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Abstract

The folding process of a set of 42 proteins, representative of the various folds, has been simulated by means of a Mo
method on a discrete lattice, using two different potentials of meanforce. Multiple compact fragments of contiguous residue
are formed in the simulation, stable in composition, but not in geometry. During time, the number of fragments decrea
one final compact globular state is reached. We focused on the early steps of the folding in order to evidence the m
number of fragments, provided they are sufficiently stable in sequence. A correlation has been established between these
fragments and regular secondary-structure elements, whatever their nature, alpha helices or beta strands. Quantitatively, this
revealed by an overall mean one-residue quality factor of nearly 60%, which is better for proteins mainly composed
helices. The correspondence between the number of fragmentsand the number of secondary-structure elements is of 77%
the regions separating successive fragments are mainly located in loops. Besides, hydrophobic clusters deduced
correspond to fragments with an equivalent accuracy. These results suggest that folding pathways do not contain s
static intermediate. However, since the beginning of folding, most residues that will later form one given secondary s
are kept close in space by being involved in the same fragment. This aggregation may be a way to accelerate the for
the native state and enforces the key role played by hydrophobic residues in the formation of the fragments, thus in th
process itself.To cite this article: J. Chomilier et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse des fragments obtenus par simulation du repliement protéique sur réseau. Le repliement protéique a été simu
par une méthode de Monte Carlo appliquée à un réseau discret, et deux potentiels statistiques ont été employés.
42 protéines représentant les différents types de repliement a été utilisé. Au cours de la simulation, de multiples f
compacts, composés de résidus contigus en séquence, se forment.Ils sont stables en séquence, mais variables en géom
et leur nombre décroît avec le temps, jusqu’à l’obtention d’un seul globule compact. Nous nous sommes concentr

* Corresponding author.
E-mail address:Jacques.Chomilier@lmcp.jussieu.fr (J. Chomilier).
1631-0691/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crvi.2004.02.002
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premiers pas du repliement afin de faire apparaître le plus grand nombre de fragments, dès qu’ils sont stabilisés
limites. Une corrélation a été établie entre ces proto fragments et les structures secondaires, quelle que soit leur na
est mis en évidence d’un point de vue quantitatif par un facteur de qualité global de près de 60 %, meilleur pour les proté
principalement en hélices. La correspondance entre le nombre de fragments et le nombre de structures secondaires est de
et les régions séparant les fragments successifs sont principalement localisées dans les boucles. En outre, les amas h
de la méthode HCA correspondent statistiquement aux fragments. Ces résultats suggèrent que les chemins du rep
contiennent pas d’intermédiaires structuraux statiques. Cependant, dès le début du repliement, la plupart des résidus
impliqués dans une structure secondaire donnée est confinée dans un même fragment. L’agrégation pourrait être un m
accélérer la formation de l’état natif et renforcer le rôle clef joué par les résidus hydrophobes dans la formation des fr
Pour citer cet article : J. Chomilier et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Abbreviations

SSE: secondary-structure element
3D: three dimension
lu: lattice unit
MC: Monte Carlo cycle
TH: topohydrophobic
Cα : alpha carbon
PMF: potential of mean force
MJ: Miyazawa and Jernigan

1. Introduction

Protein folding is a major challenge at the peri
of complete genome determination, and we are now
the post genomic era. Many of the attempts for ab
tio prediction of protein tertiary structures go throu
the prediction of regular secondary structures, hel
and strands. Two approaches have been develop
both short and long time limits. Molecular dynami
allow investigating either small deviations in 3D stru
tures due for instance to local mutations, or small p
teins, but is limited until now to short timescales, up
1 µs[1]. Large timescales can be reached with s
plified models, such as Monte Carlo simulations
discrete spaces. Starting from a random coil con
mation, the folding process can be dynamically sim
lated. It has already been demonstrated[2] that multi-
fragment intermediate states are observed. A fragm
is a certain number of successive residues that
lapse and form a local compact structure, linked
another one by an extended polypeptide chain. Th
t

fragments are correlated with secondary-structure
ements (SSE) as it has already been shown, by u
a simple cubic lattice[3]. In this paper, we focus ex
clusively on the first steps of the folding process a
try to delineate the fragments formed at this stage
The time limits have been chosen in a way that
number of fragments is maximal, before the foldi
process reaches a single compact domain. We dem
strate here a correspondence between fragments
SSE on a set of 42 proteins, representative of v
ous folds. The physical reason for this corresponde
may be based on the fact that local interactions (fr
the point of view of the sequence) play a key role in
formation of SSE, but also probably constitute the m
jor driving force of folding. To carry out this projec
a 24-first-neighbour lattice[4] has been used, in ord
to give a better flexibility to the macromolecular cha
and to have a better approximation of real protein
gles, particularly forβ strands. We have performe
calculations utilising two different potentials of me
force (PMF) to describe the interactions between p
of residues: the classical Miyazawa–Jernigan (MJ)
tential [5,6] and a new one, based on the concep
‘topohydrophobic’ residues, i.e. positions always oc
cupied by a hydrophobic residue for all the memb
of a common fold[7,8]. Starting from 100 initial con
formations for every protein, we have recorded
residues included in each fragment, and performe
statistical analysis over the protein set. The qua
factor estimating the one-residue correspondence
tween SSE, as derived by DSSP[9] and fragments
gives an overall mean value of 61%. Moreover, regi
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separating fragments are mainly occupied by loop
the 3D structures of the proteins. Fragments also
sonably fit (mean quality factor of 67%) the hydroph
bic clusters deduced from the HCA method[10,11].
The role of hydrophobic residues is important as th
mainly contribute to the driving force of fragment fo
mation. This study shows that regular local structu
may be formed at the very first steps of the foldin
These observations are otherwise consistent with
features of a folding of proteins by blocks, i.e. fra
ments of around 27 residues, that have been ca
TEF (for Tightened End Fragments) as their ends
mainly occupied by topohydrophobic residues loca
in close contacts, i.e. at less than 7 Å[12].

2. Methods

2.1. Lattice geometry

A protein is represented as a self-avoiding cha
composed of the Cα atoms only. We have used
lattice, introduced by Skolnick et al.[4] where the
Cα are located on the nodes of an underlying sim
cubic lattice and positioned in the following wa
consecutive Cα atoms are separated by a vector of
form (2,1,0). The length of this vector, correspond
to the mean distance between Cα in proteins, is se
to 3.8 Å or 51/2 lattice units (lu). This lattice uni
corresponds to the underlyingsimple cubic lattice, and
is worth 1.7 Å[4]. Each Cα in this (2,1,0) lattice can
have 24 first neighbours. Since the occupied volu
of amino acids must be taken into account, we m
the assumption that two amino acids (contiguous
not) may not be closer than 3.8 Å. To approxim
protein chain geometry, we have limited the an
between three contiguous Cα , thus limiting the local
flexibility. This is done by restricting the distanc
between residuesi and i + 2 from 4.1 to 7.2 Å (or
from 61/2 to 181/2 lu), corresponding to angles from
66◦ to 143◦ respectively[4], in better agreement wit
real angles in alpha and beta conformations.

2.2. Energy of interaction

In this model, the amino acid type is not introduc
in the chain geometry (which considers only Cα), but
is taken into account in the energy terms, which
scribe the inter-residue non-covalent interactions.
assume that two non-contiguous residues with a
tance smaller than 7.2 Å (181/2 lu) interact with an
energy that depends on their nature. Outside this li
their interaction energy iszero. The selected intera
tion range exceeds the minimal allowed distance
tween neighbour Cα atoms, which is 3.8 Å. Therefore
it accounts much better for the environment of ea
residue than a simple cubic-lattice model with near
neighbour interactions.

Two expressions of the pair interacting resid
energy have been used in this study. The first
was the distance-independent statistical pair pote
of Miyazawa and Jernigan[5,6], which constitutes a
20 × 20 symmetric matrix. This potential implicitl
takes into account the solvent effect (the hydropho
interaction).

We derived another potential of mean force (PM
called topohydrophobic (TH) from a database of 3
structurally aligned proteins[8] of various folds. It
takes into account the fact that some positions in
multiple alignment of a family are always occupi
by strong hydrophobic residues, that is V, I, L, M
F, Y, W. These positions have been called topo
drophobic[7,8] and it has been shown that they a
related to the folding nucleus[13–15]. Thus, in a
protein, there are two possible states for the ab
seven hydrophobic residue types: topohydrophobi
not. The remaining 13 residue types exist only
the non-topohydrophobic state. Therefore three ma
ces have been built. The first one is a 20× 20 ma-
trix, which defines the energy of interaction betwe
non-topohydrophobic residues, named NN for n
topohydrophobic–non-topohydrophobic. The sec
is a 7× 20 matrix, which describes the interaction b
tween a topohydrophobic and a non-topohydropho
residue, named TN for tophohydrophobic–non-to
hydrophobic. The third one is a 7× 7 matrix, de-
scribing the interactions between residues in topo
drophobic positions, named TT for topohydrophob
topohydrophobic. To derive these matrices, we u
the procedure described by Bryant and Lawrence[16],
which deals with log-linear modelling from the num
ber of contacts between different types of amino acid
in a dataset. The data for such an analysis takes
form of a four-dimensional contingency table, who
category variables are the two amino acid typer
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ands, the distance interval of contactsd , and the pro-
teinp. The cells contain the ratio of the observed co
tactsNobs

rsdpbetween residuesr ands at distanced over

N
exp
rsdp, the expected number of contacts by mass ac

or random pairing[16]. Assuming a Boltzmann-like
distribution of contacts is equivalent to consideri
that the frequency of occurrence of a particular con
is proportional to exp(−�E/RT ). These energy dif
ferences�E may be viewed as chemical potentialsµ

as inEq. (1):

(1)�E/RT = µrsdp= − ln
(
Nobs

rsdp/N
exp
rsdp

)

The distance between two residues was defined
tween centroid positions obtained by projecting
point at 2.4 Å from the Cα , in the directionCα–
Cβ for each residue, as previously used by Bry
and Lawrence[16]. The six distance categories us
by Bryant and Lawrence have been collected in o
one. So all distances lower than 10 Å were taken
the count of contacts between two residues of typr

ands. We did so in order to have a potential depend
only on pair type and not on the distance, as does
Miyazawa and Jernigan potential. So the dimensio
the contingency table decreases by one, and the
potential is derived according toEq. (2):

(2)µrsp= − ln
(
Nobs

rsp /N
exp
rsp

)

The method of iterative fitting was used to fin
the maximum likelihood estimates of these param
ters, and extrapolate their values independently of
protein p, such thatµrs ≈ µrsp [16]. The parame
ters µrs constitute the energy of interaction betwe
two residues in the three matrices, NN, TN and TT

2.3. Monte Carlo folding algorithm

The initial state of the proteins is an extend
random conformation. At each step, a single residu
selected at random to move and its move is also cho
at random and follows the previous lattice restrictio
The single residue movements are of two kinds:
flip movement for the N and C terminal residues a
corner movements for the others. All the possi
corner moves are described in detail in the pa
of Skolnick and co-workers[4]. These authors als
use multiple-residue moves and a more sophistic
representation of proteins by introducing side cha
in order to simulate formation and conservation
secondary structures. Here, our goal is to reveal
role of local interactions (in the sense of sequen
at the first stages of folding and to show that th
guide the protein into intermediate multi-fragme
states. This is why we restricted the move set in
elementary single residue moves, which are suffic
to drive the protein into a fragmented state.

After each move, the energy is calculated for
new state and is accepted with a probability:

(3)b/1+ b, whereb = exp(−�E/kT )

where�E is the energy difference between the n
and the initial conformations,k is the Boltzmann
constant andT the temperature. The energy un
are arbitrary because they are derived from statistica
analysis. Thus, realistic values ofT corresponding
to the ambient temperature must be determine
posteriori, by looking which values ofT are suitable to
obtain a transition toward a folded state. Note that iT

is too low, the protein freezes into unfolded states
the thermal energy is too low to overcome the ene
barriers that exist between different conformations.
the other hand, ifT is too high, the thermal motio
makes folded states unstable. The value ofT depends
on the used PMF, because each PMF has diffe
absolute energy values. We empirically found t
reasonable values to achieve folding areT = 1.1 for
MJ field andT = 0.06 for TH field.

2.4. Definition of a fragment

A fragment is a piece of sequence that folds to fo
a compact geometry in the first stages of the fold
process simulated by our Monte Carlo algorith
At that time, the protein is composed of a set
fragments, linked by coil-like parts of the sequen
(Fig. 1).

During a simulation, a residue belongs to a fra
ment if it is part of a set of at least four non-contiguo
residues interacting by pairs. Actually there are at le
six pairs of interacting residues in the smallest fr
ment. By interacting we mean that the distance of e
pair is equal or less than 7.2 Å or 181/2 lu, the maxi-
mum range of non-covalent interactions.

The number of fragments decreases with time
they progressively merge to form fewer and long
ones until the protein forms a single globule. W
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Fig. 1. Initial and intermediate state, as an example of fragment
mation during the Monte Carlo simulated folding. The initial st
is chosen at random but as extended as possible. The interme
state is composed of three fragments.

are interested to find the highest possible num
of fragments with the highest lifetime. Thus th
time interval must satisfy two requirements. First,
length and composition of the fragments should
be dependent on the initial state and second the
interval must be sufficiently large to allow a statistic
analysis on the fluctuations of the limits. The fi
requirement determines the low time limittmin and the
second the high time limittmax, and time is measure
in Monte Carlo (MC) steps in our case. In addition
that, we must take into account that, due to the se
nature of the algorithm, the time limits are correla
to the protein chain lengthL. We have determined tha
for small proteins of about 50 residues,tmin is around
105 MC andtmax = 10tmin. Thus, we have adopted th
following linear relation to generalisetmin andtmax to
proteins of any length:

(4)tmin = INT
(
105L/50

)

(5)tmax = 10tmin

INT means integer part, becausetmin and tmax are
integers by definition (MC cycles).

In order to avoid any effect due to the initial co
formation, 100 extended initial states have been g
erated at random for each protein. For each of
100 simulations per protein, the number and limits
fragments are recorded every 100 MC betweentmin
and tmax, giving a total number of recorded states
the order of 104. It thus enables us to decide for a
residue if it belongs or not to a fragment. For t
ith simulation over 100 for a given protein,n(i, f )

is the number of recorded intermediate states contain
ing f fragments. From the maximum No(i) of the
distribution ofn(i, f ), typically 104, one deduces th
number of fragmentsf ◦(i). In other words, for each
one of the 100 simulations, we select the fragme
tion that corresponds to the longest lifetime. To ac
rately calculate the limits of the fragments, we co
the number of times occ(i, r) each residuer is in-
cluded in a fragment over all the No(i) states. By
defining ocm(i) as the maximum value of occ(i, r)

over all residues, we assume that any residue such
occ(i, r) > 0.9 ocm(i) belongs to a fragment. This
equivalent to averaging over the time period in wh
the number of fragments remains constant, in orde
decide if a given residue is involved or not in a fra
ment. By this mean, we determined the limits of t
f ◦(i) fragments for theith simulation. This proce
dure is repeated for all the 100 initial conformatio
We then construct a new histogram OCC(r) that repre-
sents the number of times a residuer belongs to a frag
ment over the 100 simulations. The maximum va
of OCC(r) is 100, thus the final fragmentation is o
tained by assuming that residuer belongs to a frag
ment if OCC(r) is larger than a limit which depend
on the potential used, 50 for TH and 65 for MJ.

2.5. Protein set

A set of 42 proteins has been selected from the P
[17] corresponding to the main characteristic fol
and they are given inTable 1. Secondary-structur
assignments have been computed by DSSP[9]. All
these proteins have been simulated with the MJ fi
A subset of 22 of the above proteins, for which t
topohydrophobic residues are known, has been stu
also with the TH field.

2.6. Validation of fragment prediction: comparison
with DSSP SSE assignments and HCA clusters

The calculated fragments have been compared
SSE assigned by the DSSP algorithm[9]. Another
comparison has been performed with the results
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Table 1
Description of fragments obtained from Monte Carlo simulation in a set of 42 proteins of various folds, using the Jernigan and Miyaza
potential. The PDB code is given in the first column. The PDB codes followed by an asterisk indicate the presence of at least one disu
bridge in the protein. The classification from CATH[32] is also given.QSandQH are one-residue quality factors (see methods) with res
to DSSP assignment and HCA prediction.F is the number of fragments determined by the present method andC is the number of cluster
deduced from HCA.N is the number of SSE as derived from DSSP.F is compared to bothN andC by means of global quality factor
Quality factorsRSandRH range from 0 to 1 and describe the match betweenF versusN andC respectively. A good correspondence betwe
fragments and SSE occurs when bothQSandRShave high values. Mean quality factor values are given for each of the four CATH cla
namelya (mainly alpha),b (mainly beta),ab (alpha and beta) andf (few secondary structures)

PDB code CATH QS
(%)

QH
(%)

F C N RS
(%)

RH
(%)

3c2c a 62 63 6 7 5 80 86
2mhr a 60 72 6 9 6 100 67
1hbg a 84 83 7 8 7 100 88
2lhb a 64 77 8 12 9 89 67
1bp2* a 60 60 7 7 9 78 100
1eca a 68 75 9 8 8 88 88
1enh a 67 63 5 4 3 33 75
1rro a 73 64 7 9 11 64 78
4cpv a 75 73 6 8 8 75 75
155 c a 54 65 8 8 6 67 100
2mhb a 67 74 7 10 7 100 70
1ibe a 65 73 8 9 7 86 89
1dke a 72 74 8 10 7 86 80
1lsg* a 61 72 7 10 10 70 70
3cyt a 47 61 6 8 5 80 75
1utg a 63 79 4 5 5 80 80
1ag2* a 61 70 5 7 5 100 71
Classa mean 65 70 81 80

1pk4* b 37 61 4 4 4 100 100
1tud b 67 68 3 6 6 50 50
1pmy b 65 69 9 10 10 90 90
1fas* b 49 43 4 4 5 80 100
2mcm* b 59 59 6 8 10 60 75
4rxn b 50 67 3 5 6 50 60
1rei* b 53 64 5 9 11 45 56
2sns b 62 69 10 9 12 83 89
1qab b 59 67 8 9 10 80 89
2tpi* b 59 67 13 15 17 76 87
1pwt b 66 70 4 6 6 67 67
Classb mean 57 64 71 78

1bdm ab 65 75 6 8 7 86 75
1frd ab 53 60 7 8 11 64 88
1fxd* ab 53 53 3 6 6 50 50
1ptf ab 67 75 5 6 7 71 83
1sha ab 66 76 8 10 8 100 80
3chy ab 62 73 8 9 10 80 89
5p21 ab 71 78 12 11 12 100 91
1dur ab 50 52 4 3 5 80 67
1cyo ab 62 75 5 5 10 50 100
1c0b* ab 67 62 6 6 9 67 100
5nll ab 73 68 11 9 12 92 78
Classab mean 63 68 76 82

1isu f 50 56 4 4 4 100 100
1knt* f 55 51 3 3 4 75 100
1hip f 44 58 4 4 8 50 100
Classf mean 50 55 75 100

Total mean 61 67 77 81
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the HCA method. HCA lies on a threading of th
residues along an alpha helix, followed by a project
in a 2D plane. In this representation, neighbour
hydrophobic residues constitute clusters[10,11]. One
cluster is built of hydrophobic residues separa
by at most three non-hydrophobic ones and at
condition that no proline is present, because pro
is considered as a cluster breaker. It has been sh
that there is an agreement between HCA clusters an
SSE[18]. HCA clusters have been compared to
derived fragments, except for clusters formed o
single residue.

2.7. Quantitative analysis

Agreement between thenumber of fragments an
the number of SSE has been calculated with a o
residue quality factor,QS. It is derived from the
classical Q3 quality factor used in SSE predict
papers[19], in order to differentiate alpha helice
beta strands and coiled structures. In our case,
amino acids fall into two categories: either they belo
to a SSE or not, whatever the nature of the S
(alpha or beta), because the fragments do not pro
information on the type of secondary structure. Ifp

is the number of amino acids belonging both to
fragment and to a SSE andn the number of those no
belonging to a fragment and a SSE, the quality fac
is defined as:

(6)QS= (p + n)/N

QS factor is the percentage of correctly predict
residues of any nature and it ranges between 0 an
An equivalent factorQH has been computed to eval
ate the agreement between fragments and hydroph
clusters determined by HCA. Another measuremen
the correspondence between fragments and SSE i
tained by comparing the number of fragmentsF to the
numberN of SSE. To quantify the match between t
number of fragments,F , or the number of clusters,C,
and the number of SSE,N , the ratiosRSandRH have
been calculated as:

(7)RS= 1− |N − F |/N, RH= 1− |C − F |/C

The maxima ofRSandRH are 1, which correspon
to N = F or N = C. An equivalent factorRH has
been computed to compareF to the numberC of HCA
clusters.
.

-

3. Results

For all the 42 proteins typical of various folds fro
the PDB studied in this lattice model, the simulat
folding process went through the formation of inte
mediate states, composed of compact fragments lin
by pieces of sequence in non-compact conformati
The number of fragments decreases with time un
final globular state is reached. During its lifetime, the
3D internal geometry of a fragment changes, but
linear limits are surprisingly stable. This characteris
property led us to compare amino acid compositi
of fragments and SSE. In order to accurately determin
the most stable fragmentation for each protein, we
formed a statistical analysis of the recorded states
a predetermined time range at the beginning of fo
ing, presented in detail in theMethodssection. The re-
sults concerning fragment formation are presente
Table 1for a 42-protein set, calculated with the MJ p
tential.Table 2shows the results of the same calcu
tions with the TH potential. They concern 22 protei
a subset of the total 42 proteins, where the topo
drophobic positions are known and permit the use
TH field.

With the MJ potential, the one-residue corresp
denceQSreaches a maximum of 84% for hemoglob
(PDB code 1hbg) (Table 1). QSvalues are very sens
tive to the class of fold. Classa proteins, correspond
ing to mainly alpha in CATH, give rise to the high
est values, with a mean at 65%. It is followed by t
ab class (alpha–beta) with a mean at 63%, and by
b class (mainly beta) with a mean at 57%. Last
the f class (few SSE) with a mean at 50%. In m
cases, the number of SSE is higher than the num
of predicted fragments. The quality factor,RS, is 1 in
a few cases, and its class dependence follows the
residue quality factorQS, with mean values of 81% fo
classa, 76% for classaband 71% for classb, while it
is 75% for classf . The one-residue quality factor fo
hydrophobic clusters,QH, also follows the same clas
dependence. The mean value ofQH is 70% for classa,
68% for classab, 64% for classb and 55% for classf .
The quality factorRH is nearly class-independent, b
ing 80% for classa, 82% for classab, 78% for classb,
while it is worth 100% for classf . These results indi
cate a close relationship between fragments and hy
drophobic clusters.
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Table 2
Description of fragments obtained from Monte Carlo simulation
a subset of 22 proteins included in the dataset ofTable 1. The TH
mean potential described in this work has been used. Notation
identical to those ofTable 1

PDB
code

CATH QS
(%)

QH
(%)

F C N RS
(%)

RH
(%)

3c2c a 64 52 6 7 5 80 86
2mhr a 52 64 6 9 6 100 67
1hbg a 73 67 10 8 7 57 75
2lhb a 59 61 8 12 9 89 67
1bp2* a 52 67 7 7 9 78 100
1eca a 67 76 8 8 8 100 100
1enh a 63 56 3 4 3 100 75
1rro a 69 69 5 9 11 45 56
Classa
mean

62 64 81 78

1pk 4∗ b 47 58 3 4 4 75 75
1tud b 68 60 3 6 6 50 50
1pmy b 64 57 6 10 10 60 60
1fas* b 54 41 3 4 5 60 75
2mcm b 57 46 7 8 10 70 88
Classb
mean

58 52 63 70

1bdm ab 57 67 7 8 7 100 88
1frd ab 56 69 7 8 11 64 88
1fxd* ab 57 53 3 6 6 50 50
1ptf ab 60 63 5 6 7 71 83
1sha ab 52 58 5 10 8 63 50
3chy ab 62 62 7 9 10 70 78
5p21 ab 65 67 8 11 12 67 73
Classab
mean

58 63 69 73

1isu f 61 61 4 4 4 100 100
1knt* f 47 44 3 3 4 75 100
Classf
mean

54 53 88 100

Total
mean

59 60 74 76

With the TH potential, the maximum ofQSon the
22-protein subset also occurs for hemoglobin (1h
at 73% (Table 2). The mean value ofQS is less class
dependent: it is 62% for classa, 58% for classesab
andb. RSis much higher for classa (81%), than for
classesab and b (69% and 63% respectively).QH
is clearly better for classesa andab (64% and 63%
respectively) than for classb (52%).RH has the same
class dependence asRS, being 78% for classa, versus
73% and 70% for classesab andb, respectively. The
classf has been skipped from our statistical analy
because it only comprises two elements.
Fig. 2. Histograms of the fragments derived with both potent
used in this study, on four examples: 1hbg (alpha class), 2m
(beta class), 1bdm (alpha beta class) and 1isu (few class). The
constructed by summing up the presence of a residue in a fragme
for 100 initial states. Below each curve are represented the va
SSE assigned by DSSP, and on the top the clusters from HCA. S
lines: TH potential, broken lines: MJ potential.

To better understand these results,Fig. 2represents
the histograms OCC(r) (seeMethods) showing the
number of times each residue is involved in a fragm
over 100 Monte Carlo runs corresponding to 100 d
ferent initial states. These histograms provide the fi
fragmentation for a selection of four proteins (1hb
2mcm, 1bdm, 1isu), one from each CATH class, w
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all
ential are
Fig. 3. 3D structures of the same proteins as inFig. 2 represented with MOLSCRIPT[33]. All proteins have been coloured such that
inter-fragment regions are in grey, fragments derived from the TH potential are in green (left), and fragments derived from the MJ pot
in blue (right). From top to bottom: 1hbg (classa), 1bdm (classab), 2mcm (classb) and 1isu (classf ).
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both MJ (broken line) and TH (solid line) potentia
One important feature is the high conservation of
limits of the fragments, whatever initial state the si
ulation starts from. This permits a clear determinat
of the limits of the fragments by using an approp
ate cut-off for each potential. We actually use cut-
values of 65% for MJ potential and 50% for TH p
tential. The second feature is that, despite the diffe
physical nature of the two potentials, their results
similar for most of the predicted fragments. In the ca
of 1hbg (mainly alpha) 7 SSE are assigned by DS
while the MJ potential predicts seven fragments a
the TH 10.RSand RH are 100% and 88% for MJ
while they are worth 57% and 75% for TH potenti
The TH potential builds two minor peaks, which res
in two new fragments: one in between SSE1 and SS
and the second one inside SSE5. Moreover, SSE6
responds to one fragment with MJ potential, while
is split into two with the TH potential, with a mini
mum between them close to zero, so that the new f
mentation is not due to any cut-off effect. SSE6 i
long helix, which contains four topohydrophobic po
tions located in theN -terminal part. This might be th
reason why this long helix is split into two fragmen
precisely at the position of the last topohydropho
residue. Besides, in the loop between SSE6 and S
there is a methionine, which will be included in th
new fragment. With 2mcm (mainly beta), DSSP
signs 10 SSE. TH potential still predicts more fra
ments than MJ (7 versus 6), but bothRSandRH are
better for TH in this case, because the number of p
dicted fragments with TH is closer to the actual nu
ber of assigned SSE. The TH potential predicts a s
ond fragment shorter than MJ and better describes
loop in between SSE2 and SSE3. Fragment 4 from
has been split into two new fragments with TH a
the inter-fragment region corresponds to the loop
between SSE6 and SSE7. Thus the separations
formed by the TH potential better account for the
tual number of SSE in this case. If one looks at fra
ment 3 by TH potential, it corresponds to two stran
and the cut-off value of 50% is too low to separa
them. For 1bdm (alpha beta class) the number of fr
ments is increased by one with TH potential. In t
case of 1isu (few SSE class), there are four fragm
in each case of potential. The TH potential slightly b
ter fits the SSE1, and there are two topohydropho
residues at the end of cluster 1 (top ofFig. 2d), which
,

-

do not belong to SSE1. As these two amino acids
second neighbours along the sequence, they pro
a constant effect on the potential, as they are per
nently in interaction. The fragment will be forced
form by the presence of the hydrophobic residues
cated towards theN terminal. A common considera
tion aboutFig. 2 and the difference between both p
tentials is the fact that TH always produces more p
nounced separations between fragments.

To better visualise the correspondence betw
SSE and fragments, the same four examples of
teins are represented inFig. 3 with the 3D structures
and the pieces of sequences corresponding to the
dicted fragments are coloured in green when TH
tential was used and in blue for the MJ potential. F
haemoglobin (1hbg), with the TH potential, most
the long helices belong to a fragment. The last two p
allel helices correspond to three fragments, with
central one, which contains the turn linking the tw
helices. For the MJ potential, these two helices co
spond to two fragments, but the loop in between th
is included in the first fragment. In the case of 1bd
malate dehydrogenase, the TH potential misses
turn of the helix, which is alone to face the sheet. T
helix will be included, as well as the last strand, in
fragment with the MJ potential. For 2mcm, beta tu
are mainly included in one single fragment, as wel
some longer loops, for both potentials. The only diff
ence between the two potentials occurs for b5, which
belongs to a fragment only for TH. With 1isu, the SS
are fairly small, and they are all included in fragmen
whatever the potential, the only difference being t
the first fragment of MJ is clearly longer that with TH

4. Discussion

A simulation of protein folding on a discrete spa
has been performed. A (2,1,0) lattice has been u
which permits to reasonably approximate the ba
bone geometry of real proteins. Two different p
tentials of mean force have been used, the clas
one from Miyazawa and Jernigan, and a new
that includes the particular behaviour of hydropho
residues highly conserved at a givenposition through
evolution. It is a clear improvement relative to sim
ple cubic lattice, especially in its ability to reprodu
the geometry of beta strands. During this folding si
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giv-
ulation, before one compactglobular state is reache
the protein is formed by a succession of compact fr
ments whose limits in sequence are stable over ti
Our approach is restricted to the early steps of fo
ing and is focused on the analysis of the fragme
formed during this period. Care has been taken to
lect the time range for which the maximum numb
of fragments occurs, provided they have a suffici
lifetime. This is an extension of our previous work[3]
where it was established that fragments are very m
sequence-dependent and correspond to one or se
elements of secondary structures. Here we presen
sults on a set of 42 proteins of various folds wh
we particularly investigated the correlation betwe
SSE and fragments. For this purpose, a one res
quality factorQShas been calculated to quantify t
agreement between the states to which a residue i
signed. It is based on the classical quality factor
used for testing secondary-structure predictions[20],
but restricted in our case to a two-state predicti
There is a clear correspondence between calcul
fragments and SSE, as it can be seen from theQSover-
all mean value (around 60% for both potentials). T
is corroborated by the matching between the numb
of fragments and SSE, giving a mean value ofRS
around 78%.

A QSfactor of 60% is quite low from the point o
view of prediction, but this was not our goal. By ru
ning these simulations, we aimed at elucidating h
and to what extent the information on secondary str
tures is introduced since the beginning of the fold
process, guiding thus rapidly the protein towards
tertiary structure. Our model simulates essentially
role of local interactions, in the sense of sequen
The formation of fragments in the SSE regions dem
strates that an important part of the sequence-struc
code is contained in these local interactions. We exp
that long-range interactions are necessary to stab
the tertiary structure and adjust the limits of SSE. T
number of fragments is often smaller than the nu
ber of SSE, but a common feature, as can be see
the four histograms of fragment positions plotted
Fig. 2, is that most of the inter fragment regions f
into loops, i.e. regions connecting regular SSE[21,22].
Thus fragments mainly correspond to one or sev
SSE, with a clear preference for a single SSE.

From a dynamical point of view, our simulation
provide insights to the folding mechanism. Duri
l
-

-

their lifetime, multiple fragment intermediate stat
are not structurally stable, but they are stable in te
of sequence. Their conformation does not free
which would be an obstacle to rapid folding. Our a
proach could conciliate the framework model of fo
ing and the nucleation condensation approach: on
hand, hierarchic folding seems to occur since com
pact fragments are observed, and on the other h
their conformation is dynamically changing. Once
nucleation fragment is formed, it remains fairly co
stant in sequence, during approximately one orde
magnitude of timescale, before a new state with fe
fragments appears, and so on until a single glob
is formed. From an analysis of theΦ-values of six
small proteins, Nölting and Andert[23] conclude that
proteins (at least small ones) “proceed by mean
formation of clusters of residues neighboured in
3D structure which are particularly rich in residu
that belong to regular secondary structures.” Th
authors reconcile the nucleation-condensation me
anism (due to a non-uniform distribution of the stru
tural consolidation) with the framework model (co
solidation is higher at positions of SSE) for folding
a generalized nucleation condensation. The main t
sition state is composed of a few clusters of resid
on average more included in SSE than the rest of
molecule. Thus our approach is compatible with
one of Nölting and Andert. Our results are also con
tent with the work of Baldwin and Rose[24,25], who
simulated the initial steps of folding and showed t
the tendency of residues to take their native second
structure conformation exists at the beginning of fo
ing and is due to local interactions.

Global quality factors, illustrating the agreeme
between the numbers of predicted fragments and
signed SSE, are similar whatever potential is e
ployed. As the number of fragments is roughly pot
tial-independent, this implies that the algorithm is
bust towards this number of compact fragments. T
MJ potential seems to be sensitive to the class of
teins and produces the best correspondence in the
of alpha helices, i.e., in cases where the local in
actions, in terms of sequence, are predominant e
in the native state. The TH potential is also cla
sensitive, maybe in a lesser extent: the values ofQSare
nearly class-independent, but the agreement betwee
numbers of fragments and SSE, reflected by theRS
factor has the same class dependence as for MJ,
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ing the higher values for mainly alpha proteins. The
remarks are coherent with the fact that in vivo h
lices are generally formed at a timescale smaller t
strands, due precisely to the predominance of loca
teractions at the beginning of the process[24,25]. We
noticed that in general proteins with disulfide bridg
have lowQS values, as indicated inTables 1 and 2.
The presence of disulfide bridges, especially for sm
proteins, is one limitation of our model in its prese
state. One might try to overcome this point, by sp
ting in the PMF the two contributions of free cystei
and half cystins, linked through a covalent disulfi
bridge. Free cysteins actually behave like hydropho
residues, in particular for the buried character, wh
cystins do not[26].

There is a clear correspondence between predi
fragments and hydrophobic clusters derived fr
HCA, revealed by the values of bothQH andRH fac-
tors. In this study, we compared a Monte Carlo s
ulation to the HCA data because this latter has b
proven to be a useful tool in the determination of p
cise SSE using only information from the sequen
HCA is based on a physicochemical background,
the phase separation of protein structures into
drophobic core and hydrophilic envelope. The cl
observed similarity between these two conceptu
different methods lies on the fact that they basica
consider local interactions along the macromolecul
chain, which produce a local aggregation of hydrop
bic residues. The fragments described in this paper
be related to the concept of building blocks used in
literature[27–29]. The building blocks are defined a
compact units with a hydrophobic core and they
composed either of a single secondary structure or
contiguous segment consisting of interacting struct
elements in the work by Tsai et al.[28]. In this latter
case, the building blockscan be combined to form hy
drophobic folding units. Their building block is a co
tiguous sequence fragment with a variable size,
it is a highly populated transient structure. We do
lieve that the presently observed fragments corresp
to the non-overlapping building blocks of Tsai et
and we focus our analysis on a timescale such
it leaves constant the size of the fragment. Their
proach needs to have the structure of the protein,
is thus an assignment, while we are interested in
prediction aspect. One can also relate our fragmen
the notion of foldons, used in a prediction process
Gilis and Rooman in the early steps of folding[30],
but they are slightly longer, as they are constituted
several consecutive SSE.

The principals underlying the method developed
the present paper are consistent with the notion
closed loops introduced by Berezovsky and Trifon
[31], which are fragments of preferred length arou
27 amino acids. These closed loops, recently ca
TEF for Tightened End Fragments[12] are such tha
on average both ends are close in the 3D structu
and occupied by topohydrophobic residues. The co
spondence between these proto fragments and the
must be further investigated.
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