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Abstract

This review, based on my presentation at the French Academy of Sciences on May 19, 2003, describes recent prog
study of antimicrobial peptides, mediators of innate immunity in plants and animals. The main focus is on vertebrate d
a family of cysteine-rich antimicrobial peptides abundantly represented in human cells and tissues.To cite this article: T. Ganz,
C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Cette revue, basée sur ma présentation à l’Académie des sciences de Paris du 19 mai 2003, décrit les progr
dans l’étude de peptides, médiateurs de l’immunité innée chez les plantes et les animaux. Les défensines des ver
famille de peptides antimicrobiens riches en cystéine abondamment représentés dans les cellules et les tissus humains, sont p
particulièrement considérées.Pour citer cet article : T. Ganz, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Antimicrobial peptides are polypeptides of few
than 100 amino acids, found in host defense setti
and exhibiting antimicrobial activity at physiologic
ambient conditions and peptide concentrations. T
large families of antimicrobial peptides, defensins[1]
and cathelicidins[2], are abundant and widely distrib
uted in mammalian epithelia and phagocytes. Ot

E-mail address: tganz@mednet.ucla.edu (T. Ganz).
1631-0691/$ – see front matter 2004 Académie des sciences. Publis
doi:10.1016/j.crvi.2003.12.007
mammalian antimicrobial peptides, including his
tins [3], dermcidin[4], and ‘anionic peptides’[5] have
a more restricted tissue and animal species dis
ution. Many more families of antimicrobial peptid
are found in invertebrates[6]. Individual antimicrobial
peptides have been implicated in antimicrobial activity
of phagocytes, inflammatory body fluids or epithe
secretions. Although this review is primarily focus
on mammalian defensins, I will use key studies
other antimicrobial peptides to illustrate more gene
principles of antimicrobial peptide function.
hed by Elsevier SAS. All rights reserved.
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2. Antimicrobial peptides: activities and their
mechanisms

2.1. Activity

Several model antimicrobial peptides, includi
magainins from frog skin, tachyplesins and polyp
musins from horseshoe crab hemocytes and proteg
from pig leukocytes, have been subjected to deta
studies because of their structural simplicity, small
size (16–22 amino acids) and potential pharmaceu
applications. These peptides exhibit a broad spect
of antimicrobial activity that includes gram-negati
and gram-positive bacteria[7,8] and fungi[3], at sim-
ilar concentrations (in the range of 1–10 µg ml−1)
and under similar testing conditions to those used
other antimicrobial pharmaceuticals. Protegrins an
tachyplesins are also active against some envelo
viruses[9]. The antimicrobial activity of these pep
tides is remarkably specific, with little cytotoxicity t
mammalian cells even at concentrations ten-fold
more higher than those required for antimicrobial
tivity [10].

The structurally more complex mammalian d
fensins (29–50 amino acids) are also active aga
bacteria and fungi, especially when tested under
ionic strength conditions[11–13] and with low con-
centrations of divalent cations, plasma proteins
other interfering substances. Under these optimal c
ditions, antimicrobial activity is observed at conce
trations as low as 1–10 µg ml−1 (low µM). Increasing
concentrations of salts and plasma proteins comp
tively inhibit the antimicrobial activity of defensins
in a manner that is dependent on both the spe
defensin and its microbial target. At higher conce
trations, some defensins are cytotoxic to mamma
cells[14–16]. Certain enveloped viruses are also in
tivated by defensins[17,18]. In general, metabolically
active bacteria are much more sensitive to defen
then bacteria made inactive by nutrient deprivation or
metabolic inhibitors.

2.2. Mechanisms of antimicrobial activity

Antimicrobial peptides are almost always cation
and amphipathic (i.e., they are positively-charged
contain bothhydrophobic and hydrophilic domains).
This allows them to interact with biological mem
branes in such a way that the cationic domains
near the negatively charged phospholipid headgro
while the hydrophobic portions of the peptide a
submerged within the hydrophobic interior of t
membrane composed of fatty acid chains. The s
plest antimicrobial peptides, typified by magainin
form an alpha helix, with cationic and hydrophob
side chains radially arranged on opposite surface
the helix. Another simple structure is the beta-sh
hairpin (e.g., protegrins, tachyplesins, polyphemus
containing positively charged clusters separated
hydrophobic regions. The interactions between s
ple antimicrobial peptides and model membranes h
been extensively explored[19–21]. In these systems
there is strong evidence of a two-stage interac
between the peptides and the membranes. Du
the first stage, the peptides, attracted to the m
brane by electrostatic forces, form a carpet within
but near the surface of the membrane, with the l
axes of the peptides parallel to the membrane.
more and more peptide molecules accumulate, th
membrane becomes distorted and strained, favo
a transition to an energetically more favorable st
where the peptides are oriented with their long axe
across the membrane, creating toroidal wormhole
the membrane or otherwisedisrupting membrane in
tegrity. These interactions are favored by the prese
of anionic phospholipids in the membrane and inh
ited by neutral phospholipids or cholesterol. Anion
phospholipids are characteristic of bacteria but neu
phospholipids and cholesterol are found in animal
membranes, explaining the preferential effect of
timicrobial peptides on bacterial targets.

Structurally more complex antimicrobial peptid
are thought to act by similar mechanisms. Model b
teria (E. coli ML-35) [22] and mammalian cell line
K562 [16] treated by defensins become permea
to small molecules (small sugars and trypan resp
tively). In bacteria, permeabilization coincides w
inhibition of RNA, DNA and protein synthesis and d
creased bacterial viability, as assessed by the col
forming assay. In the model cell line, the permea
lized cells can be rescued for up to 1 h by remov
the defensin, and there is evidence that additional in
tracellular sites of action contribute to cell death[16].

In experiments with artificial phospholipid mem
branes, defensins NP-1 (rabbit) and HNP-1 (hum
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formed voltage-dependent channels, requiring ne
tive potential on the membrane side opposite to wh
defensins where applied[23]. This is consistent with
the idea that the insertion of defensin molecules i
the membrane is dependent on electrical forces
ing on the positively charged defensin molecule. T
effect of these forces is evident even when no tra
membrane potential is applied externally. Unlike a
other cationic peptide, melittin, that indiscriminate
permeabilized vesicles composed of neutral or
ionic phospholipids, defensins were much more ac
against vesicles that included negatively charged p
pholipids [24]. In general, the activity of defensin
against vesicles was diminished in the presence o
creased salt concentrations, supporting the importa
of electrostatic forces between the anionic phosp
lipids headgroups and the cationic defensins. Inter
ingly, the permeabilizing activity of the most high
cationic defensins was not inhibited by moderate
concentrations, indicating that electrostatic screenin
by salt ions may not have been complete. In other
periments, large unilamellar vesicles composed of
negatively charged phospholipid palmitoyloleoylph
phatidylglycerol were permeabilized by human d
fensin HNP-2 but the addition of neutral phospholip
to the lipid mix inhibited both defensin binding an
permeabilization[25]. Using a very different method
ology, the importance of anionic phospholipids f
the membrane interactions with defensins was cle
shown by calorimetric measurements of the effe
of defensins on phase transitions in membranes[26].
These studies suggest that defensin molecules e
into the membrane under the influence of both ex
nally applied and local electric fields.

It is much less certain what happens once the
fensin molecules are in the membrane. The obse
leakage of dye markers from liposomes implies t
pores (we use this term to refer to any ion or wat
permeable structure withinthe membrane) form eithe
stably or transiently. For some defensins, the rele
of internal markers from each vesicle occurred in
or none fashion[25], indicating that the pores forme
were stable. By measuring the ability of pores to
low the passage of marker molecules of various si
the pore diameter was estimated at 25 Å. The auth
proposed a model of a defensin pore – a hexame
dimers – that generates an opening of the obse
size. However, stable pore formation is not the o
r

mechanism of defensin interaction with membranes
The more cationic rabbit defensins induced a par
release of markers from individual vesicles indicat
that the pores formed were not stable. It is poss
that electrostatic repulsionbetween the highly cationi
rabbit defensin molecules destabilizes the pores.

3. Vertebrate defensins

3.1. The structure of defensins

Defensins[1,27] are a family of vertebrate an
timicrobial peptides with a characteristicβ-sheet rich
fold and a framework of six disulfide-linked cy
teines[1,27]. The two major defensin subfamilies,α-
andβ-defensins, differ somewhat in cysteine spac
and connectivity (Fig. 1). Several structures repr
sentative of these two families have been solved
2D-NMR and by X-ray crystallography[28–35]. Both
α- andβ-defensins consist of a triple strandedβ-sheet
with a distinctive ‘defensin’ fold (Fig. 2). Whereas in
α-defensins the six cysteines are linked in the 1–6
4, 3–5 pattern[36], in β-defensins the pattern is 1–
2–4, 3–6[37]. Because cysteines 5 and 6 are adjac
in both types of defensins, this difference in connec
ity does not substantially alter the structure[33]. More
recently, another structurally very distinct subfam
of θ -defensins[38] has been identified in the rhes
macaque monkey leukocytes. The matureθ -defensin
peptides arise by an as yet uncharacterized proces
generates a cyclic peptide by splicing and cyclizat
from two 9-amino acid segments ofα-defensin-like
precursor peptides. Based on their adjacent chro
somal location and similar peptide precursor and gen
structure it is highly likely that all vertebrate defensi
arose from a common gene precursor[39]. Antimicro-
bial peptides from invertebrates and plants contain
six or eight cysteines in disulfide linkage have a
been called defensins (e.g., insect and plant defens
Their evolutionary relationship to vertebrate defens
is uncertain.

3.2. Distribution of defensins

During studies of the antimicrobial activity of rab
bit and guinea pig leukocyte lysates in the 196
the peptides originally attracted attention because
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Fig. 1. Amino acid sequences and connectivities of human defensin peptides.
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their abundance and broad spectrum of antimic
bial activity [40]. Subsequent technical developme
facilitated their isolation and detailed chemical ch
acterization [11,41,42]. Their discovery in human
leukocytes[1,27] suggested that the peptides we
widely distributed in nature. After their isolation from
leukocytes, defensins were found in other host
fense settings where they were produced by epith
cells [43,44]. Typical defensin peptides have be
found in all mammals that have been carefully e
amined, as well as in chickens and turkeys[45–48].
Defensin-like peptides (growth arresting peptide[49]
and crotamines) have been also isolated from sn
venom where they may represent an adaptation of
ithelial host defense peptides for efficacy against lar
predators.

Defensins are found predominantly in cells a
tissues involved in host defense against micro
infections. The highest concentrations of defens
(> 10 mg ml−1) are found in granules, the stora
organelles of leukocytes[1,50]. When leukocytes in
gest microbes into phagocytic vacuoles, the gran
fuse to these vacuoles and deliver their contents o
the target microbe. Since there is little free space
phagocytic vacuoles the microbe is exposed to m
mally diluted granule material. Similarly, Paneth ce
Fig. 2. Cartoon diagrams of a humanα-defensin and a humanβ-defensin. Note the similarity of the folding patterns of the monomers.
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specialized host defense cells of the small intest
contain secretory granules that they release into na
row intestinal pits, called crypts. The concentration
defensins in the crypts may also reach> 10 mg ml−1

[51]. Various epithelia produce defensins, in so
cases constitutively[52], in others in response to in
fection [53]. The average concentration of defens
in these epithelia is in the 10–100-µgml−1 range[53,
54], but because the peptides are not evenly distributed
the local concentrations could be much higher.

Patterns of tissue distribution are quite varia
even when closely related species are compa
Among rodents, mice lack leukocyte defensins[55],
rats have them[56] and both species have numero
Paneth-cell defensins and epithelialβ-defensins. In
some cases, defensin expression appears to be ind
by a combination of a specific cell type and tissue
vironment. Inflammatory macrophages are leukocy
that arise by differentiation from circulating bloo
monocytes, under the influence of local tissue s
nals. In the rabbit, alveolar (lung) macrophages h
abundantα-defensins in amounts comparable to ra
bit neutrophils but defensins are absent from th
peritoneal macrophages[57]. Although defensin ex
pression in monocytes, macrophages and lymphoc
of some mammals can be detected by highly se
tive techniques[58–60], high levels of defensins in
macrophages have only been documented in rab
We suspect that these peculiarities of the pattern of
pression of defensins in certain animal species co
be related to the evolutionary pressure from spec
specific pathogens.

3.3. Microbial resistance to defensins

Specific mechanisms thatconfer increased bac
terial resistance to defensins have been identi
by insertional mutagenesis. Disruption of the tw
component transcriptional regulator phoP–phoQ
creases the sensitivity ofSalmonella to defensins and
other cationic peptides[61–64]. PhoP–phoQ directly
regulates multiple genes involved in resistance
cationic peptides and also exerts some of its ac
ity by modulating a second two-component regula
PmrA–PmrB. The function of the downstream gen
includes covalent modification of lipopolysaccharide
that decreases their affinity for cationic peptides[65]
and expression of membrane proteases that deg
d

e

cationic peptides[66]. In Neisseria gonorrhoeae, a
bacterium naturally quite resistant to defensins, th
energy-dependent efflux systemmtr increases the
resistance to protegrins, potent mini defensin-like p
tides of pig neutrophils[67]. In Staphylococci, the
disruption of either of two genes, dlt or MprF, in
creases the sensitivity of the bacteria to defensins[68,
69]. The gene dlt is required for covalent modific
tion of cell wall teichoicacid by alanine, and MprF
is necessary for covalent modification of membrane
phosphatidylglycerol with L-lysine. These modific
tions probably act by decreasing the negative charg
the cell wall and bacterial membrane respectively
diminishing their attraction for the cationic defensin
Homologues of these resistance genes have been
tified in many bacterial species indicating that the
mechanisms may be widespread.

3.4. Other activities of defensins

Various defensins have been reported to have
motactic activity for monocytes, T-lymphocytes a
dendritic cells [70–73]. In the case of humanβ-
defensins 1 and 2, which attract memory T-cells a
immature dendritic cells, the chemoattractant ac
ity may be due to defensin binding to the chemok
receptor CCR6[72]. Although the physiologic sig
nificance of this interaction has not yet been dem
strated, the high concentrations of HBD-2 in inflam
skin make it likely that this defensin could compete
fectively with the naturalchemokine ligand (variousl
named CCL20, LARC, MIP-3α) despite the highe
affinity of the latter for the CCR6 receptor. Rece
structural analysis of CCL20 pointed out remarka
similarities to HBD-2 in the putative receptor-bindin
region of CCL20. The role of this region in the chem
tactic activity of HBD-2 needs to be confirmed b
mutating the amino acid residues suspected in
interaction with CCR6. Human neutrophil defensins
HNP1–3 have been reported to be chemotactic
monocytes[70], naïve T-cells and immature dendrit
cells[73] but a specific receptor has not yet been id
tified.

Some defensins (called ‘corticostatins’)[74–76]
oppose the action of adrenocorticotropic hormo
(ACTH) by binding to ACTH receptor[77] with-
out activating it. Although such activity would inhib
the production of the immunosuppressive hormo
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cortisol, and could thus be useful in responding to
fections, the physiologic role of this in vitro interactio
has not yet been demonstrated.

Yet another reported activity of some defensins
their ability to activate nifedipine-sensitive calciu
channels in mammalian cells[78,79]. This effect re-
quired only nanomolar concentrations of defens
The structural basis of this effect is not understo
Certain mouse Paneth cell defensins (cryptdins) acti
vate chloride secretion most likely by forming cha
nels in the apical membrane of epithelial cells[80,81].
This activity is limited to a subset of cryptdins, and
structural basis is not yet known.

Most recently, several peptides genetically and
structurally related to defensins have been found
the male reproductive tract, and in particular in t
epididymis[82,83]. While some peptides expressed
the male reproductive tract are typical defensins a
found in other organs[84], most are larger peptide
from genes that undergo complex alternative splici
These peptides could have an important role in the
defense of germ cells as well as in the regulation
sperm maturation.

3.5. Defensin biosynthetic pathways

At least eight genes encodingα- andβ-defensins
are located in a cluster on chromosome 8p23[39,85–
88] and recent studies document additional defen
clusters with multiple transcribed defensin genes[89].
Mapping of the 8p23 cluster has been proble
atic, probably due to its polymorphic nature, w
individuals and their chromosomes differing in t
number of copies of individual defensin genes[90,
91]. Alpha-defensins are generally encoded as a tri
tite prepropeptide sequence, wherein a 90–100 amin
acid precursor contains an N-terminal∼19 amino sig-
nal sequence,∼45 amino acid anionic propiece an
a C-terminal∼30 amino acid mature cationic d
fensin[92] (Fig. 3). In many cases, the charge of t
propiece and the mature defensin approximately
ance[93], and this arrangement may be important
folding and/or to prevent intracellular interactions w
membranes[94,95]. For neutrophilα-defensins, syn
thesis takes place in the bone marrow, in neutro
precursor cells, promyelocytes[96–98]. Mature neu-
trophils circulating in blood or found in inflame
tissues contain large amounts of defensins but
no longer synthesizing the peptides or their mRN
During defensin synthesis in myeloid cell lines, t
signal sequence is rapidly removed but the sub
quent proteolytic processing to mature defensins ta
many hours, and the final proteolytic cleavage m
take place in maturing granules[99]. The process
is very efficient so that only small amounts of pa
tially processed intermediates are detectable in ma
neutrophils[100]. In the case of murine Paneth ce
defensins (cryptdins), the metalloproteinase matrily
(MMP-7) is required for processing since mice w
homozygous disruption of the matrilysin gene do
process Paneth-cell defensin past the removal of
signal sequence. The structure ofβ-defensin precur
sors is simpler, consisting of a signal sequence, a s
or no propiece and the mature defensin peptide
the C-terminus. The lack of anionic propiece inβ-
defensin precursors contrasts with the relatively la
anionic propiece inα-defensin precursors, a differen
that has not been satisfactorily explained.

3.6. Amino acid sequence and composition of
defensins

The amino acid sequences of mature defensins
highly variable, except for the conservation of the c
tine framework (Fig. 3) in each defensin subfamily
Clusters of positively charged amino acids are cha
teristic of mostα- andβ-defensins, but their specifi
distribution within the defensin molecule is variab
In leukocytes and in Paneth cells of the small intest
defensins are stored in granules, subcellular sto
organelles rich in negatively charged glycosaminog
cans. With the exception of chicken gallinacins, th
α- and β-defensins contain arginine as the predo
inant cationic amino acid. In contrast,β-defensins
that are secreted from epithelial cells contain similar
amounts of arginine and lysine. The preferential
of arginine in defensins stored in granules may refl
the constrains imposed by packing defensin molec
into the glycosaminoglycan matrix of granules[101,
102].

3.7. Structure-function considerations

A unitary hypothesis of how defensins perm
abilize membranes is complicated by the mark
differences in net charge, amino acid sequence
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Fig. 3. Processing of theα-defensins HNP1-3 as deduced from studies in HL-60 myeloid leukemia cell line and in mature PMN. A
indicate the forms detected by direct analysisor radiosequencing. The segments are denotedas PRE (signal sequence), PRO (propiece)
MAT (mature peptide).
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quaternary structure (monomers vs. dimers) am
the defensins. It is possible that these differen
evolved so that various defensins can target diffe
types of bacteria with differing structures of cell wa
and membranes. Further complexity is introduced by
the flexibility of the basic amino acid side chains th
permit a variety of potential spatial interactions w
phospholipids headgroups or water. Although the
teractions of defensins with membranes have b
modeled[25] there are only rudimentary experime
tal data on the structure of the defensin comple
within the membrane. Further work in this area
clearly needed since the considerable progress in
derstanding the interactions of amphipathicα-helical
peptides with membranes does not readily trans
to defensins, which are larger, more complicated
more variable structures.

3.8. Functions of defensins in vivo

When initially proposed[1], the name ‘defensins
represented a risky conjecture since it was larg
based on in vitro antimicrobial activity and the pe
tides’ location in neutrophils, the prototypic ho
defense cells. Since then, experiments with transg
mice have largely supported the idea that the do
nant function of defensins is antimicrobial. Mice wi
homozygous disruption of the matrilysin gene fail
to activate intestinal prodefensins to defensins,
were more susceptible to infection with Salmone
typhimurium, requiring an eight-fold lower oral do
for 50% mortality [103]. After oral administration
of E. coli test bacteria, the counts of viable bac
ria were similar in the proximal intestine of wild-typ
and matrilysin-knockout mice, but the wild-type mi
had lower bacterial counts in the mid- and distal sm
intestine, where Paneth cells are present at higher de
sity. In vitro, segments of intestine from wild-typ
mice contained and secreted more antimicrobial ac
tivity than those of matrilysin knockout mice[51].
Moreover, in wild-type mice the antimicrobial a
tivity could be largely neutralized by anti-defens
antibody, indicating that defensins were respons
for much of the activity. Taken together, these exp
ments provided important circumstantial evidence
the protective role of defensins in the early stages o
infection.

More recently, a gain-of-function model was r
ported, in transgenic mice expressing the hum
Paneth cell defensin gene HD-5[104]. HD-5 com-
pared to murine Paneth cell defensins has gre
antibacterial potency against the murine patho
Salmonella typhimurium. HD-5 mice were fully pro-
tected against death fromSalmonella typhimurium
infection at oral doses that killed all of the wild-typ
mice. Protection from infection was seen early, alread
at 6 hours, and correlated with lowerS. typhimurium
counts in the intestinal lumen, and prevention of
spread of infection to other organs. The effect
transgenic defensin was local, since intraperitonea
inoculation that bypassed the intestine caused e
mortality in the transgenic and wild-type strains. T
intestinal lumen-specific effects of transgenic defens
early in the course of infection provide the strong
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evidence to date that defensins act as locally secrete
antibiotics.

Mice deficient in murineβ-defensin-1 show only
very mild defects[105,106] in host defense of th
urinary and respiratory tracts, most likely due
the redundancy amongst mouse defensin genes.
like the many defensin genes present in the mo
genome, there is only one, or at most very f
murine cathelicidins (the number depends on how
family is defined). The murine cathelicidin (catheli
related antimicrobial peptide, CRAMP) is similar
its human ortholog, LL-37, and both are expresse
predominantly in neutrophils. Mice with homozygo
disruption of the CRAMP gene showed diminish
resistance to skin infection with group A Streptoco
cus[107]. Taken together, data from loss of functi
models support a host defense role for cathelicid
and defensins.

4. Conclusions and future prospects

Evidence is continuingto accumulate that verte
brate defensins function as antimicrobial effectors
innate immunity. In addition, some defensins m
have also evolved additional roles in host defense
flammation and even reproduction. Some of the m
structurally and genetically diverse antimicrobial pe
tides in animals and plants should provide use
templates for the development of new antibiotics.
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