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Abstract

This paper deals with the study of a predator—prey model in a patchy environment. Prey individuals moves on two patches,
one is a refuge and the second one contains predator individuals. The movements are assumed to be faster than growth at
predator—prey interaction processes. Each patch is assumed to be homogeneous. The spatial heterogeneity is obtained by
suming that the demographic parameters (growth rates, predation rates and mortality rates) depend on the patches. On tt
predation patch, we use a Lotka—\olterra model. Since the movements are faster that the other processes, we may assun
that the frequency of prey and predators become constant and we would get a global predator—prey model, which is shown tc
be a Lotka—\olterra one. However, this simplified model at the population level does not match the dynamics obtained with
the complete initial model. We explain this phenomenom and we continue the analysis in order to give a two-dimensional
predator—prey model that gives the sady@amics as that provided by the complei#ial one. We use this simplified model
to study the impact of spatial heterogeneity and movements on the system stability. This analysis shows that there is a globally
asymptotically stable equilibrium in the positive quadrant, i.e. the spatial heterogeneity stabilizes the equilibGitenthis
article: J.-C. Poggiale, P. Auger, C. R. Biologies 327 (2004).
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Résumé

Impact de|’hétérogénéité spatiale sur la dynamique d’un systéme prédateur—proie. Dans cet article, nous étudions un
systeme prédateur—proie dans un environnement divisé en deux sites. Les proies se déplacent sur les deux sites, I'un étant |
refuge et I'autre contenant des prédateurs. Les déplacements sont supposés plus rapides que la croissance et que les proc
sus de prédation. Chaque site est supposé homogene. L'hétéitéggpatiale est obtenue en supposant que les parametres
démographiques (taux de croissance et taux de mortalité) dépendent du site. Sur le site de prédation, on utilise un model
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de Lotka—\Volterra. Comme les déplacements sont plus rapides que les autres processus, on peut supposer que les proportic
de proie sur chaque site deviennent rapidement coestané qui, comme nous le montrons, conduit a un modéle global
prédateur—proie de type Lotka—\olterra. Cependant, ce modele simplifié a I'échelle des populations globales ne fournit pas la
méme dynamique que celle obtenue avec le modeéle initialilsNexpliquons ce phénoménen®us poursuivons notre ana-

lyse pour construire un modéle a deux équations gouvernant les abondances de populations totales et qui donne la mén
dynamique que celle obtenue avec le modéle complet initialisNutilisons alors ce modéle simpéfipour étudier I'impact

de I'hétérogénéité spatiale, ainsi que celui des déplacermntta stabilité du systeme. Cette analyse montre qu'il existe un
équilibre globalement asymptotiquemersdtde dans le quadrant positif, autremeitt gue I'hétérogénéité a pour conséquence

une stabilisation du systémieour citer cet article: J.-C. Poggiale, P. Auger, C. R. Biologies 327 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction stant migration rates should give a best insight into the
understanding of the role of spatial heterogeneity on
The role of spatial heterogeneity and migrations on stabilization of predator—prey models.
predator—prey or host—parasite systems stability has Indeed, we consider a predator—prey model on two
been studied in many papers[1j, the authors exhibit ~ patches. One patchis a refuge for the prey, thus there is
the stabilizing effect of migrations in a spatially dis- no predator in this patch. On the second patch, we used
tributed host—parasite system. Some authors have thera Lotka—\olterra model to describe the interactions.
investigated the impact of density dependence in the This choice is governed by the stability property of this
migration processes on the predator—prey interactionsmodel: the positive equilibrium is neutrally stable. In
stability (see[2—7], for instance). Even if the initial  this case, the interactions part do not contribute neither
works have shown that the spatial heterogeneity and to stabilization nor to unstabilization. For the migra-
the migrations should stabilize the systems, Murdoch tions, we used constant rates in order to eliminate any
and Oaterj8] studied a system exhibiting the opposite effect of density dependence. Since the interaction part
effect. It followed a series of papers dealing with the is neutral from the stability point of view, all the sta-
impact of spatial heterogeneity on predator—prey (or bilization effects are contained only in the migration
host—parasitoid) systems’ stability and the main con- processes and in the spatial heterogeneity. Moreover,
clusion was that the stability of the system depends on we can easily admit that a good choice of the density
the details included in the models. dependence function used for the migration rates can
In the previous works, the interactions models had compensate the terms generating the unstability. Since
either asymptotically stable or unstable equilibria. For we have chosen density-independent migration rates,
instance, in[7], the model is a two patches host— the stabilization is just the result of spatial heterogene-
parasitoid system with a linear growth function for ity.
the host on each patch, a Holling type-Il functional In order to deal with the three-dimensional system,
response on each patch and a linear decay for the parwe use a time scale arguments which allows us to con-
asitoid in the absence of host on each patch. In this sider only the total populations densities, that is a two-
kind of system, the positive equilibrium is known to dimensional system. This kind of methods has been
be unconditionnally unstable. The density-dependent described for instance ife—11]. Our approach can
migration rates used by the author can stabilize the be compared in a first approximation to the so-called
equilibrium. However, it is difficult to quantify ex-  ‘quasi-steady-state’ assumption. However, we show in
actly which part of the density dependence in the rates, the particular model of this paper that the later method
which part of the spatial heterogeneity, and which part is not sufficient and that the former can be used. The
of the interaction processes contribute to the stabiliza- obtained two-dimensional system is a perturbation of
tion. In the present work, we expect that the choice of a the Lotka—\Volterra model. This famous model is not
neutrally stable model for the interaction part and con- structurally stable and our analysis shows that the per-



1060 J-C. Poggiale, P. Auger / C. R. Biologies 327 (2004) 1058-1063

turbation ‘breaks’ the closed curves. In fact, for the rate.e « 1 is a small parameter, which means that
complete initial model, there exists a two-dimensional movements have a larger speed than that associated to
invariant attracting manifold. The aggregated model growth and death processes.

is the restriction of the complete system to this in- Let x = x1 + x2 be the total amount of prey pop-
variant manifold. In practice, the invariant manifold is  ulation. It follows thatu; = 3} anduz = 32 are the
obtained by the use of a Taylor expansion with respect proportions of prey on patch 1 and patch 2, respec-
to a small parameter (the time scale factor). In the tively. With these variables, we can write the system
first approximation, the reduced model is of Lotka— (1)in the following equivalent way:

\olterra type. Thus we need to continue the analysis

by computing the second term in the expansion. duy =my — (m1 +m2)u1
Finally, we prove that there is a unique equilibrium dr
with positive coordinates and that this equilibrium is +eur(l—ua)(r1 —r2 —ay) (2a)

globally asymptotically stable, for all the parameter dx
values. Thus the spatial heterogeneity has a stabilizing gy ~ ¥ (riuy +rauz — auzy)
effects on the predator—prey interactions. Furthermore, dy
there is no possible bifurcation on the invariant mani- gy = &¥(bu1x —d) (2c)
fold, thus the previous result is complete.

The plan of this article is as follows: we first de-
scribe the complete predator—prey model, the follow- 3. Reduction of the dimension
ing section explain how the reduced model is obtained.
Then we analyse the reduced model and the last sec- In this section, we build a two-dimensional system
tion provides a discussion on the results. governing the dynamics of the total populations den-
sitiesx andy. Morevover, this system gives the same
dynamics as that obtained farand y in the system
(2). This will facilitate the mathematical study of sys-

We consider a predator—prey model on two patches. (€M (1) provided in the next section.
The prey can move on both patches while the predator ~ The reduction method is based on the fact that the
remains on patch 1. The patch 2 is thus a refuge for System(2) has two different typical time scales. From
the prey. We denote hy; the prey density on patah the mathematical point of view, the method is based
i =1,2. We denote by the predator density. On each On & theorem due separately to Hirsch, Pugh and Shub
patch, the prey population growth rate and the predator in [12] and Fenichel if13]. The interested reader can
population death rate are linear, the predation rate is find more informations irf14,15] or in [16], for in-
bilinear, that is proportional to prey and predator den- Stance, and in the references given within these works.
sities and the predator growth rate is proportional to The mathematical theorems provide a justification to
the predation rate. The model is given by the follow- @ method that is often used on the basis of intuition:

(2b)

2. The complete model

ing set of three ordinary differential equations: since variables are fast, after a short time, these vari-
ables are close to their equilibrium values (if they
dxq . ! .
—= = moxy — mix1+ ex1(r1 — ay) (1a) exist) and then we replace the fast variables by their
dr equilibrium values in the differential equations gov-
drz — M1X] — Max2 + £Xor (1b) erning the slow variables, leading to a differential sys-
dr tem that has the same dimension as the number of slow
d_y — ey (bx1 — d) (1c) variables. This method is sometimes called ‘quasi-
dr steady-state assumption’ method and can be used to

wherem; are respectively the proportions of prey pop- build trophic chain model§l7] and to analyse them

ulations leaving patchby displacement per unittime, [18,19] However, in some cases, like in the present
r; is the prey population growth rate on patchd is work, the quasi-steady-state assumption is not suffi-
the predator population death ratejs the predation cient to determine the dynamics of the slow variables
rate on patch andlx1 is the per capita predator growth  and the mathematical theorems provide usefull results
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that permit to conclude on the dynamics. We will il-
lustrate this on the model studied in this paper.

Let us start to calculate the fast equilibrium, that is
the equilibrium value of the fast variabla. In order
to get this equilibrium value, we put= 0 in system
(2). The resultis:

m2 mi

and ub=—"—
mi1+my

uy = 3)
By replacingu; by «} in (2b)and in(2c), we get the

following two-dimensional system:

mi+my

d

d—: =x(r —ayy) (4a)
— =y(bix —d 4b
4 y(bix —d) (4b)
wheret = et, r = riu] + rous, ay = auj andby =
buj.

The systen{4) is a classical Lotka—\Volterra model.
All the solutions of this system with initial conditions
in the positive quadrant are periodic. There is a pos-
itive equilibrium which is a centre. However, the dy-
namics ofx andy in the system(2) does not match
with the Lotka—\olterra dynamics, as illustrated in
Fig. 1L Indeed, when we replace the fast variable by
its equilibrium value, we make an error in the order
of . Since the Lotka—\Volterra model is not struc-
turally stable, thes-error can play an important role
in the dynamics. The Fenichel theorem, for instance,
claims that there is an invariant manifotd defined by
u1 =u1i(x,y, e) inthe phase spadesi, x, y, €). Since
the fast equilibrium is hyperbolically stable, the mani-
fold W is normally hyperbolically stable, that is a tra-
jectory starting in the neigbourhood ¥¥ is attracted
with an exponential speed. The previous approxima-
tion we made is thus a zero-order approximation of
this manifold.

We can get a first-order approximation of the man-
ifold in the following way. Let us write:

(5)

We have to determina and then to replace; by

its expression5) in the system(2) in order to im-
prove the approximate two-dimensional mo@gl We

can note that the asymptotic expansion of the deriva-
tive % with respect to the small parametecan be
written in two different ways. The first one consists
in replacingus by the expressio(b) in Eq. (2a) The

ui(x,y, &) =uj +ewi(x,y) +o(e)
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Fig. 1. Comparison between the dynamicscaindy given by the
complete systenfl) and that obtained with the two-dimensional
system(4). We see on this figure that the complete system exhibits a
stable focus while with the reduced system, the trajectory is a closed
curve. The parameters values used in the simulationmeges 2,
mp=1,r1=1,rp=2,a=1,d=2,b=0.9 ande = 0.05.

second way consists in writing:
du1 duidx Odupdy

dr  ox dr | 9y dr

Then we identify the terms in the order ofin both
formulas, we get:

(6)

—(m2+mpwi(x,y)
+ui(l—ul)(r1—r2 —a1y) =0 (7)
which allows us to conclude that; is a function de-
pending only ony:
ui(l—ub)
T (8)
mp+m1

It follows that the system on the invariant manifold is
reduced to:

wi(y) = (r1 —r2—azyy)

d
d—): =x(r —ay) + exwi(y)(rL —r2 — ary) (9a)
d
d_f = y(bx — d) + eybiwi(y)x (9b)

A numerical simulation has been performed and is
shown inFig. 2 in order to illustrate that this re-
duced model provides a good approximation of the
dynamics of the total population densities governed
by the three-dimensional systef®). Since we get a
two-dimensional system, the mathematical analysis is
easier and we will perform it in the next section.
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Fig. 2. Comparison between the dynamicscaindy given by the
complete systenfl) and that obtained with the two-dimensional
system(9). We see on this figure that the reduced system solution
matches quite well the complete model solution. The parameters
values used in the simulation are; =2, my=1,r1=1,rp =2,
a=1,d=2,b=0.9 ande = 0.05.

4. Mathematical analysis

In this section, the mathematical analysis of the sys-
tem(9) is performed. We show that there is a globally
asymptotic equilibrium in the positive quadrant and
there is no bifurcation.

Let us denote by the vector field associated to the
system(9) and letX be the vector fieldX. defined on
{x > 0; y > 0}. We denote by, the dual form associ-
ated withX. We can clearly write:

we(x,y) =dH (x, y) +en(x, y) (10)
where
H(x,y)=bix —dInx +a1y—riny+C (12)
C is a constant, and
n(x,y) =bwi(x,y)dr —wi(x,y)

X (% — a) dy (12)

We know that fore = 0, there is a unique equilibrium
in the positive quadrant and that this equilibrium is a
centre. It is a straighforward consequence of the im-
plicit function theorem that there is also an equilibrium
in the positive quadrant for small enough values of
¢. Furthermore, we can deéra return map (Poincaré
map) on a half straight line by the equilibrium point,
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y

equilibrium

P(h) h
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Fig. 3. Scheme of the return map (Poincaré map) defined for an
e-perturbation of a centre. A half straight line is chosen, starting
from the equilibrium point. This line is parameterised by a real num-
ber k. For each point: on this line, there is a trajectory defined by
the systent9), leaving the line and coming back after turning around
the equilibrium. The new contact with the line defines the rA&p).

If P(h) < h, then the considered trajectory is going to the equi-
librium, while if P(h) > h, the trajectory is going away from the
equilibrium.

seeFig. 3. Let §(h) = P(h) — h, the sign ofs gives
an information on the equilibrium stability, and on the
existence of limit cycles: if there is ah for which
8(h) = 0, then the trajectory by is a closed curve
corresponding to a periodic orbit. Let us denotelfy
the trajectory defined b{®) and contained between the
point 2 and the pointP(h), seeFig. 3. We can write
the following equalities (Poincaré lemma):

8(h):/dH:/(a)g—sn):—8/n
I: I: I:
=—¢ / n+0(¢)

{H=h}

(13)

Letl = f{H:h} n, if € is small enough, the sign 6fh)
is the same as that é¢f From the Stockes theorem, we

have:
bur(1—
_ //dn_ //“ abui 1D b ndy
mi1+my
(H<h) (H<h)
abuy
="M Ay <0 (14)
mi1+ mo

whereA (h) is the area of the domaiH < h}.
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Indeed, if we considered the same kind of model
with the predator on both patches (with different rates
on each patch), that is without any refuge for the prey,
the result would be less obvious. This is the object of
a future work.

Sinced(h) < 0 for small enougle values and for
all n, it results that the equilibrium point is globally
asymptotically stable.

5. Conclusion—discussion

A Lotka-Volterra model on two patches has been References
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