophila A to I ion channels [53,54]
Squid A to I ion channels [55]
C. Elegans A to I 5′ and 3′ UTRs [5]
Physarum C to U coxI mRNA [33]
Trypanosomes C to U 7 SL RNA [22,56]

mitochondrial tRNA
Dinoflagellates A to G coxI andcytbmRNAs [57]
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editing, which can affect gene expression in a va
ety of ways. This review briefly summaries the impa
of RNA editing on the coding capacity of eukaryo
genomes.

2. RNA editing

2.1. Distribution of RNA editing

The term RNA editing was initially coined b
Benne and colleagues to describe the insertion of
non-encoded uridines into thecoxII gene of kine-
toplastid protozoa [4]. It is now used to descri
any specific change in the primary sequence of
RNA molecule, excluding other mechanistically d
fined processes such as RNA splicing or polyaden
tion. RNA alterations due to editing fall into two broa
categories, depending on whether the change hap
at the base or nucleotide level. The distribution
the best-characterized forms of editing are listed
Table 1 (base substitution) and Table 2 (nucleo
changes). RNA editing is quite widespread, occ
ring in mammals, viruses, marsupials, plants, fli
frogs, worms, squid, fungi, slime molds, dinoflag
s

lates, kinetoplastid protozoa, and other unicellular
karyotes (see references in Tables 1 and 2). It sh
be kept in mind that this list most likely represen
only the tip of the iceberg; based on the distribution
homologues of known editing enzymes, for examp
editing almost certainly occurs in many other spec
including all metazoa [5]. A number of comprehe
sive reviews on RNA editing are available [6,7],
are recent reviews of base substitution editing [5
10] and nucleotide insertion/deletion editing in tr
panosomes [11,12].

2.2. Mechanisms of editing

Editing occurs via a variety of mechanisms, on
a few of which have been described in detail [
Most characterized instances of base substitutions
due to deamination reactions involving either cytid
(which is converted to uridine) or adenosine (which
converted to inosine) within the context of an RN
molecule. Specificity at these sites can be linked
cis-acting elements within the RNA and the activiti
that carry out the editing mechanism. In the ca
of A to I changes in mammalian mRNAs, bas
pairing between intron and exon sequences crea
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Table 2
Editing distribution: nucleotide insertions and deletions

Organism Editing type Examples References

Kinetoplastids U insertion mitochondrial [4,11,12,2
U deletion mRNAs

Physarum C insertion mitochondrial [33,36,58]
U insertion mRNAs
UU insertion tRNAs
AA insertion rRNAs
UA insertion
CU insertion
GU insertion
GC insertion

Paramyxovirus G insertion P mRNA [28,47]
Ebola virus A insertion GP mRNA [59,60]
Nematodes U insertion cytbmRNA [15]
Acanthamoeba deletion/insertion mitochondrial [48]

C to A tRNAs
A to G
U to G
U to A
Rs
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double-stranded region that is recognized by ADA
(adenosine deaminases that act on RNA) [5], whereas
an 11 nt sequence (the ‘mooring sequence’)
the flanking nucleotides within the apolipoprote
B (apoB) mRNA are recognized by Apobec-1 an
ACF1 (Apobec-1 complementing factor) [8]. Separ
mechanisms must be required for other obser
’base’ changes, some of which actually occur
the nucleotide level. Editing of mitochondrial tRNA
in Acanthamoeba, for example, involves deletion o
nucleotides at the 5′ end and subsequent addition
nucleotides complementary to the other side of
acceptor stem [13].

Nucleotide insertion/deletion editing can also o
cur via a variety of mechanisms. In paramyxovirus
the viral RNA polymerase ‘slips’ on a homopolym
tract [14]; a similar mechanism may be responsible
the occasional U insertions within thecytb transcript
in the nematodeTeratocephlus lirellus[15] (Fig. 1). In
contrast, although nucleotide insertions into mitoch
drial transcripts inPhysarumare co-transcriptional, a
evidence indicates that it occurs via a distinct me
anism [16]. Finally, U insertion and deletion with
kinetoplastid mRNAs is a post-transcriptional proce
involving trans-acting guide RNAs (gRNAs) and
number of enzymatic activities [17], as described
Section 3.1.
Fig. 1. Nucleotide insertion and deletion patterns. Compar
of short regions of genomic and RNA sequences found in
coxIII gene ofTrypanosoma brucei[46], coxI of Physarum poly-
cephalum[33], the P gene of Sendai virus [47], thecytb gene of
Teratocephlus lirellus[15], and the tRNAaspgene ofAcanthameoba
castellanii [48]. Upper case letters indicate nucleotides encode
the genome, lower case letters indicate nucleotides added by
editing.

2.3. Functions of RNA editing

Because editing affects the primary sequence
an RNA, most editing events impact gene express
Base substitutions most often lead to changes at



904 J.M. Gott / C. R. Biologies 326 (2003) 901–908

tes
NA

n of
),

pes
in
nd
3,
B

op
-

that
nd
n

ing
po-
sed
re-
are
-
t-
A
base
ntial
b-
are
g

lso
of
ing
s

n of
the

s;
ent

g
dine
top
of

s
mic
nin

n are
mic
ino

ed on

. 4,
s

ast
ies,
Fig. 2. Nucleotide insertion into paramyxoviral RNAs crea
multiple open reading frames through frameshifting during R
synthesis.

amino acid level, whereas the insertion and deletio
nucleotides result in frameshifts in mRNAs (Fig. 2
creating new open reading frames (ORFs). Both ty
of editing can also affect RNA secondary structure
tRNAs and rRNAs and create (or destroy) start a
stop codons. For example, as illustrated in Fig.
a single C to U change within the apolipoprotein
mRNA changes a glutamine codon (CAA) to a st
codon (UAA), leading to the production of two pro
teins from a single gene [18,19]. Other processes
can be affected include RNA splicing, transport, a
stability. The editing enzyme ADAR2 edits its ow
mRNA to create an alternative splice site, provid
a potential auto-feedback mechanism [20]. (Other
tential links between splicing and editing are discus
in [5,8].) RNAs that contain many inosines are
tained in the nucleus [21], and a number of RNAs
known to be edited within 5′ and 3′ untranslated re
gions (UTRs), potentially affecting stability [5]. Edi
ing of tRNAs can change the ‘identity’ of the tRN
via changes in its anticodon, create substrates for
modification, or create secondary structures esse
for processing [10,22]. Not all editing events have o
vious effects, however, as some codon changes
silent, while others fall within introns and non-codin
regions of mRNAs.

In many cases, partially edited molecules are a
functionally significant. For example, the addition
a variable number of nucleotides at the single edit
site within the P mRNAs of paramyxoviruses allow
all three reading frames to be accessed in this regio
the gene (Figs. 1 and 2). Similarly, partial editing at
5 A to I sites within the serotonin (5-HT2C) receptor
mRNA results in the production of multiple mRNA
thus far 18 different cDNA sequences and 12 differ
Fig. 3. Production of two forms of apolipoprotein B via RNA editin
occurs in a tissue-specific manner. Conversion of a single cyti
to a uridine (C to U) results in the creation of an additional s
codon inapoBmRNA in the intestine, leading to the production
a shorter protein.

Fig. 4. RNA editing leads to the production of multiple isoform
of the serotonin 2C receptor from a single gene. Top: Geno
sequence of a portion of the mRNA encoding the seroto
receptor. The five adenosines that are subject to deaminatio
in bold italics. The protein sequence predicted from the geno
sequence is directly below each codon. Bottom: Predicted am
acid sequences based on the sequence of known cDNAs. Bas
data in [23,49].

predicted protein isoforms have been reported (Fig
[23]). Interestingly, the ratio of the individual isoform
varies in different regions of the brain, and at le
some have altered G protein coupling propert
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suggesting that many of the predicted protein produ
are likely to be functionally important [24].

The importance of certain editing events has b
convincingly demonstrated through gene knocko
of editing enzymes. For example, the gene enc
ing an RNA ligase required for uridine insertion in
kinetoplast mRNAs is essential for survival of t
bloodstream form ofTrypanosoma brucei[25]. ADAR
knockouts in flies and worms lead to behavioral abn
malities, including defects in chemotaxis in worms
and locomotion, grooming, and mating in flies [2
while ADARs are absolutely essential in mamm
(see Section 3.2).

2.4. Patterns and efficiency of editing

Even when the same types of changes occu
different organisms, editing patterns vary considera
between species. For example, only a single C
U change is observed within the 14,000 nt ap
mRNA in mammalian cells, while the identity o
nearly 14% of the encoded residues within thenad3
mRNA in wheat mitochondria are affected by C
U changes [27]. Similarly, changes at the nucleot
level can range from the insertion of a single G,
observed in the measles virus P mRNA [28], to
post-transcriptional addition of more than 50% of t
nucleotides within mRNAs initially transcribed from
‘pan-edited cryptogenes’ in kinetoplasts [29] (Fig.
Patterns of nucleotide insertion are particularly dive
in regards to the sites of nucleotide insertion a
the nucleotides that are added, as can be seen i
examples illustrated in Fig. 1 and Table 2.

In cases where editing is limited to a small numb
of discrete sites, there is usually a particular seque
that is responsible for directing editing to that si
Examples of this include the ‘mooring sequen
downstream of the C to U conversion site within t
apoB mRNA editing site and the homopolymer tra
found in viral systems. Surprisingly, where editing
more widespread, signals have generally been m
difficult to identify. In Physarummitochondria, for
example, no consensus sequence surrounding ed
sites has emerged, despite the fact that over 40
insertion sites have been characterized [30]. Edi
contexts are not entirely random in this system,
roughly 70% of the precisely mapped editing sites
after a purine-U. There is also some codon bias
both base conversions in plant mitochondria [31] a
addition of non-templated nucleotides to slime m
mitochondrial mRNAs [30,32], but the basis of the
biases is currently unknown.

The efficiency of editing also varies conside
ably between species. For example, essentially
RNAs present inPhysarummitochondria are fully
edited [33], while in kinetoplasts, a significant pe
centage of the steady-state pool of RNAs is made
of unedited or partially edited molecules [34]. This d
ference is largely due to differences in the mechani
used to insert extra nucleotides in these two organis
Except in cases where start or stop codons are cre
or destroyed, the efficiency of editing is often less c
ical in instances of base conversion, as both the ed
and unedited forms of the mRNA are likely to pr
duce a protein with at least some function, but edit
at the Q/R site within the glutamate receptor B subu
(gluR-B) mRNA is essential in mice [35].

2.5. Regulation of RNA editing

RNA editing is subject to regulation at many leve
Base changes in human cells are tissue specific,
A to I changes occurring primarily in neuronal tissu
while apoB editing occurs only in the intestine. So
of these events are also regulated development
hormonally, or environmentally [8]. Likewise, uridin
insertion/deletion in many trypanosome mRNAs
developmentally regulated, occurring in only a sin
life cycle stage [11]. Expression of editing enzym
is also highly regulated, and multiple isoforms a
sometimes produced via alternative splicing [5]. T
area of research is likely to expand once more edi
targets are identified.

3. Implications of RNA editing

3.1. Implications for gene discovery

The existence of RNA editing complicates ge
discovery efforts, particularly in cases where start
stop codons are created (or destroyed) or nucleot
are added or deleted. InPhysarummitochondria, for
example, traditional gene finding programs were
able to identify the genes fornad2, nad4L, nad6, and
atp8, despite the fact that the entire mitochondr
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Fig. 5. Creation of functional mRNAs in kinetoplasts requires c
tributions from three classes of DNA molecules. A. Transfer
genetic information from guide RNAs transcribed from minicirc
DNAs to pre-edited mRNAs derived from maxicircle DNAs r
quires enzymatic activities encoded in the nuclear genome.
that synthesis of a functional mRNA requires incorporation of
cleotides that are the complement of those found in the guide RN
B. Schematic representation of a trypanosome, showing the D
molecules present in the kinetoplast and nuclear compartments
to scale).

sequence had been determined and it was susp
that these mRNAs were edited [36]. We are curren
collaborating with Dr Ralf Bundschuh on develo
ing specialized programs capable of recognizing s
‘cryptogenes’. His current algorithm, which is bas
on protein alignments, has recently been used to
calize uncharacterizedPhysarummitochondrial genes
and predict nucleotide insertion sites with high ac
racy (J. Gott and R. Bundschuh, unpublished da
Protein alignments also played a key role in the d
covery of editing in plant mitochondria [37,38]. Mo
often, however, instances of editing are discove
by accident, through the comparison of genomic a
cDNA sequences. Experimental confirmation is
sential, particularly given the error rates of EST
quences.

Perhaps the most serious challenge to the con
of the gene is provided by kinetoplastid ‘genes’ in t
panosomes. The kinetoplast, the single mitochond
at the base of the flagella of trypanosomes, contai
concatenated network of DNA molecules compris
d

t

of ∼20–50 maxicircles and∼5000–10,000 minicir-
cles (Fig. 5) [29]. Pre-edited mRNAs are produc
from ‘cryptogenes’ encoded in the maxicircles, wh
are not functional without editing. The missing i
formation is ‘encoded’ in antisense gRNAs, most
which are transcribed from minicircles [17]. The i
formation in the gRNAs is not translated directly; i
stead, proteins encoded in the nuclear genome use
NAs as ‘templates’ to guide the addition or subtract
of uridine residues opposite As or Gs in the guid
region of the gRNA [11]. Thus, three different class
of DNA molecules (maxicircles, minicircles, and th
nuclear genome) are needed to produce functiona
tochondrial mRNAs that, in most other organisms,
encoded in a traditional manner [12].

3.2. Implications for human disease

As with any process that affects gene express
RNA editing has the potential to go awry. Hypere
iting caused by overexpression of Apobec-1 lead
carcinomas in model systems [39], while hyperedit
of measles transcripts has been observed in pat
with subacute sclerosing panencephalitis and mea
inclusion body encephalitis [28,40]. The three ADA
genes are essential in mammalian systems [5]. D
ing even a single ADAR1 allele is embronically leth
in mice; single knockouts have severe defects in
hematopoietic system [41]. ADAR2 knockout mi
are prone to seizures and die shortly after birth [3
Altered editing levels have also been observed in
lignant gliomas [42], schizophrenic patients [43] a
suicide victims [44], and may be affected in patie
with Alzheimer’s and Huntington’s disease [45]. F
nally, editing may also have important implications f
drug therapy, since 5-HT2c receptors translated from
edited and unedited mRNAs have different affinit
for some antipsychotic drugs [44]. Thus, it is clear t
RNA editing both expands the coding capacity of
genome and has a significant impact on gene exp
sion.
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