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Abstract

Taking into account a predator/prey size ratio in a size-structured population model leads to a partial derivative equation of
which we study the properties. By expliciting the structure of the attractor of this equation, it is shown that a simple mechanism,
size-based opportunisticegmation, can explain the stability the shape of size spectra obse&hue various marine ecosystems.
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Résumé

Une approche mathématique du spectre de taille des populations de poissoha. prise en compte, dans un modele de
populations structuré en tailleed rapports de taille entre proies et prédateanslait a une équation aux dérivées partielles dont
nous étudions les propriétés. En explicitant la structure de I'attracteur de cette équation, nous montrons comment un mécanism
simple, la prédation opportunéstondée sur la taille, peut conduire a la stabilitéad®rme des spectres de taille observés dans
différents écosystémes marifgur citer cet article: O. Arino et al., C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction biology, and in almost all domains of science dealing
with population dynamics.

The basic concept is as follows: consider a popu-
lation described using a stture variable, which may
be mono- or multdimensional, age, size, weight, con-
centration of a certa chemical element, or whatever.
Then, in many situations, the population will behave
msponding author. in the long range in such a way that the proportion

E-mail addressesarino@bondy.ird.fr (O. Arino), shin@ird.fr ~ Of @ given size class within the total population ap-
(Y.-J. Shin), christian.mullon@bondy.ird.fr (C. Mullon). proaches a fixed value independent on the initial state

The term ‘size spectrum’, or variants of it such as
‘size distribution’ or ‘asynchronous steady state’, can
be metin a variety of contexts, from soil science to cell
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of the population. In demography, it is the age pyra- pendices [5]. This underlines a common physical con-
mid, where a given age range represents a proportionstraint for predation within fish communities: a preda-
of the total population, invariant through several cen- tor must have a jaw large enough to swallow its prey
sus periods, provided that environmental conditions in as a whole. As the size of the jaw is linked to body di-
a broad sense have not changed in the meantime; inameter, which is in turn related to fish length, due to
cell biology, cells of a given line growing in a cul- hydrodynamic constraints [6], fish size is considered
ture reach a state where the ratio of cells in any of as the prevailing factor involved in predation and for
the various stagesii, S, G2, M) to the total popula-  insuring successful capture of prey [7,8]. The feeding
tion is approximately constant and again independent strategy of fish can then be considered to be oppor-
on the initial population; in oceanography, the particle- tunistic, the diet composition depending more on the
size spectrum describes the distribution of particles in ratio of the size of the predator versus its prey and on
a volume of water as a function of their size. The size the relative abundance of prey, rather than on species
of a particle is an important indicator of the physical preferences [9]. Strong patterns that are observed in
processes that act on the particle: aggregated phyto-marine food webs can be related to this size-based
plankton cells gain in density and may reach the sea predation behaviour. Firstly, fish species have multiple
bed more easily than isolated cells [1]. The present predators and multiple prey, and omnivory is common.
work focuses on fish size spectra in marine ecosys- Indeed, fish larvae generally feed at the base of the
tems. The most documented representation of the sizefood web and when they become adults, they feed at
spectra regarding the number of reported ecosystemsone or several trophic levels below their own [2]. Sec-
is the logarithm of the fish numbers within each size ondly, cannibalism is frequentin fish communities and
class versus the logarithm of the median size of the can represent an important source of pre-recruit mor-
size class (e.g., [2,3]). Using this representation, the tality (e.g., [L0-12]). Finally, eggs and larvae are all
size spectrum is usuallylimear decreasing function of  located at the base of piscivorous trophic levels [13].
the size of the organisms. This shape is recurrent and isA peculiarity of teleost eggs is, indeed, their rather ho-
observed across various marine ecosystems. Furthermogeneous size, of about 1 mm, whatever species is
more, the shape of the size spectra is remarkably sta-considered [14]. Consequently, two species can be si-
ble through time despite vang species composition  multaneously a predator or a prey of each other, ac-
in fish communities. Our goal is to study a possible cording to the stage in their life cycle (i.e., their size).
mechanism accounting for the stability of size spectra For instance, in the Baltic Sea, cod is known to be a
in fish populations, namely, opportunistic predation of predator of herring, but it is also its prey, since adult
fish on smaller fish, independent on the species iden- herrings feed on cod pre-recruits [15].
tity. To this aim, a modelling approach will be per- This suggests that a broad range of marine ecosys-
formed, using a representation of the population in tems may have been structured through evolutionary
terms of density functionand proceeding according times by a rather basic mechanism, namely, bigger fish
to mathematical analysis. We start with some consider- eat smaller ones, which might have driven and shaped
ations on the ecological issues related to the size spec-current marine size spectra. Our goal in this work is
trum in fish populations and communities. to study, using a modelling approach, whether such
a simple mechanism such as size-based opportunis-
tic predation can lead to the type of size spectra that
2. Ecological foundations of size spectra in fish are observed in marine ecosystems. Based on ecolog-
populations ical observations presented above, different assump-
tions are made: the community under consideration is
Fish have been successful on Earth, as over half structured by a single parameter, the size; predation
of all described vertebrageare fish [4]. Despite this  of members of the community is only exerted from
species richness, strong environmental constraints im- within the community and is governed solely by size.
posed by living in an aquatic environment have pro- We leave the possibility for food to be partly provided
duced converging streamlined body forms for most from sources external to the community: in particular,
fish species, without the development of prehensile ap- it can be made in part of particles smaller than the min-
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imal size. Besides, two other processes also respon-3.1.1. Assumptions ofy, m, n

sible for the energy transfer up pelagic foodwebs to  The functionsn, n and f are assumed to be non-
larger-sized fish are modelled: somatic growth, which negative, continuous and bounded.respectivelys,
increases biomass transfer through predation; and re-denotes the infimum of:, resp.n, over its domain,
production, which impedes biomass transfer by mov- that will be generally supposed the set of non-negative
ing biomass down the foodweb to smaller sizes. reals;m, resp., is the supremum ofz, resp.z.

3.1.2. About the kernél

3. A density model The termi(s,u), s < u, is either a function or a
generalized function (a Schwartz distribution) which
3.1. Presentation of the model models the predation of fish of sizeon fish of sizey.

The expression

The equation we consider had been proposed in a | ., "
very closely related context in [16] as an extension of
an empirical model due to [17,18]. A previous size- / N, t)</l(s’ W Ns, ) ds) u
structured model including cannibalism was due to © 0
J.M. Cushing [19]. However, the study that follows is represents the time rate of the biomass taken out by
original to the extent we performed it, that is, not only predation. Since most of this loss is used to sustain
we show the existence of a non-trivial steady state, a physiological functions of the predator, it is logical to
candidate for the size spectrum, but we also show the assume that it is proportional to the predator biomass.
convergence of the transients towards the steady state;The kernel (s, ) accounts for several effects: it is de-
which is an essential feature of observed marine size pendent upon the food diet of the predator, it should re-

spectra. flect the range of prey sizes that the predator chooses;

N 9 it may also reflect the effort it takes the predator to ac-

v + s (f(s)N(s, t)) =—m(s)N(s,1) cess the desired prey and how much food it can extract
N

from the prey. These various specifications make the

e modelling of the right kernel a difficult task, out of the
—N(s,1) / [(s,u) N(u,1)du (1) scope of the present work. We will just mention a few
s cases: for most of the study, we will assume the fol-
+00 lowing: [ > 0, is measurable and bounded; when deal-
N, 1) = / n(s) N(s,t)ds (2) ing with the existence of an attractor, we will take
as:l(s,u) = I(s), wherel is a function ofs only, in-
0 ; " i
creasing, positive and bounded. One can also mention
s is the size or the biomass of an individual(s, 7) is the case of a linear relationship between prey size and
the density of the population biomass with respect to predator size, the predator looking for a prey whose
the individual biomass at size size is a fixed fraction of its own size.
b In this case, we havé(s,u) = I(s) do(s — u/a),
/ N(s. 1) ds with o > 1, wheresg is the Dirac distribution at zero.
At the level of the total biomass, the only growth
a

term is the birth term. Integrating Eqg. (1) in we
is the total biomass of the individuals whose weight gptain:

lies between the valuesandb.

“+00
m(s) is the natural mortality rate at size d
n(s) is the fecundity rate of individuals of size E( / N(s, 1) ds) = fONQO.1)
f(s) is the somatic growth rate of the biomass at 0
sizes. +o0
(s, u) is the rate of predation of individuals of size - / |:m(s)N(s, 1)
s by individuals of size:.

0
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+00
+N(s,t)/l(s,u)N(u,t)du] ds (3)

which is in accordanceith the above remark.
The functionf (s) that models the time growth rate

of the biomass should be expressed at least in part a
a function of the prey that has been captured. This

would introduce a non-linearity in the first-order term
and complications that we want to avoid here.

3.2. The linear equation

If in Eq. (1), we takel = 0, then the problem

becomes linear. It is also the expression obtained

by linearizing the equation nea¥ = 0, which is
obviously a solution of the equation. In the sequel, we
refer to the linear equation as Eq.{by Eq. (1p—(2).
3.3. The steady-state equation

Before proceeding further, we consider the steady-

state equation associated with system (1), (2), that
. . . . -ay _
is to say, the equation obtained by assuming that — f —— =iy +
the solution does not depend on time. The general

expression of the steady state equation is as follows

d —
& (fGIN(s))

+00
- ()N()—ﬁ()/l(, ) Ny d
m(s)N (s s J s,u) N(u)du 4
+o0 ‘
N(O)zfn(s)ﬁ(s)ds

0

In the particular case wheligs, u) = I(s) So(s —
u/a), the system becomes

—m(s) N(s) — N(s)I(s) o N (as)

d _
& (f()N(s))

+00

N(0) = / n(s) N(s)ds
0

Such an equation belongs to the class of differen-
tial equations with deviated arguments. Showing the
existence of a positive solution in the general case
is not easy. We will consider two special situations:
(1) we first assume thd(s, u) = [ = const m(s) =
m = constand f(s) = f = const (2) in the second
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case, we still assume(s) = m, but this timel (s, u) =
A(s) ¢(u) and f(s) is expressed in terms @¥ (s). In
both cases, we will take for a one-parameter family
of functions

g=0 5)

Moreover, we assume, for technical reasons, that
no(s) = O(s2), in the vicinity ofs = 0.

n(s) =qno(s),

S

3.3.1. First case

Under the above-mentioned conditionsiom and

f, Eq. (4) readsf $N(s) = —in N(s) — IN(s) x
ST N(u)du.

Defining y(s) = /. N(u) du, the equation iny

reads

2

= _d
—f =

ds
We are looking for positive solutions of this equation
that, moreover, approach zero @&i. Integrating the
equation on both members leads to:

_dy
jpca
+ as y(s)

1-,
S EIY(S)

As a consequence of the zero conditioncat the
constant of integration is zero. One obtains a Bernoulli
equation that integrates to:

1
exp(ms / )IC +1f/(2m)] —1f/@2m)

The constantC is equal to ¥y(0). From N(s) =
—dy/ds, we get:
_expims/HIC+1f/@m)lm/f
~ (expims/ ))IC +1f/2m)) —1f](2m))?

In order to complete the calculation of, a value

must be assigned t6', which is done by taking the
equation of the newborns into account, namely:

y(s) =

N(s)

400
N(0) = / n(s) N(s)ds
0
Note thatC = +oo corresponds tav = 0. It is a

trivial solution of the equation for af} > 0. Denote by
go the number defined by unique valuegofor which

400 ! — = =1
Jo g no(s)expims/ f)ds

q0=
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Then, using the intermealie value theorem, one can
see that, for each > qo, there exist& > 0 such that
the above compatibility corition holds. While, for a
given ¢, the equation inC may have two, possibly
more than two, solutions, a giveénleads, in contrast,
to a single solution i .

If we represent a solutioi for a valueg by the
pair (¢, N(0)), the set of solution pairs comprises
the straight lineN(0) = 0 and an unbounded curve
crossing it at the pointgo, 0), contained in the set
{(g,v): ¢ >qo, v>0}.

3.3.2. Second case
The assumptions an and/ are now

I(s,u) =s"¢(u) (6)

for somea > 1 and some functiog («) to be deter-
mined.

fé‘ I(s,u) N(s)ds is the biomass consumed in the
group of sizex per unit of mass of the group, per unit
of time.

In this example, we assume that a fractign
of the food absorbed is transformed into increased
biomass. So, the growth rate reads as folloyuss) =
¥ Jo L(s,u) N(s) ds, which leads to the equation:

m(s) =m,

i([/u“ﬁ(u)du}yé‘(s)ﬁ(s))
0

d

+00
—m N(s) — N(s)s* / ¢ (u) N (u) du

where we have substituted for and!/ their expres-
sions given in (6).

Looking for a solution such that™™ ¢ (u) N () du
= K/s%, using standard algebra, we arrive at the
following expressions fot (s) andN (s):

[(in+ K)s +ay K]“t?
a(e+1)yKsoetl
_ a?K%(a+ Dy @)

T [(m+K)s+ay Klet2

As for the first example, in order to ensure existence
of N(s), it remains to verify the conditioV(0) =
f0+oo n(s) N(s)ds.

Keeping in mind thaiz(s) = g no(s) then, for each
given value of the parameters,(y, K, m ), there is

¢(s) = (7

N(s)
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exactly one value of,

qg=q(a,y,K,nm)

for which the above condition holds. If, on the other
hand, one chooses the parametgrsy, y, m, then
there may be zero, one or several valueskoffor
which the equation has a solution satisfying for-
mula (8). If, for example, one assumeg to be in-
tegrable on the positive semi-axis, then there exists a
threshold value foy below which the equation has
no positive solution of the form (8), independently of
K > 0. When the threshold is crossed, a positive solu-
tion emerges from the zero solution (and fréh= 0).

3.4. Transient states

As soon as a steady-state solution is perturbed,
even slightly, the corresponding solution becomes
time-dependent, it goes through transient states to
possibly come back to the previous steady state or
approach another one or a more complex invariant
subset. A complete understanding of what is going
on is currently out of reach. The main result stated
in Theorem 6.1 is just the easy part. The first step
in the derivation of this result is to ensure that
solutions of system (1), (2) do actually exist and are
densities, namely, they remain non-negative all over
their domain. This is thecscalled Cauchy problem,
which, in the present situation, is handled using a
perturbation technique: the equation can in fact be
decomposed into a sum of a linear and a non-linear
part.

The linear part may be dealt with using a classical
semigroumpproach. The non-linear part is considered
as a perturbation of the linear equation, making the
whole problem a semilinear one. We refer the inter-
ested reader to the literature [20,21] for details about
the treatment of such problems.

We summarize the relevant result as follows.

The work space isX = L(0, +00), the space of
Lebesgue integrable functions on the positive semi-
axis. Given a non-negative functiovp in X, system
(1), (2) has a uniquimtegral solution N (s, t), defined
and non-negative for all > 0, such that the map—
N(-,t) is continuous, with values iX andN (0, -) =
N(O).

Solutions satisfy an integral form of the equation,
obtained by applying a generalized variation of con-
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stants formula, not the equation itself, unless the ini- and a finite collection of eigenvalues in the comple-
tial value is smooth enough. This is the reason for the mentary half-plane with a leading real eigenvalisg
expressionntegralin the above statement. which is also an eigenvalue of the transposed operator.

Our main interest is in looking at the qualitative sz is the root with maximal real part of the character-
features of the solutions. Again, we consider this issue istic equation
using a perturbation approach. Indeed, the problem
has N = 0 as a solution, and it is natural to start £(0)
from this point: what happens if one takes an initial 7 ()def= 1- / n(s) == 1)
value close to 0? Will the solution go to 0? Answering
this question requires investigating the stability of the
linear equation. One would expect that in order to do x exp_/[Lm(a)} do) ds=0 (9)
so0, we would just have to look at the spectrum of the flo)
operator defining the equation (which we occasionally )
call theinfinitesimal generatoor just thegeneratorof The function:
the equation), as the characteristic polynomial of the
matrix defining a linear 0.d.e. provides the information b, (s) = —— [exp /[sz +m(o):| o (10)
about the asymptotic behaviour of the solutions of the 2 f( ) f(o)
o.d.e. However, the case is a little bit more intricate. 0
First of all, the generator is not as simple as a matrix, respectively,
and its spectrum is also rather wide. s s

Moreover, the solution operator does not have a m(o) + s2 n(o)
property that would allow us to automatically translate Vs (5) = exp/ " flo) f(O)/ f(o)
information about the spectrum of the operator into the
asymptotic behaviour of the solutions. In particular,

. . . m(r) + s2

the solution operator is not compact nor possibly com- X exp/ do (12)
pact. These problems have been overcome by using the fr)
notions ofquasi-compaacbr essentially compadper-
ators andessential spectruifi22,23]. We are not goin ;
into details of theseplssuergzhere] it will be do?ne e?se transposed qperator, for the elgenyalug ¢5, and
where. We summarize in the next section results that Vs, are positiveVs. They are unique, up to the
are useful for application to the size spectrum. multiplication by scalars.

is an eigenvector of the generator, respectively its

On occasion, we use the notatign ¢) to represent
the integral over the interv, +oo[ of the product of

4. Linear asynchronicity functionsy and
P q-

The linear equation behaves asynchronically, which . —

means that solutions tend to forget their past val- 1h€orem 4.1.Let¢ be given inL*(0, +00), ¢ > 0

ues and be distributed asymptotically according to the 7 O- Denote Ny(s, 1), or just N(s, 1), the solution

multiple of a distribution, the same for all the solu- ©f EQ- (1)o—(2), starting from¢, that is, such that

tions. Mathematically, this corresponds to the fact that N (5: 0) = ¢. Then, the following asymptotic formula

each solution can be written as a sum of a principal 0lds

part and a remainder, where the principal part lives in .

a one-dimensional subspaceXfWe first summarize NG 1) = Cexpsatlgs; + O(eXp(SZ B 8)t) (12)

in a proposition the main results regarding the spec- for some constantC > 0 where the expression

trum of the generator. o(exp(s2 — €)t) means that the quantity is infinitely
smaller thanexp(s2 — )t neart = +00; ¢ > 0 can

Proposition 4.1. The spectrum of the generator of be chosen independently@fFinally, C > Qif ¢ > 0,

Eq. (1)—(2) is the union of a left complex half-plane 0.
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Supposep is a non-zero density. Integrating (12), one or several parameters, which has 0 as a solution
the asymptotic formula can be extended to the total for all values of the parameters, one looks for non-

population: trivial steady states arising in the vicinity of 0. As
+00 +o0 parameters, here, we may consider the functions that
N(s. 1) ds = C exXplsar (s)d enter the defInItIO.n.Of the system, thgt is, the family
/ (s, 1) ds Pls2 )/¢‘2(S) s (f,1,m, n). Non-trivial steady states will only emerge
0 0 near parameter values for whish = 0. Note that
+ o(exp(s2 - 8)l) formula (9) does not depend énso we may discard
Dividing the solutionN (s, t) by the total popula-  fromthe list.
tion at time¢, using the asymptotic formulas of both Set
N and the total population, one arrives at: .
p=(f,m,n)
N(s,t) 1 $r(5)
= ¢ S -
0+oo N(o.1)do 0+oo s, () dor 2 and define
+o(exp(—)r) (13)  r(pe) =70
e

Formula (13) is the exact representation of the size-
spectrum property, in the linear case, though it shows and
that all relevant solutions behave asymptotically so as . -
to reach a fixed distribution, each of the various size v(p) (Efr(p)(o)
classes converges to a fixed proportion of the total

) L - Then, the values of interest are those for which
population, the same whatever the initial population

was. (=0 (14)
In addition, the formula for the total population
shows that it grows or decays as éxp). As long That we can restrict our attention to the points for

as sz < 0, the solutions vanish asymptotically. This Which 2 = 0 is a root is due to the linear solution
property extends to small solutions of the non-linear operator being positive: so, there is only one (up to
equation. Of course, this situation is of little interest the multiplication by a scalar) positive eigenvector and
for the purpose of determining the size spectrum. In the corresponding eigenvalue dominates the spectrum.
the real ecosystem, the situation has, at least at theCondition (14) is not sufficient to ensure existence.
scale of evolution, proved to be rather expanding, An additional condition (sufficient) for a bifurcation
that is, so > 0. It could be of some interest to use to take place apo is that the following (transversality)
the characteristic equation (9) to determine whether condition holds

s2 being non-negative is indicative of any particular

property satisfied by the parameters, which would, P (po) #0 (15)

in turn, reflect some property of the real system. We
are not going to address this issue here, or rather we

consider it from a theoretical point of view: assuming | 4o we could assume that the functighe:. n

thatsz can be pushed up so that it Crosses the va|u<_a.0, depend on othexnvironmentaparameters, such as the
we explore consequences of the change in the stability average temperature, or the salinity, or whatever:
of 0 on the possible onset of a size spectrum in the non- ' '

linear model. Two approaches, a local and a global
ones, are presented.

The set of parameters is very large: it is in fact
possible to restrict it to a finite dimensional space.

p=ples,...,ex)

The realse; are environmental parameters. In most
cases, itis enough to consider one parameter at a time,
5. Local study that is,k = 1.
Introducing the function
The local study is in the frame of the bifurcation
theory: given a system of equations depending on ﬁ(el,---,ek);fy(ﬁ(el,---,ek)) (16)
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in terms of 8, the following is a sufficient condition  integrable over an unbounded domain, the solution op-

for bifurcation at some value: erator lacks a standard property, namely, compactness
0 0 for larget. A good part of the effort spent in the the-
B(e’)=0, V(") #0 17) oretical study has consisted in finding a substitute for

While the above condition entails existence of non- th€ lacking compactness. For the linear equation, es-

zero steady states, it leaves two open questions: are the€ntial compactness was proved. Going back to the

steady states found this way positive, as they should non-linear equation, the variation of constants formula
be? Are they stable? In fact, the twé; questions are together with some additional assumptions allows us

linked, somehow. In order to answer them, we use to take advantage of the property of the linear equa-

the centre manifold theorem that, roughly, states that 0" @nd derive a general asymptotic result.

the dynamical properties of the equation near 0, fora __ | € next theorem iol:‘ects ItW.O main fehatures:hul-
parameter value® such thatg(e%) = 0, are the same  Umate boundedness of the solutions, on the one hand

as those of a low dimensional dynamical system, of (thatis to say, the fact that all the solutions are bounded
dimensionk + 1, filling up a (k + 1)th dimensional above by a same finite number-ato) and a general

manifold ¥, and both systems have the same steady description of their asymptotic behaviour, on the other
states in a small-enough neighbourhood (6f¢°). hand.

¥ is tangent at(0, ¢°) to the vector space sum of
spafgg}, wheregg is computed according to formula
(10), with 5 = (¢9), on the one hand, and, on the other
hand, the space of parametéss). A generic element
in X reads(N, e), wheree is a kth-fold parameter,
close toe? and:

Theorem 6.1. Assume, in addition to the above-
standing hypotheses am, n and f, that there exists
a functioni(s) such thati(s,u) > l(s), wherel is
increasing and bounded arid0) > 0. Then,(i) each
non-negative solution of systdi), (2) is boundedin
the sense that the integral inis bounded uniformly

N=u¢o+ Ou,e), Q=0(|u|+||e—e°H) (18) in t) with ultimate boundr,

On x, system (1), (2) reduces to a scalar ordinary g — 2f©n—m) (19)
differential equation governing the variation of the L0
componentuy of the generic element, rather /& if R > 0. All the solutions approacB if f(0)i <m
parameter family of o.d.es, which all have=0 as a (ii) under the following condition
trivial solution, and 0 changes from stable to unstable (£ (0)ii — m)
when the parametergoes from one side to the other ————___—~ sup I(s,u) <m (20)
of the parameter plane passing through the pefnt L(0) uzs20

perpendicular to the vect&ts (%). From this fact, itis system(1), (2) has a(uniqué compact attractor, that
possible to deduce the existence of a steady state othejg g say, a setd, invariant, compact and connected,
than O for the o.d.e. The nature of the non-linearity \yhich is also maximal amongst sets having all these
leads to the following theorem. properties, such thatyNg > 0, the solution of the

system starting fromVp approaches asymptotically
Theorem 5.1.The non-negative solutions other th@n the set.A. Moreover, the convergence is uniform in
arising near0 occur for values of the parametefor each subset of uniformly bounded initial values.
whichsz(e) > 0, therefore, they are stable.

6.1. Nature of the attractor

6. Global study The attractor is compact and connected: as long as
f(On < m,itconsists of asingle point. Let us see how
Prior to this, some comments about the nature of the situation changes as the paramegtentering the
the solution operator are in order. formula ofn (5) is augmented.
In part due to the framework chosen here, thatis, @ The zero equilibrium becomes unstable past a
the fact that the work space is made up of functions certain value ofg; beyond this value, the attractor
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grows, a non-zero steady state arises in the vicinity 7. Conclusion

of 0. Since the attractor is connected, it cannot be

limited to a finite number of steady states: it is indeed In this paper, we discussed the existence of stable
infinite. One possibility is that apart from 0 and the ;¢ spectra in fish populations. By means of math-
non-trivial steady state, the equation has one or severalg ,4tical analysis, we investigated a classical size-
curves connecting 0 to the other steady state; for gy ,cyred model of fish dynamics, which is mainly
example, it can be a solution that approaches 0 asp,5eq on the hypothesis that predation is a size-based
F=> —00 and the non-tnv@ steady_ state &s> +0o. process. Depending on some estimates on the parame-
In this case, all non-negative solutions but O converge ters and functions of the model, we showed that ei-

asymptotically to the_ non-trivial steady state, which ther the whole system collapses asymptotically or a
corresponds to the size-spectrum property. Note thatnon—trivial equilibrium emerges, which is at least a lo-

the emergence, near 0, of a non-trivial solution is ; oo
. . cal attractor. Exact computation of that equilibrium,
indeed a consequence of 0 becoming unstable near

i which is indeed the desired size spectrum is out of
some values of the parameseusing formula (9), the reach of the mathematical analysis, although we have
m, n, f where a change of stability occurs are given ysIS, 9

by provided examples where such a computation can be
made. Numerical as well as computer approaches have

+oo K} . .
been undertaken and simulations have been run. The

/nQVWDGm—/rM”}m>m=1 (1)

0

70) m a_malysis_ performec_;l her_e e_xplr_:lins some of the simula-
tion findings and gives indications on what can be ex-
In particular, withn = g no, there is exactly one  Pected according to the location of the parameters: in
value of ¢ for which formula (21) holds. We now Some simulations, the population goes to extinction.
discuss the issue of whether one can have at the This might reflect the fact #t the parameters are in
same time the instability of 0 and the preservation the range of stability of thzero equilibrium. Although
of the attractor, which will ensure that the non-trivial We have restricted the study to the first bifurcation, a
equilibrium is stable. Instability of 0 is equivalent to quick inspection of the linearization near a non-trivial

the inequality: equilibrium suffices to see that the situation is likely to

100 s become complicated, with unstable oscillations occur-

/ n(s) £ exp—/ m(o) L ring most probably. Such cpmphgauons do not seem to
f(s) f(o) have been perceived by simulations and are, together

0 0 with improving on the model, in our plans for future

and is implied by research.

2 r0)>1

m

Combining the above inequality and (20), we obtain References
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