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Abstract

The anaerobic degradationiofalkenes by a sulphate-reducing bacteriDesulfatibacillum aliphaticivorans strain CvV2803
was investigated. Results suggest that enzymes required for alkene degradation are inducible. Moreover, total cellular fatty
acids of strain CV280Bwere predominantly C-odd when the strain was grown on C-odd substrates and C-even when grown
on C-even substrates. In addition to classhlzatterial fatty acids, unusual 4-Me-1A11 and 4-Me-18:A11 fatty acids and
their saturated homologues were detected when strain C\V2888 grown on 1-pentadecene and 1-hexadecene, respectively.
These methyl-branched monounsated fatty acids could constitute specific metabolites-alkene degradation by sulphate-
reducing bacterialo cite thisarticle: C. Cravo-Laureau et al., C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Croissance et composition en acides gras cellulaires d’ une souche de bactéries sulfato-réductrices, Desulfatibacillum
aliphaticivorans CV2803" , se développant sur n-alcénes. La dégradation anaérobie dealcénes par la souche de bactéries
sulfato-réductrice®esulfatibacillum aliphaticivorans CV2803" a été étudiée. Les résultats obtenus suggérent que les enzymes
nécessaires a la dégradation des alcenes sont inductibles. DEgplakyse de la composition eatides gras cellulaires totaux
de la souche CVZSJSindique que, lorsque la souche est cultivée susulnstrat possédant un nombre pair de carbone, les

acides gras pairs dominent, et inversement sur un substrat impair. Hormis des acides gras bactériens communs, les acides gt
4-Me-17:1A11 et 4-Me-18:111 et leurs homologues saturés ont été spécifiquement détectés lorsque la souche a été cultivée
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sur 1-pentadécene et 1-hexadécene, respectivement. Ces aeaisleangifies mono-insaturés, encore jamais décrits chez les
bactéries, sont susceptibles de constituer des métabolites spécifiques de la dégradatmnates par les bactéries sulfato-
réductricesPour citer cet article: C. Cravo-Laureau et al., C. R. Biologies 327 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The microbial degradation of hydrocarbons is of

environmental and biotechnological interests. The an-

0.2 g; NH,Cl, 0.3 g; NaCl, 24 g; MgGl-6 H20,
4.46 g; KClI, 0.5 g; CaGl2H0, 0.15 g; NaHC@Q,
2 g; Ng@S-9Hx0, 0.3 g; vitamin V7 solution[9],
1 ml; trace-elemersolution SL1710], 1 ml; selenite—

aerobic biodegradation of hydrocarbons has been de-tungstate solutiorj11], 1 ml; pH 7.5. The medium
monstrated under nitrate-reducing, sulphate-reducingwas prepared under a gas mixturex(RO,, 90:10)

and methanogenic conditiorfd]. Sulphate- or ni-

trate-reducing bacterial strains, able to oxidize hydro-

according to the method of Pfennig et §]. Cul-
tures were carried out as previously descrif@dvith

carbons under strictly anoxic conditions, have been sodium octanoate (2 mM) or 1-tetradecene (1.4 mM)

isolated1]. To date, among the sulphate-reducing iso-

lates, only five strains are able to oxidize aliphatic hy-
drocarbon§2—6]. These strains are known to degrade

as organic substrate. In some experiments with hy-
drocarbonax-cyclodextrin (5 gt1) was added to the
medium from a sterile stock solution (10%). Growth

alkanes and most of them also oxidize alkenes. Re- on organic substrates was followed by measuring sul-
cently, it has been demonstrated that, contrary to a phide productiorfl12].

previous hypothesis, initial-alkane activation under

sulphate-reducing conditions does not occur via de-

hydrogenation in the correspondingalkene[4], but
rather proceeds by addition of fumar#ig or by car-
boxylation reaction§3].

Limited information is presently available concern-
ing the degradation of-alkenes by sulphate-reducing
bacteria. Therefore, wenvestigated the anaerobic
degradation of C-odd and C-evenalkenes by a
sulphate-reducing bacteriunesulfatibacillum ali-
phaticivorans strain CV2803, recently isolated from
polluted sediments and able to oxidizealkenes to
carbon dioxidg6].

2. Materialsand methods
2.1. Source of organismand culture conditions

The sulphate-reducing bacteriubesulfatibacil-
lum aliphaticivorans strain CV2803 was isolated
from polluted marine sediments (Gulf of Fos, France)
[6]. It was grown on anoxic sulphate-reducing medium
containing (-1 distilled water): NaSQy, 3 g; KHoP Oy,

2.2. Action of antibiotics on growth and sulphate
respiration

Growth inhibition tests were performed in the pres-
ence of chloramphenicol, streptomycine or tetracy-
cline (100 ug mt1) in cultures grown with sodium oc-
tanoate (2 mM). Growth was monitored by @49 nm
with a Spectronic model 20D spectrophotometer
(Milton Roy). Sulphate respiration was monitored by
measuring sulphide production.

2.3. Substrate degradation in dense cell suspensions

Cells of Desulfatibacillum aliphaticivorans strain
CVv2803 were grown in a 600-ml culture with sodium
octanoate as substrate. After 5 days of incubation,
the culture (OQsp nm= 0.2) was centrifuged (5000 g
for 15 min at 4°C) and cells were washed twice
with N-free sulphate-reducing mediuf@]. The cell
pellet was suspended in 60 ml of N-free medium and
sub-fractions (3.5 ml) were distributed under a gas
mixture (Nb/COg, 90:10) into 5-ml bottles and were
supplemented with sodium dithionite (0.12 mM) as
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additional reductant. Sodium octanoate (2 mM) or with the first number representing the number of car-
1-tetradecene (1.4 mM) ang-cyclodextrin (5 g11) bon atoms on the acyl group and the second num-
were added to the cell suspensions. Controls without ber representing the number of double bonds present.
substrate were performed. Tetracycline (1 mgHl A branched fatty acid, such as 4-methyloctadecanoic
was added from a stock solution (0.5% wi/v) into some acid, is designated as 4-Me-18:0 and a monounsatu-
of these bottles. All assays and controls were carried rated branched fatty acid, such as 4-methyl-octadecen-
out in duplicate. Substrate degradation was followed 11-oic acid, is designated by 4-Me-1&11.i- anda-
indirectly by measuring sulphide production. refer toiso- and anteiso-branched fatty acids respec-
tively.
2.4. Analysis of total cellular fatty acids

Cultures (500 ml) ofDesulfatibacillum aliphati- 3 Resultsand discussion
civorans strain CV2803 grown on 1-pentadecene o ) o
(1.3 mM), 1-hexadecene (1.25 mM) or organic acids 3.1. Growth of Desulfatibacillum aliphaticivorans

B y . . T
(sodium octanoate or sodium nonanoate, 2 mM) were Sirain CvV2803" on n-alkene
analysed after 3 months of incubation at°80 Cells o ) o .
were collected by filtering the culture through a Growth ofDesulfatibacillumaliphaticivoransstrain

T . .

glass microfibre filter (GF/B, Whatman). Filters were CV2803 with n-alkene as substrate was sldwd. 1).
saponified with 1 N KOH in CHOH/H,0 (1:1, v/v Addition of «x-cyclodextrin, a potential carrier of hy-
reflux 2 h). After extraction of the neutral lipids from ~ drophobic compounds, significantly stimulated the
the basic solutioni-hexane, 3x 30 ml), acids were growth, W|tho_ut be!ng used as a s_ubstra_lt_e for growth.
extracted using dichloromethane £330 ml) follow- «-Cyclodextrn exhibits hydrophobic cavities and can
ing the addition of 2 N HCI (pH= 1). The com- form inclusion complexes with water-insoluble mole-

bined organic extracts were dried overJS&, con- cules, like hydrocarbons. Thus, these later are dis-
centrated by rotary evaporation and then evaporated toP€rsed in water solution and become more accessi-
dryness under nitrogen. Fatty acids were silylated by PI€ 10 bacteria. Aeckersberg et #l] have already

reaction with bis-trimethyltyl-trifluoroacetanamide ~ ©0PServed that growth of strain Hxd3, a hydrocarbon-
(BSTFA, [13]). Pyrrolidide derivatives were prepared d€9rading sulphate-reducing bacterium, was stimu-

from fatty-acid methyl esters, as described by Christie lated by addition oi:x-cyclodextrin. L )
[14]. In order to verify if alkene oxidation by strain

CVv2803 requires inducible enzyme synthesis, ex-

Fatty acids were identified with a HP5890 series Il ) i .
Jeriments were performed in dense cell suspensions

plus gas chromatograph connected to a HP5972 mas

spectrometer as previously descrifg®]. The gas 70

chromatograph was equipped with a fused silica capil- _ 4,

lary column (30 mx 0.25 mm i.d.) coated with Solgel- % 5.0

1 (SGE; film thickness= 0.25 um). Assignment of the 5 40

double-bond position in monounsaturated fatty acids 2 5,

was based on stereospecific oxidation with @s@d S50

subsequent trimethylsilylatiofL5]. Catalytic hydro- ? 40

genation of unsaturated fatty acids was performed in 004 : : :

ethyl acetate with Pt@as a catalyst. 0 10 20 30 40

Time (d)
2.5. Nomenclature of fatty acids
Fig. 1. Influence ofx-cyclodextrin on sybhide production during

Th | ff id ded b growth of Desulfatibacillum aliphaticivorans strain CvV2803 on
e nomenclature of fatty acids recommended by 1-tetradecene A)), x-cyclodextrin @) and a mixture of 1-tet-

the IUPAC-IUB [16] was adopted in this study. AN radecene and-cyclodextrin @). Mean value of triplicate cultures
n-saturated octadecanoic acid is designated as 18:0,+ standard deviation.
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Time (d)

Fig. 2. Growth of Desulfatibacillum aliphaticivorans strain
€v2803" on sodium octanoate in absend®) @nd in presence of
different antibiotics (100 pgmil): chloramphenicol £), strepto-
mycine (x) and tetracycline ®). Controls were performed without
substrate or antibiotidlf). Mean value of triplicate cultures stan-
dard deviation.

Sulphide (mM)
(o]

control tetracycline chloramphenicol

Fig. 3. Sulphide production bBesulfatibacillum aliphaticivorans
strain CV2803 grown on sodium octanoate with tetracycline,
chloramphenicol and without antibiotic (control) after five days of
incubation.

with and without antibiotics. A previous experiment
was performed to test the action of three selected
antibiotics (potential inhibitors of protein synthesis)
on growth and sulphate-reducing activity of strain
CVv2803". Among the antibiotics tested, tetracycline
and chloramphenicol inhibited growth d@esulfati-
bacillum aliphaticivorans strain CV2803 (Fig. 2),
whereas its sulphate-reducing activity was exclusively
inhibited by chloramphenicolFig. 3). Tetracycline
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Fig. 4. Sulphide productiomidense cell suspensions Désulfat-
ibacillum aliphaticivorans strain Cv2803 incubated with sodium
octanoate ¢), 1-tetradecenel) and without substratea(), in the
absenced) or in the presencebj of tetracycline (100 pg mil).
Mean value of duplicate suspensicasstandard deviation.

no sulphide was produced-if. 4a). The addition
of tetracycline did not modify the production of
sulphide in assays with sodium octanoate, but did
inhibit it in the presence of-alkene Fig. 4b). These
results suggest that the enzymes required:fatkene
oxidation byDesulfatibacillumaliphaticivoransstrain
CVv2803 were not synthesized during growth on
organic acid and that they are inducible.

3.2. Fatty acids composition of Desulfatibacillum
aliphativoranstrain CvV2803"

was thus chosen to perform experiments in dense cell  The determination of the fatty-acid composition of
suspensions. These latter were obtained from a culturehydrocarbonoclastic microorganisms can be of inter-
grown on sodium octanoate. est for metabolic pathway studig¢4], as well as for

In the absence of antibiotic, a strong production of the identification of spetic markers of bacterial ac-
sulphide was observed during the first hours when cell tivities. For instance, Doumenq et §17] suggested
suspensions were incubated with sodium octanoatethat the fatty-acid composition of marine sediments
(Fig. 4a). Withn-alkene, a gradual increase in sulphide exposed to petroleum hydrocarbons can reveal the
concentration was observed throughout the 90 hours presence of hydrocarbonoclastic bacterial communi-
of incubation, whereas, in the absence of substrate,ties and can be used to define bioremediation indexes.
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Fig. 5. Relative abundance of the total cellular fatty acid®edulfatibacillum aliphaticivorans strain cv2803 grown on 1-pentadecena)(
and 1-hexadecenéd). Unusual unsaturated branched fatty acids that could constitute potential markerallkaine transformation by
sulphate-reducing bacteriaearepresented by grey bars.

Cellular fatty acids of strain CV2833grown on CVv2803, as already observed in other hydrocarbon-
1-pentadecene were predominantly C-oékity( 5a), degrading sulphate-reducing bactddal8]. In addi-
whereas C-even fatty acids predominated when 1- tion to linear saturated fatty acids, cultures ofal-
hexadecene was used as growth substi@ig &b). kenes produced branchedd-, anteiso- and 10-Me-)
Similar fatty-acid distributions were observed dur- and unsaturated (e.g., 1&11 and 18:1\9) fatty
ing growth on C-odd (sodium nonanoate) and C-even acids commonly encountered in bactgi8—22]

(sodium octanoate) fatty acids (results not shown).  Cultures of strain CV2803on 1-pentadecene and
Thus, the chain length of growth substrates influenced 1-hexadecene also yielded to saturated and monoun-
the overall cellular fatty-acid composition of strain saturated methyl-branched hepta- and octadecanoic
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Fig. 6. Mass spectra of) 4-methyl-octadecanoic acid trimethylsilyl estdr) @-methyl-octadecanoylpyrrolidide, and) bis-trimethylsilyl
ether derivative of 4-methyl-octadec-11-enoic acid trimethylsilyl ester.

acids, respectivelyFig. 5. These compounds were

not shown). Specific ions due to the cleavage of

(Fig. 6a). The position of the methyl branch in these
not detected in cultures grown on fatty acids (data compounds was further confirmed by the analysis of
their pyrrolidide derivativesKig. 6b). Upon catalytic

the branched carbon atom in the mass spectra ofhydrogenation, Me-17:1 and Me-18:1 fatty acids were
the saturated compounds allowed their identification converted to 4-Me-branched fatty acids indicating that
as 4-Me-17:0 and 4-Me-18:0 fatty acids, respectively the methyl branch in the above-defined saturated and
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