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Abstract

Studies of the mechanisms underlying complex dynamics of ecological systems at various spatial and time scales bring
increasing awareness that complexity is an intrinsic feature of ecological functioning. This paper is to investigate the role of
such an ecologically significant parameter as the time delay due to maturation processes in the complex plankton dynamics
We show that the time la@;, associated with the zooplankton maturation period can lead to essential changes in the plankton
dynamics. Particularly, we show that the coexistence of limit cycle and chaotic attractor we have recently found to be typical
of the system afy, = 0 [A.B. Medvinsky, I.A. Tikhonova, R.R. Aliev, B.-L. Li, Z.-S. Lin, H. Malchow, Patchy environment
as a factor of complex plankton dynamics, Phys. Rev. E 64 (2001) 021915] is replaced by pure chaotic plankton dynamics as
T1 becomes more than a critical value. The results obtained imply that chaos is a rather common phenomenon in the planktor
functioning.To citethisarticle: A.B. Medvinsky et al., C. R. Biologies 327 (2004).
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1. Introduction are many reasons for this, including noise in ecological
data, and impracticality of experimental manipulation
Plankton communities typically display spatio— of ecological systems. Nevertheless, a great deal of in-
temporal scale-dependent irregular oscillations. Such terest is focused on the possibility of using conceptual
complex dynamics can be explained by random fluc- (minimal) mathematical models to describe, explain
tuations in the surrounding environment. An alterna- and give possible scenarios of biological population
tive view is that at least part of the apparent disorder is dynamics.
due to deterministic chaos. Although chaotic dynam- Conceptual models are proved to be an appro-
ics appears to be rather common on models of ecolog-priate tool for searching and understanding basic
ical dynamics [1], convincing evidence for chaos in  mechanisms of plankton spatio—temporal dynamics.
natural ecological systememain meager [1,2]. There  Their usefulness has been demonstrated in the stud-
ies of plankton patchiness and phytoplankton blooms
~* Corresponding author. [3-8]. Recently, the effects of external hydrodynam-
E-mail address: medvinsky@iteb.ru (A.B. Medvinsky). ical forcing in the appearance of non-equilibrium
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spatio—temporal plankton patterns have been stud- (2) at7i # 0, differential equation (2) transforms into

ied [9,10]. Conceptual models have also been ap- the integrodifferential equation

plied to investigate the plankton pattern formation re-

sulting from planktivorous fish school walks without 9H H f CLP

any hydrodynamical forcing [11-13]. Predator—prey — == / di' — MH

2 o . ot T Co+ P

limit cycle oscillations, plankton front propagation, o7

and the generation and drift of plankton patches were 2

found in a minimal phytoplankton—zooplankton inter- — FHi +DyAH (3)
action model [14,15] that was originally formulated C3+ H?

by Scheffer [16]. The emergence of diffusion-induced _ _ _
chaos has been found by Pascual [17] along a linear " EdS- (2) and (3)F" is the fish predation rate on

nutrient gradient in the same model without fish pre- zooplankton. The paraf‘neFeRi, K, M and ¥4 in
dation. Egs. (1)-(3) denote the intrinsic growth rate, the carry-

ing capacity of phytoplankton, the zooplankton growth
rate, and the yield coefficient of phytoplankton to zoo-
plankton, respectively. The constars, C> and C3
parameterize the saturating functional responggs.
and Dy are the diffusion coefficients of phytoplank-
ton and zooplankton, respectivelx is the Laplace
operator. The paramet@y in Eq. (3) denotes the du-
ration of the zooplankton maturation period. The de-
pendence of the zooplankton grazing rate on phyto-
plankton is of Holling type Il, while the zooplankton
predation rate by fish follows a sigmoidal functional
response of type Il (according to [16]).

The model can be simplified by introducing dimen-
sionless variables. Following Pascual [17], we intro-
ducep = P/K andh = AH/K. Space is scaled by
the size of the numerical megty k, whereL is the
2 Models total length of the considered area ahd- 1 is the

number of nodes of the mesh. Thus/k is the scale
of the expected spatial processes. Time is scaled by a

We consider two modifications of the 1D basic characteristic value of the phytoplankton growth rate
marine food chain model [16]: Ro. As aresultx =kX/L, andt = Rot. Egs. (1)—(3)
become:

In this paper we focus on the chaotic dynamics
of plankton communities in the patchy marine en-
vironment where not only transient spatial patterns
but also more stable structures associated with ocean
fronts [18] and cyclonic rings [19,20] exist. We com-
pare the dynamics of the plankton communities with
and without the time dela§; associated with a zoo-
plankton maturation period [21] (in literature, other
causes of delays in population dynamics at various
time scales are also considered [22,23]). The main re-
sult of this paper is that the time delay can lead to
progressively replacing regular plankton dynamics by
chaos.

(1) atTy =0, the dynamics of phytoplanktah(X, 1)

: : 3
and zoc.)planktOIH'(X, 7) population gt any point 9P _ rp(l— p) — ap h+dyAp 4)
X and timer are given by the following differen- 97 1+bp
tial equations: 9h ap nh2

— = h—mh— f——— +dyAh 5

or " ixpp M T ®)
P P AC1P
_RrP(1-2) - Hg+Dppap (1) and
ot K Co+ P

2 dh h h?
8_H: C1P H—MH-—F H —:—/ ap dt’ —mh f2n >
at  Cao+ P CZ+H? it T Tl—i—bp +h
t_

+ DyAH (2) +dp A (6)
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In Egs. (4)—(6), the new parametersate R/Rp,a =
C1K/(C2Rp),b=K/C2,m =M/Rg,n =C3A/K,

dp =k*Dp/(L?Ro), dy =k?Dn/(L?Ro)
f=FA/(C3Ro), T =TiRo

In this paper, we assume that the inhomogeneity of

the environment only affects the fish population, i.e.
the fish predation rat¢’ = f(x), whereas all other
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Fig. 1. h-solution diagrams of the model (4), (5) and the model
(4), (6) for the following set of parameters [27]:=5, a = 5,

parameters are constant. For the sake of simplicity, we , Z 5 ,,, — 0.6, n = 0.4. This set of parameters is used throughout

assume thay is equal to a certain constant value in
the fish-populated patches, otherwjse- 0.

The diffusion terms in Eqgs. (4)—(6) often describe
the spatial mixing of the species due to the self-motion
of the organisms [24]. However, in natural waters, it is
turbulent diffusion that is supposed to dominate plank-
ton mixing [25]. Taking this into account, we consider

both phytoplankton and zooplankton as passive con-

taminants of the water turbulent motion. In this case,
d, = dp = d. Using the relationship between turbu-
lent diffusivity and the scale of the phenomenon in the
sea [25] with the minimum phytoplankton growth rate
Ro given by 10 s71 [26], the characteristic length

L/k of about 2 km typical of plankton patterns, one
can show that/ is about 5x 10~2. It should be noted

the work. Point 0 denotes the Hopf bifurcation At= 0 while
points 1 and 2 mark Hopf bifurcations &= 2.6 andT = 4.3,
correspondingly.

and 4, 6 (wherdg # 0). In other words, Fig. 1 shows
the dependence of steady-state solutiond (at0) on

the fish predation ratg for three values of the time
delay; namely, fofly = 0, and also for rather common
values of77 [21]: 30 days and 50 days (correspond-
ing values ofT in Eq. (6) are equal to 2.6 and 4.3).
Appropriate solution diagrams for phytoplankton are
not shown here because of a strong interdependence
between phytoplankton and zooplankton dynamics.
Many early observers have already reported that there
is an inverse relationship between phytoplankton and

that since our goal is to investigate plankton patterns zooplankton, i.e. phytoplankton density is lower when
on kilometer scales, we do not consider the behavior zooplankton density is higher, and vice versa. Such

of plankters at the individual level.
For numerical integration of Eqgs. (4)—(6), a simple

explicit difference scheme is used [27]. The 1D space

is divided into a grid of 64 finite-difference cells of

an inverse relationship is an apparent consequence of
phytoplankton grazing by zooplankton [3].

One can see that the zooplankton low-density sta-
tionary states (which the phytoplankton-dominated

unit length. The border between habitats divides the stationary states correspond to) are typical of high pre-

space into two patches.
The time step is set as equal to—£0 Repetition

dation ratesf. When lowering f, an unstable and
another stable steady state appear, which make the

of the integration with smaller step sizes showed that system bistable. Further lowering ¢f, the bistabil-
the numerical results did not change, ensuring the ity disappears in a saddle-node bifurcation. For some
accuracy of the chosen steps. The plankton dynamicsvalue of f (Fig. 1,7 = 0), the Hopf bifurcation occurs

is investigated with no-flux boundary conditions. The
initial distributions forp and i are uniform and the
same for both habitats.

3. Plankton dynamicsin homogeneously
distributed communities

Fig. 1 demonstrates the zooplankton solution dia-

grams for systems 4, 5 (where the time delay associ-

(point 0), destabilizing e zooplankton-dominated
steady state while creating a stable limit cycle. When
increasingl’, the Hopf bifurcation shifts into the bista-
bility region (Fig. 1, point 1 forT = 2.6 and point 2
for T = 4.3). In these cases, the region of oscillatory
plankton dynamics becomes wider. Notice that the
equilibrium points(pg, o) of Egs. (4) and (5) remain
equilibrium points in the presence of the lag (Egs. (4)
and (6)). Indeed, the only term that Eq. (6) differs
from Eq. (5) is% [’ ,ap/(1+bp)dt'. At the point

ated with a zooplankton maturation period is absent) (po, ho) this term becomespoho/(1+ bpg) that co-
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incides with the corresponding term in Eq. (5). Hence,

at this pointdh/dt (Eq. (5))= oh/0t (EQ. (6))=0. 01 e ———
025 -

4. Spatial plankton patternsin atwo-habitat o

system 0.4

Let us consider the simplest example of a spatially s
structured ecosystem consisting of two habitats. The - ‘ —
dynamics in both the habitats obeys Egs. (4) and (5) at ZL 2 = 0 LY 80
T =0, or Egs. (4) and (6) faf # 0. In one of the habi-
tats f =0, i.e. fish is absent (for example due to local
changes in temperature or salinity [31,32]). The diffu-
sion interaction between these habitats leads to plank-
ton spatial pattern formation even &at= 0 [27,32].

tial to disturb the initially homogeneous spatial plank-
ton distribution. Otherwise, no patterns could occur.

In order to demonstrate the dependence of the
plankton spatial patterns on the fish predation réate
and the lad’ in detail, we construct pattern bifurcation
diagrams. Fig. 2 shows the zooplankton abundance as i
a function of positionx (the horizontal axis) calcu-
lated atr = 2500 for different values of and for four
values of T from T =0 to T = 4.5. The spatial dis- 0 3
tributions of the model phytoplankton abundance (not Fig. 2. Pattern bifurcation diagms for zooplankton obtained for
shown) are in an inverse relationship with the zoo- 7 =0, 7 =25, T = 35 andT = 4.5 (shown above each of the
plankton distributions [27]. One can see thaf'at O, pattern bifurcation diagrams) after 250 000 iterationis; the spatial
the structures with larger inner scale characteristics coordinate; f is the fish predation rate. The zooplankton density
for the smallerf transform into small-scale irregu- ~ SC3€ S given inthe lover part of the figure.
lar patterns ag’ grows. The following growth of the

fish predation rate leads (in the fish-populated habi- rigdical) spatial plankton patterns emerge in the fish-
tat) to the nearly homogeneous high-level zooplankton free habitat at high fish predation rate values (Fig. 2 at
abundance as the local dynamics of the system passes — 3.5 andT = 4.5) that characterize phytoplankton-

through the Hopf bifurcation (cf. Fig. 1, point 0), and  gominated stationary states (Fig. 1).
to the low-level zooplankton abundance as soon as

the local dynamics reachesethow-density stationary
states. In contrast, in the fish-free habitat, the Hopf bi-
furcation is not accompanied by essential changes in
the plankton spatial structure (Fig. 2,= 0). The ex-
pansion of the region with oscillatory dynamics ob-
served in the solution diagrams as the time Tage-

comes nonzero and grows (Fig. 1) is accompanied dance, we use valu¢|s,»(t).| gnd|h,-(t)|, I.e. the length
by shrinking (alongf-direction) of the region of the of the vectors characterizing phytoplankton and zoo-

large-scale patterns and broadening of the irregular plankton density distributions in each of the habitats:
small-scale region. Besides, in contrast to the irregular _

plankton distributions typical of the fish-free habitat i) = (Pia(®), piz(®). ... pikj2(1) ()
at relatively small values df' the ordered (nearly pe- h;(t) = (h,»l(t), hi2(1), ..., hik/z(t)) (8)

5. Temporal plankton dynamicsin the two-habitat
system

To study temporal changes in the plankton abun-
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Fig. 3. Dominant Lyapunov exponents for various initial zoo-
plankton densitiegg under? = 0 (left column) andl’" = 3.5 (right
column) calculated for the fish-populates) &nd fish-freelf) habi-
tats; pg = 0.35; f = 0.18. Segments of regular (whenis around
zero) and chaotic time seri@ls; (¢)| and corresponding values of the
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Fig. 4. Plankton dynamics in botta)(fish-populated andbj fish
free habitats under different values Bf

obviously less pronounced in the case of the time-

dominant Lyapunov exponent are shown above each of the functions delay dynamics in comparison with thoseZat= 0.

Aho).

wherei = 1 corresponds to the fish-populated habitat,
i = 2 to the fish-free one.

Fig. 3 enables us to compare tfe(7)|-dynamics
with and without the time lag that is due to zoo-

plankton maturation (the sophisticated treatment of the

spatio—temporal plankton dynamicsiat= 0 has been
carried out in the work [27]). One can see thalat 0
(the left column), two attractors can coexist: the limit
cycle (for which values of dominant Lyapunov expo-
nenti are around zero), and the chaotic attractor (for
which A > 0). As a result, small changes in starting
conditions (for example, in thég values; pg is set
constant) can lead to both regular oscillations of the

plankton abundant and the chaotic plankton dynamics

The correlation between the variations in the fish-
populated and fish-free habitats are also evident (cf.
Fig. 3(a) and (b)).
Itis notable that in contrast to the case wiéega: 0,

at T # 0 chaotic dynamics can occur even at small
values of the fish predation rate, if only the time delay
T is more than a critical valud. As an example,
Fig. 4 shows such a transition from regular to chaotic
plankton dynamics af = 0.05 asT’ passes the critical
value (Tor = 2.25).

6. Discussion

Plankton communities often show large fluctua-

(segments of the corresponding time series are showntions both in zooplankton and algal biomass. Such ir-

above each of the functionghg) of Fig. 3). Interest-
ingly, for the system withl" = 0, there is a large re-
gion of the initial zooplankin densities for which the
basin of attraction to the limit cycle is intertwined in a
complicated way with the basin of the chaotic attrac-
tor [27].

At T # 0 the plankton dynamics changes drasti-
cally. The limit cycle disappears, and the only chaotic
attractor (for whichA > 0) is found to influence
the plankton dynamics in both the fish-free and fish-
populated habitats (the right column of Fig. 3). Notice
that variations of the dominant Lyapunov exponent are

regular patterns can be explained by inaccurate sam-
pling or by stochastic ensanmental effects on the
population. At the same time, irregularity in plankton
dynamics can be due to the chaotic rather than sto-
chastic nature of the processes that underlie spatio—
temporal changes in the plankton abundance. Indeed,
the results of the analysis of field data [28] indicate
that the recorded dynamics of diatom communities can
be chaotic. Our results show that both irregularity in
plankton spatial distributions (Fig. 2) and chaoticity of
plankton temporal oscillations (Fig. 3) can be affected
by the time lag due to zooplankton maturation.
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The length of the time delay can be critical for
chaos development. Shodds do not lead to chaotic
plankton dynamics at small values of the fish preda-
tion rate (Fig. 4). The critical value&;, obtained in
our simulations are smaller than the values of matu-
ration period of zooplankton that have been obtained
in the course of field observations [21]. This im-
plies that chaotic dynamics is an inherent feature of
aquatic ecosystems. Indeetthere is increasing evi-

dence that the systems with chaotic dynamics have an

even higher potential for adapting to changing envi-
ronmental conditions than the systems with regular be-
havior [29,30]. In view of this, studying interrelations
between chaotic and regular regimes of population dy-
namics should be significant.
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