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Abstract

In this paper we present a travelling-wave analysis of a mathematical model describing the growth of a solid tumo
presence of an immune system response.From a modelling perspective, attention is focused upon the attack of tumour cells
tumour infiltrating cytotoxic lymphocytes (TICLs), in a small multicellular tumour, without necrosis and at some stage p
to (tumour-induced) angiogenesis. As we have shown in previous work, for a particular choice of parameters, the un
reaction–diffusion–chemotaxis system of partial differential equations is able to simulate the well-documented phenomeno
cancer dormancy by depicting spatially heterogeneous tumour cell distributions that are characterized by a relatively s
number of tumour cells. This behaviour is consistent with several immunomorphological investigations. Moreover, the alterat
of certain parameters of the model is enough to induce bifurcations into the system, which in turn result in tumour
in the form of a standard travelling wave. The work presented inthis paper complements the bifurcation analysis undertake
by Matzavinos et al. [Math. Med. Biol. IMA 21 (2004) 1–34] and establishes the existence of travelling-wave solutions for
system under discussion by promoting the understanding of the geometry of an appropriate phase space.To cite this article:
A. Matzavinos, M.A.J. Chaplain, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse de la propagation d’ondes progressives dans un modèle de réponse immunitaire au cancer. Dans cet article
nous présentons l’analyse de la propagation d’ondes progressives dans un modèle décrivant la croissance tumorale
du système immunitaire. Du point de vue de la modélisation, nous étudions l’attaque des cellules tumorales par des lym
cytotoxiques infiltrants (TICLs) dans une petite tumeur multicellulaire, sans nécrose et à un stade précédent l’angioge
duite par la tumeur). Comme il a été démontré dans un travail antérieur, et pour un choix particulier des paramètres, l
d’équations aux dérivées partielles de réaction–diffusion–chémotaxie permet de simuler le phénomène bien connu de
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du cancer en présentant des distributions cellulaires hétérogènes dans l’espace caractérisées par un nombre relativement
de cellules tumorales. Ce comportement est cohérent avec plusieurs résultats immunomorphologiques. De plus, le changem
de certains paramètres du modèle est suffisant pour induire des bifurcations du système, qui conduisent à une in
morale sous la forme d’une onde progressive classique. Le travail présenté dans cet article est complémentaire à l’
bifurcations réalisée par Matzavinos (2003) et met en évidence l’existence de solutions de type ondes progressive
système, en donnant des arguments géométriques pour un espace de phase approprié.Pour citer cet article : A. Matzavinos,
M.A.J. Chaplain, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

‘Cancer dormancy’ is an operational term used
describe the phenomenon of a prolonged quies
state in which tumour cells are present, but tum
progression is not clinically apparent[1–3]. As a con-
dition, cancer dormancy is often observed in bre
cancers, neuroblastomas, melanomas, osteogenic
comas, and in several types of lymphomas, and is o
found ‘accidentally’ in tissue samples of healthy ind
viduals who have died suddenly[4,5]. In some cases
cancer dormancy has been found in cancer pati
after several years of front-line therapy and clinical re
mission. The presence of these cancer cells in the b
determines, finally, the outcome of the disease. In
ticular, age, stress factors, infections, act of treatm
itself or other alterations in the host can provoke
initiation of uncontrolled growth of initially dorman
cancer cells and subsequent waves of metastases[2,6].
Recently, some molecular targets for the induction
cancer dormancy and the re-growth of a dormant
mour have been identified[7,8]. However, the precis
nature of the phenomenon remains poorly underst

One of the main factors (but not the only one) co
tributing to the induction and maintenance of can
dormancy is the reaction of the host immune sys
to the tumour cells[1,2]. Indeed, tumour-associate
antigens can be expressed on tumour cells at
early stages of tumour progression[9] and, as a con
sequence, during the avascular stage, tumour deve
ment can be effectively controlled bytumour-infiltrat-
ing cytotoxic lymphocytes(TICLs) [10]. The TICLs
may be cytotoxic lymphocytes (CD8+ CTLs), natural
killer-like (NK-like) cells and/or lymphokine activate
killer (LAK) cells [11–14].
r-

-

In [15] we developed a mathematical model for t
spatio-temporal response of cytotoxic T-lymphocy
to a solid tumour. For a particular choice of pa
meters the model was able to simulate the phen
enon of cancer dormancy by depicting spatially uns
ble and heterogeneous tumour cell distributions
were nonetheless characterized by a relativelysmall
total numberof tumour cells. This behaviour was co
sistent with several immunomorphological investig
tions. However, the alteration of certain paramet
of the model was enough to induce bifurcations i
the system, which in turn resulted in the existence
travelling-wave-like solutions in the numerical simu
tions. These travelling waves were of great importa
because when they existed, the tumour invaded
healthy tissue at its full potential escaping the ho
immune surveillance.

It is worth mentioning that the cancer dormancy
lutions were characterizedby an irregular evolution
which according to several objective indications, w
an actual manifestation of spatio-temporal chaos. I
particular, a bifurcation analysis of the ODE kinet
of our system has revealed the existence of osc
tory solutions for the ODE system emerging throu
a Hopf bifurcation. We have presented these res
in [15] and have indicated several connections w
spatio-temporal chaotic systems that couple osc
tory kinetics with diffusion (see, for example, the e
cellent work onλ–ω systems presented in[16]). Fur-
thermore, we have been able to correlate numeric
the existence of the stable limit cycle that emerg
through the Hopf bifurcation with the irregular spati
temporal evolution of the PDE system and the onse
cancer dormancy.
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In recent years several papers have begun to
vestigate the mathematical modelling of the vario
aspects of the immune system response to cancer
development of models which reflect several spa
and temporal aspects of tumour immunology can
regarded as the first step towards an effective com
tational approach in investigating the conditions u
der which tumour recurrence takes place and in
optimising of both spatial and temporal aspects
the application of various immunotherapies. Key p
pers in this area include[17–22], which focus on the
modelling of tumour progression and immune co
petition by generalized kinetic (Boltzmann) mode
and [23–26], which focus on the development of t
mour heterogeneities as a result of tumour cell
macrophage interactions. Moreover,[27] is concerned
with receptor–ligand (Fas–FasL) dynamics,[28] in-
vestigates the process of macrophage infiltration
avascular tumours,[15,29,30]focus on the dynamic
of tumour cell–TICL interactions, and finally[31] and
[32] analyze various immune system and immunoth
apy models in the context of cancer dynamics.

In this paper we undertake a travelling-wave ana
sis of a sub-system of the model presented in[15].
The full system involved some spatially non-unifor
kinetic terms through the introduction of a Hea
side function modelling some aspects of the geom
over which the system was solved. This spatial n
uniformity in the kinetics complicates the travellin
wave analysis and for the sake of mathematical s
plicity it is not treated here (see also the comment
[15] concerning the effect that the Heaviside funct
in the kinetics has on the spatio-temporal simulation
Furthermore, we also do not consider the chemot
aspect of the full system. Thus the model under c
sideration will be a nonlinear reaction–diffusion sy
tem of partial differential equations.

2. The mathematical model

For the sake of completeness we first of all int
duce the complete model as it has been discusse
[15]. Let us consider a simplified process of a sm
growing, avascular tumour which elicits a respon
from the host immune system and attracts a pop
tion of lymphocytes. The growing tumour is direct
attacked by TICLs[33–35]which, in turn, secrete so
Fig. 1. Schematic diagram of local lymphocyte–cancer cell inte
tions.

uble diffusible factors (chemokines). These factors
able the TICLs to respond in a chemotactic man
(in addition to random motility) and migrate toward
the tumour cells. Our model will therefore consist
six dependent variables denotedE, T , C, E∗, T ∗
andα, which are the local densities/concentrations
TICLs, tumour cells, TICL–tumour cell complexe
inactivated TICLs, ‘lethallyhit’ (or ‘programmed-for-
lysis’) tumour cells, and a single (generic) chemoki
respectively.

The local interactions between the TICLs and
mour cells may be described by the simplified kine
scheme given inFig. 1 (see[30] and[15] for full de-
tails). The parametersk1, k−1 andk2 are non-negative
kinetic constants:k1 andk−1 describe the rate of bind
ing of TICLs to tumour cells and detachment of TIC
from tumour cellswithout damaging cells;k2 is the
rate of detachment of TICLs from tumour cells, r
sulting in an irreversible programming of the tumo
cells for lysis (i.e. death) with probabilityp or inac-
tivating/killing TICLs with probability (1 − p). Us-
ing the law of mass action the above kinetic sche
can be ‘translated’ into a system of ordinary differe
tial equations. Furthermore, we consider other kin
interaction terms between the variables and exam
migration mechanisms for the TICLs, tumour ce
and also consider diffusion of the chemokines. We
sume that there is no ‘nonlinear’ migration of cells a
no nonlinear diffusion of chemokine i.e. all rando
motility, chemotaxis and diffusion coefficients are a
sumed constant.

We assume that the TICLs have an element of r
dom motility and also respond chemotactically to
chemokines. There is a source term modelling the
derlying TICL production by the host immune syste
a linear decay (death) term and an additional TI
proliferation term in response to the presence of
tumour cells. Combining these assumptions with
local kinetics (derived fromFig. 1) we have the fol-
lowing PDE for TICLs:
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∂E

∂t
=

random motility︷ ︸︸ ︷
D1∇2E −

chemotaxis︷ ︸︸ ︷
χ∇ · (E∇α)+

supply︷ ︸︸ ︷
s · h(x)

(1)
+

proliferation︷ ︸︸ ︷
fC

g + T
−

decay︷︸︸︷
d1E −

local kinetics︷ ︸︸ ︷
k1ET + (k−1 + k2p)C

whereD1, χ , s, f , g, d1, k1, k−1, k2, p are all posi-
tive constants.D1 is the random motility coefficient o
the TICLs andχ is the chemotaxis coefficient. Th
parameters represents the ‘normal’ rate of flow o
mature lymphocytes into the tissue (non-enhanced
the presence of tumour cells). The functionh(x) is
a Heaviside function, which aims to model the ex
tence of a subregion of the domain of interest wh
initially there are only tumour cells and where lym
phocytes do not reside. This region of the domain
penetrated by effector cells subsequently through
processes of diffusion and chemotaxis only (see[15]
for a full discussion regarding this assumption). T
proliferation termfC/(g + T ) represents the exper
mentally observed enhanced proliferation of TICLs
response to the tumour and has been derived thro
data fitting[15,30]. This functional form is consisten
with a model in which one assumes that the enhan
proliferation of TICLs is due to signals, such as
leased interleukins, generated by effector cells in
mour cell–TICL complexes. We note that the grow
factors that are secreted by lymphocytes in comple
(e.g., IL-2) act mainly in anautocrine fashion. That i
to say they act on the cell from which they have be
secreted and thus, in our spatial setting, their ac
can be adequately described by a ‘local’ kinetic te
only, without the need to incorporate any additio
information concerning diffusivity.

We assume that the chemokines are produced w
lymphocytes are activated by tumour cell–TICL inte
actions. Thus we define chemokine production to
proportional to tumour cell–TICL complex densityC.
Once produced the chemokines are assumed to di
throughout the tissue and todecay in a simple manne
with linear decay kinetics. Therefore the PDE for t
chemokine concentration is:

(2)
∂α

∂t
=

diffusion︷ ︸︸ ︷
D2∇2α +

production︷︸︸︷
k3C −

decay︷︸︸︷
d4α

whereD2, k3, d4 are positive parameters.
We assume that migration of the tumour cells m
be described by simple random motility and that on
the kinetic level the growth dynamics of a solid t
mour may be described adequately by a logistic te
(see[15] for a full discussion concerning the validi
of these assumptions). Hence the PDE governing
evolution of tumour cell density is:

∂T

∂t
=

random motility︷ ︸︸ ︷
D3∇2T +

logistic growth︷ ︸︸ ︷
b1(1− b2T )T

(3)−
local kinetics︷ ︸︸ ︷

k1ET + (k−1 + k2(1− p))C

where D3 is the random motility coefficient of the
tumour cells,b1, b2, k1, k−1, k2, p are positive pa-
rameters.

We assume that there is no diffusion of the co
plexes, only interactions governed by the local kine
derived fromFig. 1. The absence of a diffusion ter
is justified by the fact that formation and dissoc
tion of complexes occurs on a time scale of tens
minutes, whereas the random motility of the tumour
cells, for example, occurs on a time scale of tens
hours. Thus, the cell–cell complexes do not have t
to move. Therefore the equation for the complexe
given by:

(4)
∂C

∂t
=

local kinetics︷ ︸︸ ︷
k1ET − (k−1 + k2)C

We assume that inactivated and ‘lethally hit’ ce
(i.e. cells that will die) are quickly eliminated from
the tissue (for example, by macrophages) and do
substantially influence the immune processes be
analysed. Inactivated cells also do not migrate an
therefore we have:

(5)
∂E∗

∂t
=

local kinetics︷ ︸︸ ︷
k2(1− p)C −

decay︷ ︸︸ ︷
d2E

∗

(6)
∂T ∗

∂t
=

local kinetics︷ ︸︸ ︷
k2pC −

decay︷ ︸︸ ︷
d3T

∗

It is easy to see that Eqs.(5) and (6)are only cou-
pled to the full system through the complexesC and
that neitherE∗ nor T ∗ have any effect on the var
ableC. Thus, Eqs.(1)–(4)essentially dictate the be
haviour of the complete system.
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The system of Eqs.(1)–(4) is closed by apply-
ing appropriate boundary and initial conditions. In t
one-dimensional case, we define the spatial doma
be the interval[0, x0] and we assume that there are t
distinct regions in this interval – one region entire
occupied by tumour cells, the other entirely occup
by the immune cells. We propose that an initial int
val of tumour localization is[0, l], wherel = 0.2x0. In
this framework the functionh(x) (cf. Eq. (1)) is de-
fined by:

h(x) =
{

0, if x − l � 0

1, if x − l > 0

and the initial conditions are given by:

E(x,0) =




0 if 0 � x � l

E0(1− exp(−1000(x − l)2))

if l < x � x0

(7)T (x,0) =




T0(1− exp(−1000(x − l)2))

if 0 � x � l

0 if l < x � x0

C(x,0) =




0 if x /∈ [l − ε, l + ε]
C0 exp(−1000(x − l)2)

if x ∈ [l − ε, l + ε]
α(x,0) = 0, ∀x ∈ [0, x0]
where

(8)
E0 = s

d1
, T0 = 1

b2

C0 = min(E0, T0), 0 < ε � 1

In addition, zero-flux boundary conditions are im
posed on the variablesE, α andT . A full discussion
of the biological interpretation of the particular initi
and boundary conditions can be found in[15].

The closed system is non-dimensionalized by ch
ing an order-of-magnitude scale for theE, T and
C cell densities, ofE0, T0 and C0, respectively, as
suggested by the initial conditions. The chemok
concentrationα is normalised through some referen
concentrationα0 discussed in[15]. Time is scaled rela
tive to the diffusion rate of the TICLs, i.e.t0 = x2

0D−1
1

and the space variablex is scaled relative to the lengt
of the region under consideration, i.e.x0 = 1 cm.

An estimation of the parameters of the syst
based on experimental data has been obtained in[15].
-

The experimental data used were concerned withdor-
mant murine B cell lymphomas[2,36]. The corre-
sponding numerical simulations of the non-dimens
nalized system with the estimated values for the p
meters under discussion were able to reproduce
eral characteristics of a tumour in its dormant sta
Figs. 2a, 3a and 4ashow the initial conditions for the
TICL, tumour cell and TICL–tumour cell densities, r
spectively.Fig. 2b–d shows the evolution of the (no
dimensionalized) spatial distribution of TICL dens
within the tissue at times corresponding to 700, 10
and 1300 days, respectively. The time instances
picted in the figures show the formation of an uns
ble, heterogeneous spatial distribution of TICL dens
throughout the tissue.Fig. 3b–d shows the spatial dis
tribution of tumour cell density within the tissue
times corresponding to 700, 1000 and 1300 days.
figures show a train of solitary-like waves invading t
tissue and subsequently creating a spatially heter
neous distribution of tumour cell density througho
Fig. 4b–d shows time instances of the correspond
TICL–tumour cell complex distribution at 700, 100
and 1300 days, respectively.

In addition to observing the above spatio-tempo
distributions of each cell type within the tissue, t
temporal dynamics of the overall populations of ea
cell type (i.e. total cell number) was examined. T
was achieved by calculating the total number of e
cell type within the whole tissue space using numer
quadrature.Fig. 5a shows the variation in the numb
of TICLs within the tissue over time (approximate
80 years, an estimated average lifespan). Initially,
total number of TICLs within the tissue increases a
then subsequently oscillates around some statio
level (approximately 5.9 × 106 cells). Long-time nu-
merical calculations indicated that this behaviour wil
persist for all time. A similar scenario is observed
the tumour cell population. FromFig. 5b, we observe
that initially, the tumour cell population decreases
number before subsequently oscillating around so
stationary value (approximately 107 cells) for all time.
Fig. 5c gives the corresponding temporal dynamics
the complexes.

In [15] we have been able to correlate numerica
the irregular spatio-temporal evolution of the syst
(1)–(4)depicted in the above simulations with the e
istence of a stable limit cycle that emerged throug
Hopf bifurcation in the spatially homogeneous OD
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Fig. 2. Figures showing plots of the TICL density over time. As time evolves, the complicated spatio-temporal dynamics can be observed
solid-line curves show results when chemotaxis of the TICLs is incorporated into the system. The dashed line curves show results when
is no chemotaxis (i.e.χ = 0), only random motility of TICLs.

Fig. 3. Figures showing plots of the tumour cell density over time. As time evolves, the complicated spatio-temporal dynamics can be obse
The solid-line curves show results when chemotaxis of the TICLs is incorporated into the system. The dashed line curves show results
there is no chemotaxis (i.e.χ = 0), only random motility of TICLs.
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Fig. 5. Total number of (a) lymphocytes, (b) tumour cells, and
tumour cell–TICL complexes within tissue over a period of 80 ye

kinetics. Although the bifurcation analysis presen
in [15] is out of the scopes of this article, we would lik
to correct a previous error by presenting a small (c
rected) part of the relevant analysis. In particular,
focus on the bifurcations of the non-dimensionaliz
homogeneous ODE kinetics of Eqs.(1)–(4) with the
Heaviside function omitted (i.e.h(x) ≡ 1) and with
respect to parameterk1, which is crucial in revealing
the existence of the Hopf bifurcation under discuss
The bifurcation diagrams presented here have b
generated with the version of the AUTO routine th
is implemented within the XPP software package[37].
Fig. 6 shows part of the bifurcation diagram of TIC
densityE versus parameterk1. In the case of our sys
tem, AUTO was able to detect a (super-critical) Ho
bifurcation atk1 = 8.421× 10−8 day−1 cells−1 cm.
The solid dots represent the maximum and minim
values of the periodic solutions that emerge whenk1

lies in a particular interval. Most of the limit cycle
that emerge through this bifurcation, including the o
that is generated fork1 = 1.3×10−7 day−1 cells−1 cm
(the parameter value that is associated with the ir
ular spatio-temporal simulations presented here), h
been characterized by AUTO as stable. However th
is a region aroundk1 = 1.92× 10−7 day−1 cells−1 cm
where unstable limit cycles exist.Fig. 7 shows a de-
tailed view of this part of the bifurcation diagram
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Fig. 6. Bifurcation diagram of TICL densityE versus the paramete
k1.

Fig. 7. Detailed view of the co-existence region ofFig. 6.

Here the solid dots represent stable limit cycle so
tions, whereas the open circles represent unstable
cycle solutions. As can be seen we have co-existe
of stable and unstable limit cycles.Fig. 8, which has
been generated with the MATLAB continuation too
box MATCONT [38,39], reveals the structure of th
projections of the limit cycles emerging at the c
existence region to the(E,T ) phase-plane. The exis
tence of a fold or limit-point cycle (LPC) is evident.

The above spatio-temporal simulations appea
indicate that eventually the tumour cells develop v
small-amplitude oscillations about a ‘dormant’ sta
indicating that the TICLs have successfully manag
Fig. 8. Limit-cycle-projection continuation in the co-existence
gion.

to keep the tumour under control. The numerical s
ulations demonstrate the existence of cell distributi
that are quasi-stationary in time but unstable and
erogeneous in space. However, one would expect
by reducing the probabilityp of tumour cells being
killed by lymphocytes, travelling-wave-like solution
of more canonical nature should emerge. Indeed
ducing the parameterp in the simulations results in th
emergence of solutions of a composite type consis
of steady-state and travelling-wave components b
in the full system and in the system without chem
taxis (i.e. the system of Eqs.(1), (3) and (4)with
χ = 0). Figs. 9–11show the evolution of these com
posite solutions from the initial conditions for the fu
system (with chemotaxis incorporated).

Our intention in this paper is to investigate t
travelling-wave components of the composite so
tions that arise for a particular range of values of pa
meterp (see also the bifurcation analysis undertak
in [15]). For the sake of mathematical simplicity w
will not consider the effect of chemotaxis. That is
say we will investigate the solutions of the system
Eqs.(1), (3) and (4)with χ = 0. We would like to note
here that this is a reasonable simplifying assump
since, according to the numerical simulations that fol-
low, the formation of the travelling-wave componen
is not affected by the chemotaxis term. Furthermo
we omit the Heaviside function, i.e. we seth(x) ≡ 1.
We note that the Heaviside function is responsible
the formation of the steady-state components of
composite solutions (see also the relevant discus
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Fig. 9. The evolution from the initial conditions of a ‘composit
solution concerning TICL densityE.

Fig. 10. The evolution from the initial conditions of a ‘composit
solution concerning tumour cell densityT .

in [15] concerning the effect that the Heaviside fun
tion has on the spatio-temporal simulations) and t
by omitting it we choose to focus on the travelling
wave components. Specifically then, we will focus
the following non-dimensionalized reaction–diffusio
system:

(9)
∂E

∂t
= ∇2E + σ + ρC

η + T
− σE − µET + εC

(10)
∂T

∂t
= ω∇2T + β1(1− β2T )T − φET + λC

(11)
∂C

∂t
= µET − ψC
Fig. 11. The evolution from the initial conditions of a ‘composit
solution concerning cell-complex densityC.

Table 1
Non-dimensionalized parameter values

σ = 41200 ρ = 59760 η = 0.0404 µ = 6.5× 107

ε = 31128000.01ω = 1 β1 = 1.8× 105 β2 = 1
φ = 42912.6214 λ = 15892.19418ψ = 3.12× 107

where

σ = st0

E0
= d1t0, ρ = f t0C0

E0T0

µ = k1t0T0E0

C0
= k1t0T0, η = g

T0

ε = t0C0(k−1 + k2p)

E0
, ω = D3t0

x2
0

= D3D
−1
1

β1 = b1t0, β2 = b2T0, φ = k1t0E0

λ = t0C0(k−1 + k2(1− p))

T0
, ψ = t0(k−1 + k2)

andE0, T0 andC0 are the order-of-magnitude scal
defined by (8). The parameterp affects the non-
dimensionalized parametersε andλ and thus the re
duction ofp leads to different values ofε andλ than
the ones used in the tumour-dormancy simulations
what follows we employ the parameter values given i
Table 1. These are obtained from the estimated dim
sional parameters by reducing the parameterp (see
also the relevant bifurcation analysis in[15]). In par-
ticular parameterp is here set at 0.99, whereas in the
simulation results depicted inFigs. 2–5, p = 0.9997.

The system of Eqs.(9), (10) and (11)has been
solved numerically over the interval[0,1] with zero-
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Fig. 12. The evolution from the initial conditions of the travellin
wave of effector cell density.

Fig. 13. The evolution from the initial conditions of the ‘invasiv
travelling wave of tumour-cell density.

flux boundary conditions imposed and the init
conditions given by the non-dimensionalization
Eqs.(7). Figs. 12–14show the results of the numeric
simulations, which clearly depict the evolution of sta
dard travelling waves from the initial conditions. W
note that these travelling waves – and the correspo
ing composite solutions of the full system – are
great biological importance because, when they exis
the tumour invades the healthy tissue at its full pot
tial. In the next section we undertake a travelling-wa
analysis of system(9)–(11).
Fig. 14. The evolution from the initial conditions of the travellin
wave of cell-complex density.

3. Travelling-wave analysis

The numerical simulations of the previous se
tion indicate that the system of Eqs.(9)–(11)exhibits
travelling wave solutions for some choice of pa
meters. Two of the main approaches for establish
travelling-wave solutions for systems of PDEs a
(a) the geometric treatment of an appropriate pha
space, where one essentially is interested in in
sections between unstable and stable manifolds
(b) the Leray–Schauder (degree-theoretic) meth
which employs homotopy techniques (see e.g.[40,
41]). From a numerical analysis point of view, th
former approach is used either in conjunction with
shooting method over a truncated domain or by try
to identify a ‘trivial’ heteroclinic connection for som
choice of parameters and then follow its deformat
as the parameters are changing using numerical
tinuation.

In all cases the main purpose is to establish
existence of a travelling-wave solutionwithout any
available information concerning its nature. Our a
proach, however, is going to be ‘computer-assisted
the sense that we are going to make use of the in
mation that the numerics of the previous section
provide us.

Since we are interested in waves travelling from
left part of the domain to the right, we specify a tra
elling coordinatez = x − ct , wherec > 0 and we let:

Ẽ(z) = E(x, t), T̃ (z) = T (x, t), C̃(z) = C(x, t)
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We note that we assign the same wave velocityc to
each variable, as suggested by the numerical sim
tions. By substituting̃E, T̃ andC̃ into the system o
Eqs. (9)–(11)and omitting the tildes for the sake
clarity, we get:

(12)

−c
dE

dz
= d2E

dz2 + σ + ρC

η + T
− σE − µET + εC

(13)

−c
dT

dz
= ω

d2T

dz2 + β1(1− β2T )T − φET + λC

(14)−c
dC

dz
= µET − ψC

Our intention is to take advantage of phase-space t
niques and thus we formulate the system of Eqs.(12)–
(14) as a dynamical system inR5. In particular, by
defining the new variables

E1 = dE

dz
and T1 = dT

dz

the system of Eqs.(12)–(14)can be formulated as:

(15)
dx
dz

= f(x), wherex =




E1
E

T1
T

C


 ∈ R

5

and

(16)

f(x) =




−cE1 − σ − ρC
η+T

+ σE + µET − εC

E1

− c
ω
T1 − β1

ω
(1− β2T )T + φ

ω
ET − λ

ω
C

T1

−1
c
µET + 1

c
ψC




Since the wave velocityc is unknown, system(15)
can be regarded as a nonlinear eigenvalue prob
Several analytical methods have been developed
estimatingc in this framework. However, the numer
cal solutions of Eqs.(9)–(11)readily yield a value of
c ≈ 850. In the analysis that follows, we therefore u
this numerical estimate forc to fix the wave speed a
the constant (non-dimensional) value of 850 and he
takec as a fixed parameter.

The steady states of system(15) can be found by
solving the (nonlinear) equationf(x) = 0. Several nu-
merical optimization methods can be employed
this task. However, for the purposes of the travellin
wave analysis, the numerical simulations of the pre
ous section indicate that we should identify a hete
clinic connection betweenx0 andx1, where:

(17)x0 ≈




0
0.62

0
0.97
1.24


 and x1 =




0
1
0
0
0




One can improve the estimate forx0 by using the
above value as an initial condition in an optimisation
algorithm. This would also confirm thatx0 is indeed a
steady state of system(15). The fact thatx1 is also a
steady state of(15) is trivial.

We are interested in the existence of an orbitxcon(z)

of (15) that satisfies:

(18)lim
z→−∞ xcon(z) = x0 and lim

z→∞ xcon(z) = x1

We consider the linearizations

(19)
dx
dz

= Df(x0)x and
dx
dz

= Df(x1)x

of the vector fieldf at equilibriax0 and x1, respec-
tively. It is a straightforward task to determine t
spectrum of the Jacobian matricesDf(x0) andDf(x1).
Indeed, there are five real eigenvalues ofDf(x0), three
positive and two negative, with the positive ones i
plying the existence of a three-dimensionalunstable
manifold Wu(x0). Furthermore, there are five re
eigenvalues ofDf(x1), two positive and three nega
tive, with the negative ones implying the existence
a three-dimensionalstablemanifoldWs(x1). We note
that

(20)dim
(
Wu(x0)

) + dim
(
Ws(x1)

) = dimR
5 + 1

Eq. (20) suggests thatWu(x0) and Ws(x1) proba-
bly intersect transversally1 along an one-dimension
curve in the five-dimensional phase-space[42,43]. If
this is the case then this curve would define a (gene
heteroclinic connection.

The values of the parameters of the system un
discussion suggest that an approximation of the c
necting orbit by perturbing the system of Eqs.(12)–
(14)can be feasible. In particular, we perturb Eqs.(12)

1 See also the discussion on p. 120 of[43] concerning the so
called transversality theorem.
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Fig. 15. Figure showing the approximation of the connecting orb
the (E, z)-plane from the travelling-wave analysis (solid line). T
orbit was computed over the truncated domain[−0.3,0.3].

and (13)by ignoring the effect of the second deriv
tives on the system (see also[44]). That is to say, we
consider the perturbed system:

(21)−c
dE

dz
= σ + ρC

η + T
− σE − µET + εC

(22)−c
dT

dz
= β1(1− β2T )T − φET + λC

(23)−c
dC

dz
= µET − ψC

We note here that by ignoring the second derivati
in effect we choose to focus on afirst-order approxi-
mation to Eqs.(12) and (13).

Let Π(x0) andΠ(x1) be the projections ofx0 and
x1 onto the phase-space defined by Eqs.(21)–(23). It is
obvious thatΠ(x0) andΠ(x1) are steady states of th
perturbed system. There is a three-dimensional un
ble manifoldWu(Π(x0)) associated withΠ(x0) and
a one-dimensional stable manifoldWs(Π(x1)) asso-
ciated withΠ(x1). We have used XPP (see[37]) to
investigate numerically the phase-space of the sys
of Eqs.(21)–(23). XPP provides the implementatio
of numerical algorithms for tracking one-dimension
invariant manifolds and in the case ofΠ(x1) it was
able to confirm thatWs(Π(x1)) defines a heteroclini
connection betweenΠ(x0) and Π(x1). Figs. 15–17
show approximations to the connecting orbit defin
by Ws(Π(x1)) in the(E, z), (T , z) and(C, z) planes,
respectively. These compare very well with the res
Fig. 16. Figure showing the approximation of the connecting o
in the (T , z)-plane (solid line). The orbit was computed over t
truncated domain[−0.3,0.3].

Fig. 17. Figure showing the approximation of the connecting o
in the (C, z)-plane (solid line). The orbit was computed over t
truncated domain[−0.3,0.3].

of the spatio-temporal simulations of the full PDE sy
tem.

4. Discussion

In this paper we have undertaken a travelling-w
analysis of a mathematical model developed in[15],
describing the growth of solid tumours in the pre
ence of an immune system response. For a partic
choice of parameters, the model is able to simulate
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phenomenon of cancer dormancy; a clinical condit
that has been observed in breast cancers, neuro
tomas, melanomas, osteogenic sarcomas, and in
eral types of lymphomas. The behaviour of the can
dormancy simulations can be described as highly
regular, depicting unstable and heterogeneous tum
cell distributions that are nonetheless characterize
a relatively low total number of tumour cells. Th
behaviour is consistent with several immunomorp
logical investigations with tumour spheroids infiltrat
by TICLs.

However, the alteration of certain parameters of
model is enough to induce bifurcations into the s
tem, which in turn result in the evolution of travellin
wave-like solutions in the numerical simulation
These travelling waves are of great importance
cause, when they exist, the tumour invades the hea
tissue at its full potential. The existence of these tr
elling waves for a particular choice of parameters w
established in this paper for a reduced system, wh
nonetheless captures the essential elements of th
model presented in[15].

We would like to note here that the first ord
approximation employed in deriving Eqs.(21)–(23)
could be further investigated in the context of ge
metric perturbation theory. More precisely, we b
lieve that Fenichel’s invariant manifold theorem[42,
45] has a special role to play here and, as a ma
of fact, it seems that one could try to analyse s
tem (15) by employing the relevant techniques d
cussed in[42]. Nonetheless, several problems ar
in this direction with perhaps the most prominent
them being the unavailability of simple analytic e
pressions for the steady states of the system u
discussion.

The work presented here complements the bi
cation analysis undertaken in[15] and seems to pro
vide an adequate framework for studying and id
tifying critical parameters of the process in whi
cancer cells are present in a tissue but do not c
cally occur for a long period of time, but can beg
to grow progressively at a later date. Thus our m
elling and analysis offers the potential for quanti
tive analysis of mechanisms of tumour-cell–host-c
interactions and for the optimisation of tumour im
munotherapy and genetically engineered anti-tum
vaccines.
-
-
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