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Abstract

Studies of the mechanisms underlying complex dynamics of ecological systems at various spatial and time sca
increasing awareness that complexity is an intrinsic feature of ecological functioning. This paper is to investigate th
such an ecologically significant parameter as the time delay due to maturation processes in the complex plankton d
We show that the time lagT1, associated with the zooplankton maturation period can lead to essential changes in the p
dynamics. Particularly, we show that the coexistence of limit cycle and chaotic attractor we have recently found to b
of the system atT1 = 0 [A.B. Medvinsky, I.A. Tikhonova, R.R. Aliev, B.-L. Li, Z.-S. Lin, H. Malchow, Patchy environme
as a factor of complex plankton dynamics, Phys. Rev. E 64 (2001) 021915] is replaced by pure chaotic plankton dyn
T1 becomes more than a critical value. The results obtained imply that chaos is a rather common phenomenon in the
functioning.To cite this article: A.B. Medvinsky et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Plankton communities typically display spatio
temporal scale-dependent irregular oscillations. S
complex dynamics can be explained by random fl
tuations in the surrounding environment. An altern
tive view is that at least part of the apparent disorde
due to deterministic chaos. Although chaotic dyna
ics appears to be rather common on models of eco
ical dynamics [1], convincing evidence for chaos
natural ecological systems remain meager [1,2]. Ther

* Corresponding author.
E-mail address: medvinsky@iteb.ru (A.B. Medvinsky).
1631-0691/$ – see front matter 2004 Académie des sciences. Publis
doi:10.1016/j.crvi.2003.11.013
are many reasons for this, including noise in ecolog
data, and impracticality of experimental manipulat
of ecological systems. Nevertheless, a great deal o
terest is focused on the possibility of using concep
(minimal) mathematical models to describe, expl
and give possible scenarios of biological populat
dynamics.

Conceptual models are proved to be an app
priate tool for searching and understanding ba
mechanisms of plankton spatio–temporal dynam
Their usefulness has been demonstrated in the s
ies of plankton patchiness and phytoplankton bloo
[3–8]. Recently, the effects of external hydrodyna
ical forcing in the appearance of non-equilibriu
hed by Elsevier SAS. All rights reserved.
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spatio–temporal plankton patterns have been s
ied [9,10]. Conceptual models have also been
plied to investigate the plankton pattern formation
sulting from planktivorous fish school walks witho
any hydrodynamical forcing [11–13]. Predator–pr
limit cycle oscillations, plankton front propagatio
and the generation and drift of plankton patches w
found in a minimal phytoplankton–zooplankton inte
action model [14,15] that was originally formulate
by Scheffer [16]. The emergence of diffusion-induc
chaos has been found by Pascual [17] along a lin
nutrient gradient in the same model without fish p
dation.

In this paper we focus on the chaotic dynam
of plankton communities in the patchy marine e
vironment where not only transient spatial patte
but also more stable structures associated with oc
fronts [18] and cyclonic rings [19,20] exist. We com
pare the dynamics of the plankton communities w
and without the time delayT1 associated with a zoo
plankton maturation period [21] (in literature, oth
causes of delays in population dynamics at vari
time scales are also considered [22,23]). The main
sult of this paper is that the time delay can lead
progressively replacing regular plankton dynamics
chaos.

2. Models

We consider two modifications of the 1D bas
marine food chain model [16]:

(1) atT1 = 0, the dynamics of phytoplanktonP(X, τ)

and zooplanktonH(X,τ) population at any poin
X and timeτ are given by the following differen
tial equations:

(1)
∂P

∂τ
= RP

(
1− P

K

)
− AC1P

C2 + P
H + DP�P

(2)

∂H

∂τ
= C1P

C2 + P
H − MH − F

H 2

C2
3 + H 2

+ DH�H
(2) atT1 �= 0, differential equation (2) transforms in
the integrodifferential equation

∂H

∂τ
= H

Tl

τ∫
τ−Tl

C1P

C2 + P
dτ ′ − MH

(3)− F
H 2

C2
3 + H 2

+ DH�H

In Eqs. (2) and (3),F is the fish predation rate o
zooplankton. The parametersR, K, M and 1/A in
Eqs. (1)–(3) denote the intrinsic growth rate, the ca
ing capacity of phytoplankton, the zooplankton grow
rate, and the yield coefficient of phytoplankton to zo
plankton, respectively. The constantsC1, C2 andC3

parameterize the saturating functional responsesDP

andDH are the diffusion coefficients of phytoplan
ton and zooplankton, respectively.� is the Laplace
operator. The parameterT1 in Eq. (3) denotes the du
ration of the zooplankton maturation period. The d
pendence of the zooplankton grazing rate on ph
plankton is of Holling type II, while the zooplankto
predation rate by fish follows a sigmoidal function
response of type III (according to [16]).

The model can be simplified by introducing dime
sionless variables. Following Pascual [17], we int
ducep = P/K andh = AH/K. Space is scaled b
the size of the numerical meshL/k, whereL is the
total length of the considered area andk + 1 is the
number of nodes of the mesh. Thus,L/k is the scale
of the expected spatial processes. Time is scaled
characteristic value of the phytoplankton growth r
R0. As a result,x = kX/L, andt = R0τ . Eqs. (1)–(3)
become:

(4)
∂p

∂t
= rp(1 − p) − ap

1+ bp
h + dp�p

(5)
∂h

∂t
= ap

1+ bp
h − mh − f

nh2

n2 + h2
+ dh�h

and

∂h

∂t
= h

T

t∫
t−T

ap

1+ bp
dt ′ − mh − f

nh2

n2 + h2

(6)+ dh�h
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In Eqs. (4)–(6), the new parameters arer = R/R0, a =
C1K/(C2R0), b = K/C2, m = M/R0, n = C3A/K,

dp = k2DP/
(
L2R0

)
, dh = k2DH/

(
L2R0

)
f = FA/(C3R0), T = T1R0

In this paper, we assume that the inhomogeneit
the environment only affects the fish population,
the fish predation ratef = f (x), whereas all othe
parameters are constant. For the sake of simplicity
assume thatf is equal to a certain constant value
the fish-populated patches, otherwisef = 0.

The diffusion terms in Eqs. (4)–(6) often descri
the spatial mixing of the species due to the self-mot
of the organisms [24]. However, in natural waters, i
turbulent diffusion that is supposed to dominate pla
ton mixing [25]. Taking this into account, we consid
both phytoplankton and zooplankton as passive c
taminants of the water turbulent motion. In this ca
dp = dh = d . Using the relationship between turb
lent diffusivity and the scale of the phenomenon in
sea [25] with the minimum phytoplankton growth ra
R0 given by 10−6 s−1 [26], the characteristic lengt
L/k of about 2 km typical of plankton patterns, o
can show thatd is about 5× 10−2. It should be noted
that since our goal is to investigate plankton patte
on kilometer scales, we do not consider the beha
of plankters at the individual level.

For numerical integration of Eqs. (4)–(6), a simp
explicit difference scheme is used [27]. The 1D sp
is divided into a grid of 64 finite-difference cells o
unit length. The border between habitats divides
space into two patches.

The time step is set as equal to 10−2. Repetition
of the integration with smaller step sizes showed t
the numerical results did not change, ensuring
accuracy of the chosen steps. The plankton dynam
is investigated with no-flux boundary conditions. T
initial distributions forp and h are uniform and the
same for both habitats.

3. Plankton dynamics in homogeneously
distributed communities

Fig. 1 demonstrates the zooplankton solution d
grams for systems 4, 5 (where the time delay ass
ated with a zooplankton maturation period is abse
Fig. 1. h-solution diagrams of the model (4), (5) and the mo
(4), (6) for the following set of parameters [27]:r = 5, a = 5,
b = 5, m = 0.6, n = 0.4. This set of parameters is used through
the work. Point 0 denotes the Hopf bifurcation atT = 0 while
points 1 and 2 mark Hopf bifurcations atT = 2.6 andT = 4.3,
correspondingly.

and 4, 6 (whereT �= 0). In other words, Fig. 1 show
the dependence of steady-state solutions (atd = 0) on
the fish predation ratef for three values of the tim
delay; namely, forT1 = 0, and also for rather commo
values ofT1 [21]: 30 days and 50 days (correspon
ing values ofT in Eq. (6) are equal to 2.6 and 4.3
Appropriate solution diagrams for phytoplankton a
not shown here because of a strong interdepend
between phytoplankton and zooplankton dynam
Many early observers have already reported that th
is an inverse relationship between phytoplankton
zooplankton, i.e. phytoplankton density is lower wh
zooplankton density is higher, and vice versa. S
an inverse relationship is an apparent consequenc
phytoplankton grazing by zooplankton [3].

One can see that the zooplankton low-density
tionary states (which the phytoplankton-domina
stationary states correspond to) are typical of high p
dation ratesf . When loweringf , an unstable and
another stable steady state appear, which make
system bistable. Further lowering off , the bistabil-
ity disappears in a saddle-node bifurcation. For so
value off (Fig. 1,T = 0), the Hopf bifurcation occur
(point 0), destabilizing the zooplankton-dominate
steady state while creating a stable limit cycle. Wh
increasingT , the Hopf bifurcation shifts into the bista
bility region (Fig. 1, point 1 forT = 2.6 and point 2
for T = 4.3). In these cases, the region of oscillato
plankton dynamics becomes wider. Notice that
equilibrium points(p0, h0) of Eqs. (4) and (5) remai
equilibrium points in the presence of the lag (Eqs.
and (6)). Indeed, the only term that Eq. (6) diffe
from Eq. (5) is h

T

∫ t

t−T ap/(1+ bp)dt ′. At the point
(p0, h0) this term becomesap0h0/(1+ bp0) that co-
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incides with the corresponding term in Eq. (5). Hen
at this point,∂h/∂t (Eq. (5))= ∂h/∂t (Eq. (6))= 0.

4. Spatial plankton patterns in a two-habitat
system

Let us consider the simplest example of a spati
structured ecosystem consisting of two habitats.
dynamics in both the habitats obeys Eqs. (4) and (5
T = 0, or Eqs. (4) and (6) forT �= 0. In one of the habi-
tatsf = 0, i.e. fish is absent (for example due to loc
changes in temperature or salinity [31,32]). The dif
sion interaction between these habitats leads to pl
ton spatial pattern formation even atT = 0 [27,32].
Note that the interaction between the habitats is es
tial to disturb the initially homogeneous spatial plan
ton distribution. Otherwise, no patterns could occu

In order to demonstrate the dependence of
plankton spatial patterns on the fish predation ratf

and the lagT in detail, we construct pattern bifurcatio
diagrams. Fig. 2 shows the zooplankton abundanc
a function of positionx (the horizontal axis) calcu
lated att = 2500 for different values off and for four
values ofT from T = 0 to T = 4.5. The spatial dis-
tributions of the model phytoplankton abundance (
shown) are in an inverse relationship with the zo
plankton distributions [27]. One can see that atT = 0,
the structures with larger inner scale characteris
for the smallerf transform into small-scale irregu
lar patterns asf grows. The following growth of the
fish predation rate leads (in the fish-populated ha
tat) to the nearly homogeneous high-level zooplank
abundance as the local dynamics of the system pa
through the Hopf bifurcation (cf. Fig. 1, point 0), an
to the low-level zooplankton abundance as soon
the local dynamics reaches the low-density stationary
states. In contrast, in the fish-free habitat, the Hopf
furcation is not accompanied by essential change
the plankton spatial structure (Fig. 2,T = 0). The ex-
pansion of the region with oscillatory dynamics o
served in the solution diagrams as the time lagT be-
comes nonzero and grows (Fig. 1) is accompan
by shrinking (alongf -direction) of the region of the
large-scale patterns and broadening of the irreg
small-scale region. Besides, in contrast to the irreg
plankton distributions typical of the fish-free habi
at relatively small values ofT the ordered (nearly pe
s

Fig. 2. Pattern bifurcation diagrams for zooplankton obtained fo
T = 0, T = 2.5, T = 3.5 andT = 4.5 (shown above each of th
pattern bifurcation diagrams) after 250 000 iterations;x is the spatial
coordinate;f is the fish predation rate. The zooplankton dens
scale is given in the lover part of the figure.

riodical) spatial plankton patterns emerge in the fi
free habitat at high fish predation rate values (Fig.
T = 3.5 andT = 4.5) that characterize phytoplankto
dominated stationary states (Fig. 1).

5. Temporal plankton dynamics in the two-habitat
system

To study temporal changes in the plankton ab
dance, we use values|pi (t)| and|hi (t)|, i.e. the length
of the vectors characterizing phytoplankton and z
plankton density distributions in each of the habitat

(7)pi (t) = (
pi1(t),pi2(t), . . . , pik/2(t)

)
(8)hi (t) = (

hi1(t), hi2(t), . . . , hik/2(t)
)
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Fig. 3. Dominant Lyapunov exponentsλ for various initial zoo-
plankton densitiesh0 underT = 0 (left column) andT = 3.5 (right
column) calculated for the fish-populated (a) and fish-free (b) habi-
tats;p0 = 0.35; f = 0.18. Segments of regular (whenλ is around
zero) and chaotic time series|hi (t)| and corresponding values of th
dominant Lyapunov exponent are shown above each of the func
λ(h0).

wherei = 1 corresponds to the fish-populated habi
i = 2 to the fish-free one.

Fig. 3 enables us to compare the|hi (t)|-dynamics
with and without the time lag that is due to zo
plankton maturation (the sophisticated treatment of
spatio–temporal plankton dynamics atT = 0 has been
carried out in the work [27]). One can see that atT = 0
(the left column), two attractors can coexist: the lim
cycle (for which values of dominant Lyapunov exp
nentλ are around zero), and the chaotic attractor (
which λ > 0). As a result, small changes in starti
conditions (for example, in theh0 values;p0 is set
constant) can lead to both regular oscillations of
plankton abundant and the chaotic plankton dynam
(segments of the corresponding time series are sh
above each of the functionsλ(h0) of Fig. 3). Interest-
ingly, for the system withT = 0, there is a large re
gion of the initial zooplankton densities for which the
basin of attraction to the limit cycle is intertwined in
complicated way with the basin of the chaotic attr
tor [27].

At T �= 0 the plankton dynamics changes dra
cally. The limit cycle disappears, and the only chao
attractor (for whichλ > 0) is found to influence
the plankton dynamics in both the fish-free and fi
populated habitats (the right column of Fig. 3). Not
that variations of the dominant Lyapunov exponent
Fig. 4. Plankton dynamics in both (a) fish-populated and (b) fish
free habitats under different values ofT .

obviously less pronounced in the case of the tim
delay dynamics in comparison with those atT = 0.
The correlation between theλ variations in the fish-
populated and fish-free habitats are also evident
Fig. 3(a) and (b)).

It is notable that in contrast to the case whenT = 0,
at T �= 0 chaotic dynamics can occur even at sm
values of the fish predation rate, if only the time de
T is more than a critical valueTcr. As an example
Fig. 4 shows such a transition from regular to chao
plankton dynamics atf = 0.05 asT passes the critica
value (Tcr = 2.25).

6. Discussion

Plankton communities often show large fluctu
tions both in zooplankton and algal biomass. Such
regular patterns can be explained by inaccurate s
pling or by stochastic environmental effects on th
population. At the same time, irregularity in plankt
dynamics can be due to the chaotic rather than
chastic nature of the processes that underlie spa
temporal changes in the plankton abundance. Ind
the results of the analysis of field data [28] indica
that the recorded dynamics of diatom communities
be chaotic. Our results show that both irregularity
plankton spatial distributions (Fig. 2) and chaoticity
plankton temporal oscillations (Fig. 3) can be affec
by the time lag due to zooplankton maturation.
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The length of the time delay can be critical f
chaos development. Short lags do not lead to chaot
plankton dynamics at small values of the fish pre
tion rate (Fig. 4). The critical valuesTcr obtained in
our simulations are smaller than the values of ma
ration period of zooplankton that have been obtai
in the course of field observations [21]. This im
plies that chaotic dynamics is an inherent feature
aquatic ecosystems. Indeed, there is increasing evi
dence that the systems with chaotic dynamics hav
even higher potential for adapting to changing en
ronmental conditions than the systems with regular
havior [29,30]. In view of this, studying interrelation
between chaotic and regular regimes of population
namics should be significant.
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