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Abstract

A model of phytoplankton dynamics introduced by Arino describes the evolution of aggregates of phytoplankton by a
type equation composed of terms describing the growth of the aggregates and their splitting, where the latter is mo
a singular integral operator of the same form as in the classical fragmentation theory. In this paper we shall show tha
the presence of the growth term, the model displays the typical properties of the fragmentation models; in particul
fragmentation rate is unbounded as the size of aggregates tends to zero, then there occurs an unaccounted for
phytoplankton though formally nothing is taken out of the system.To cite this article: J. Banasiak, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur la conservativité et l’éclatement d’une équation de dynamique du phytoplancton.Un modèle de dynamique d
phytoplancton introduit par Arino et Rudnicki décrit l’évolution d’agrégats de phytoplancton au moyen d’une équation
cinétique composée de termes décrivant la croissance d’agrégats et leur éclatement, où ce dernier phénomène est m
un opérateur intégral singulier de la même forme que dans la théorie classique de la fragmentation. Nous montreron
article que, malgré la présence du terme de croissance, le modèle présente les propriétés typiques des modèles de fra
en particulier, si le taux de fragmentation est illimité alors que la taille des agrégats tend vers zéro, alors il y a un te
pris en compte traduisant une disparition de phytoplancton, quoique rien n’ait formellement quitté le système.Pour citer cet
article : J. Banasiak, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In their recent paper[1], O. Arino and R. Rudnick
considered a model of phytoplankton at the level
aggregates of cells. The aggregates are structure
their size and the phytoplankton system consists of
gregates of all possible sizes. The aggregate size c
change due to the usual birth and death of individ
cells, but also there are two other mechanisms actin
at the level of aggregate: splitting of an aggregate
several parts and combining of two or more agg
gates into a bigger one. The latter two are known
physics and chemical engineering as fragmentati
coagulation processes and describe a variety of
nomena ranging from polymerization/polymer deg
dation, droplets break-up and build-up, through ro
crushing and grinding, solid drugs break-up in org
isms, to blood cell aggregation and fragmentation
phytoplankton, the major role in fragmentation and
agulation processes is played by the substance c
TEP (Transparent Exopolymer Particles) that is a
product of the growth of phytoplankton, and its stic
iness causes the cells to remain together[2–5]. On
the contrary, a low level of concentration of TEP r
sults in fragmentation of the aggregate due to ex
nal causes, like currents or turbulence on one ha
and internal unspecified forces of biotic nature on
other.

In [1], the authors considered a relatively simp
model of binary fragmentation and coagulation w
bounded fragmentation and coagulation rates, as
aim was to investigate the long-time behaviour of
solution, and they succeeded in proving the existe
of a time-invariant distribution to which the popul
tion of aggregates converges as time tends to infin
whatever the initial population might be.

Our aim in this paper is to analyze more closely
inter-relation between the growth and fragmentation
aggregates so that we shall disregard the coagula
part. By the very nature of the model, the fragmen
tion process itself should be conservative, that is,
total amount (mass, the number of particles or cells
the described quantity, sayQ, contained in all the ag
gregates before and after a fragmentation event sh
be the same. Thus, if in some system the fragm
tation occurs alongside another process of growth
decay determined by a certain law, then the evolution
of the total amount ofQ should follow this law due to
the conservativity of the fragmentation process. If t
is the case, then such a process is said to behonest.
However, for pure fragmentation models and mod
combining fragmentation of clusters with their diss
lution in the surrounding solute, it has been kno
for some time[6–9], that if the fragmentation rat
of small clusters is large enough, then there app
an unexpected leakage ofQ from the system, tha
is, the amount ofQ in the system is strictly smalle
than predicted by the laws of nature used to build
model.

In the existing physical literature, op. cit., this u
accounted for loss ofQ (in this case, mass-loss
termed shattering fragmentation, is attributed to a
phase transition and formation of a ‘dust’ of par
cles with zero size and non-zero mass (a similar
in some sense opposite process of forming an
finitely large’ particle is known in coagulation as
gelation). For some relatively simple models, sh
tering fragmentation was analyzed in[4,7] by prob-
abilistic methods. In a series of recent papers[10–14],
the shattering and non-shattering fragmentation
fully characterized by the properties of the genera
of the semigroup describing the evolution and the t
ory was applied to a wide range of processes provid
a comprehensive classification of fragmentation m
els.

In particular, in [10], a model where fragmenta
tion occurs together with a continuous mass loss
to dissolving of the substance has been analyzed
conditions ensuring conservativity and shattering h
been provided. A crucial rôle in the analysis is play
by the theory of substochastic, that is, positivity p
serving and contractive semigroups. In this paper,
shall show that the model introduced by Arino a
Rudnicki, though obviously not substochastic due
the appearance of the growth term, can be neverthe
transformed into one, and treated by a generaliza
of the theory developed in[10] yielding similar results,
that is, the process is honest for rates of fragmenta
bounded at 0, otherwise shattering fragmentation
curs irrespective of the growth rate (within the lim
of the model).

It is, however, fair to admit that shattering fra
mentation, as related to the creation of infinitesima
small aggregates, is not really a biological (or phy
cal) phenomenon as in the real world there is alwa
lowest size of objects beyond which we cannot re



J. Banasiak / C. R. Biologies 327 (2004) 1025–1036 1027

pts
ted
that

-

-

s of
re-
the

sists
nt
fi-

-

to

c-

of
at

stri-
-
s

hter
size

s re-

hat

:

tion
not

ize

e
e

use
-

without encountering quantum effects. If one ado
such a point of view, then our results can be resta
as saying that the models with fragmentation rates
are unbounded at 0 are non-biological.

2. The model

Following [1], we consider the following fragmen
tation model with mass loss:

∂tu(x, t)

= −∂x

[
b(x)u(x, t)

] − d(x)u(x, t) − p(x)u(x, t)

(2.1)+
∞∫

x

p(y)k(x, y)u(y, t)dy

whereu is the distribution function of all the aggre
gates according to their sizex, which, depending on
the model, can be the number of cells, the total mas
the cells, or the total length of cells forming the agg
gate. By the total size of the system, we understand
sum of sizes of all the aggregates the system con
of, that is,

∫ ∞
0 u(x)x dx. Thus a natural requireme

is that the total size of the system is finite at all
nite times, which leads to the natural setting for(2.1),
which is:

X = L1(R+, x dx)

=
{

u; ‖u‖ :=
∞∫

0

∣∣u(x)
∣∣x dx < ∞

}

Further, the growth rateb is a sufficiently smooth func
tion on[0,∞), satisfying:

(2.2)0 < b(x) � b̃x, x > 0

for some constant̃b > 0. From(2.2)we haveb(0) = 0
and we assume also that:

(2.3)b′(0) > 0

The functiond is the death rate, which we assume
be continuous and bounded.

The fragmentation is characterized by two fun
tions: p and k. The functionp is the fragmentation
rate, that is, the number of fragmentation events
aggregates of sizex per unit time. We assume th
p ∈ L∞,loc(R+) andp � 0 a.e. Further,k is a non-
negative measurable function that describes the di
bution of particle massesx spawned by the fragmen
tation of a particle of massy. Formal balance of mas
in fragmentation requires:

(2.4)

y∫
0

xk(x, y)dx = y

that expresses the fact that the sizes of all daug
aggregates after fragmentation must add up to the
of the parent. The integral:

(2.5)

y∫
0

k(x, y)dx = My

gives the expected number of daughter aggregate
sulting from the fragmentation of a parent of sizey;
in general,My may be infinite. Note that in[1] the
authors considered only binary fragmentation, t
is, My = 2, and the normalized functionK(x,y) =
k(x, y)/2.

The typical choices fork used in the literature are
the power law(ν + 2)xν/yν+1 with −2 < ν � 0, and
its generalization

(2.6)k(x, y) = 1

y
h

(
x

y

)
which describes the situation when the fragmenta
depends on the daughter size/parent size ratio and
on their sizes separately.

Integrating(2.1)multiplied byx, we obtain the for-
mal equation governing the evolution of the total s
of the system:

d

dt

∞∫
0

u(x, t)x dx = −
∞∫

0

d(x)u(x, t)x dx

(2.7)+
∞∫

0

b(x)u(x, t)dx

where we used(2.4)and integration by parts. It is to b
stressed that(2.7)is far from obvious – apart from th
validity of the integration by parts, each term of(2.1)
should be an integrable function so that we can
Fubini’s theorem and(2.4). In fact, in this paper we de
termine classes of coefficients for which(2.7) is valid
and for which it is not.
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3. Transport semigroup

In this section we consider the differential part
Eq.(2.1), that is, the Cauchy problem:

∂tu(x, t) = −∂x

[
b(x)u(x, t)

] − d(x)u(x, t)

(3.1)− p(x)u(x, t), x > 0, t > 0

u(x,0) = g(x)

The solution of this problem can be written down e
plicitly. However, for the purpose of this paper, w
shall need a precise characterization of the domai
the generator of the semigroup solving(3.1) and this
is not obvious due to possible singularities of the frag
mentation ratep and degeneracy ofb atx = 0. It turns
out that direct estimates of the resolvent of the rig
hand side of the equation in(3.1)are not easy, thus w
shall simplify the problem even further and as the fi
step we shall deal with the Cauchy problem:

(3.2)
∂tu(x, t) = −∂x

[
b(x)u(x, t)

]
, x > 0, t > 0

u(x,0) = g(x)

Define the operator

[TBu](x) = −(
b(x)u(x)

)
x

on the domain

D(TB) = {
u ∈ X; bu is a.a.c. and(bu)x ∈ X

}
where the abbreviation ‘a.a.c.’ stands for almost
solutely continuous, that is, absolutely continuous
each compact interval of(0,∞).

Denoting byB a fixed antiderivative of 1/b, say,
B(x) = ∫ x

1
ds

b(s)
, we see, due to 0< b(x) < b̃x for

x > 0, that:

(3.3)lim
x→∞B(x) = +∞, lim

x→0
B(x) = −∞

thus B is globally invertible onR. Hence, defining
Y (t, x) := B−1(B(x) − t), x > 0, 0� t < ∞, we can
prove as in[1] that:

[
STB (t)g(·)](x) = b(Y (t, x))g(Y (t, x))

b(x)

is aC0-semigroup generated by(TB,D(TB)), that sat-
isfies:

(3.4)
∥∥STB (t)u

∥∥ � eb̃t‖u‖
In particular, by the Hille–Yosida theorem, we obta
for g ∈ X andλ > b̃:

(3.5)
∥∥R(λ,TB)g

∥∥ � 1

λ − b̃
‖g‖

Using the above we can prove the following res
for the the semigroup solving(3.1).

Proposition 3.1.The operatorT defined by the forma
expression:

[T u](x) = −(
b(x)u(x)

)
x

− a(x)u(x)

on the domain:

D(T ) = {
u ∈ X,au ∈ X,bu is a.a.c. and(bu)x ∈ X

}
wherea(x) = p(x) + d(x), generates a positive sem
group, say(ST (t))t�0, satisfying for anyu ∈ X:

(3.6)
∥∥ST (t)u

∥∥ � eb̃t‖u‖
whereb̃ is defined in(2.2).

Proof. Let us consider the resolvent equation of(3.1):(
b(x)u(x)

)
x
+ a(x)u(x) + λu(x) = f (x)

Solving the above equation, we see that a good ca
date for the resolvent is:

[
R(λ)g

]
(x) = e−λB(x)−A(x)

b(x)

x∫
0

eλB(y)+A(y)g(y)dy

whereA(x) is a fixed antiderivative ofa(x)/b(x). Di-
rect integration gives:∥∥R(λ)g

∥∥
�

∞∫
0

(
e−λB(x)−A(x)

b(x)

x∫
0

eλB(y)+A(y)
∣∣g(y)

∣∣dy

)
x dx

� 1

λ − b̃
‖g‖

where we used the fact that e−A(x) is non-increasing
and(3.5). Further, we have:

a(x)

b(x)
e−λB(x)−A(x)

(3.7)= − λ

b(x)
e−λB(x)−A(x) − d

dx
e−λB(x)−A(x)

so that
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∞∫

0

(
eλB(y)+A(y)

y

∞∫
y

xa(x)e−λB(x)−A(x)

b(x)
dx

)

× ∣∣g(y)
∣∣y dy

�
∞∫

0

(
1+ eλB(y)+A(y)

y

∞∫
y

e−λB(x)−A(x) dx

)

× y
∣∣g(y)

∣∣dy

�
(
1+ (λ − b̃)−1)‖g‖

where we again used monotonicity of e−A(x) and(3.5).
Next we observe that forf ∈ X,

b(x)u(x) = e−λB(x)−A(x)

x∫
0

eλB(y)+A(y)f (y)dy

and both e−λB(x)−A(x) and the integral (as a functio
of its upper limit) are almost absolutely continuo
and bounded over any fixed interval[α,β] ⊂ ]0,∞[.
Therefore, it follows that the product is absolutely co
tinuous on[α,β] and thereforebu is almost absolutely
continuous. Moreover,

−(
b(x)u(x)

)
x

= (
λ + a(x)

)e−λB(x)−A(x)

b(x)

×
x∫

0

eλB(y)+A(y)f (y)dy − f (x)

= (
λ + a(x)

)
u(x) − f (x) ∈ X

so thatR(λ)X ⊂ D(T ). Since clearly(λ − T )D(T ) ⊂
X, we have(λI − T )R(λ)f = f for any f ∈ X. To
show thatR(λ) is the resolvent forT , it is enough to
show thatλI −T is injective onD(T ). We see that the
only solution (up to a multiplicative constant) to(
b(x)u(x)

)
x

+ a(x)u(x) + λu(x) = 0

is uλ(x) = e−λB(x)−A(x)/b(x). Firstly, we observe tha
since e−A(x) is positive and decreasing, e−A(x) � c >

0 in some interval[0, α]. Moreover, sinceb(x) � b̃x,
we have forx � 1:

e−λB(x) = e−λ
∫ x

1
ds

b(s) = eλ
∫ 1
x

ds
b(s) � e− λ

b̃
lnx

= x
− λ

b̃

Therefore, forα < 1:

‖uλ‖ =
∞∫

0

e−λB(x)−A(x)

b(x)
x dx � c

α∫
0

e−λB(x)

b(x)
x dx

(3.8)� c

b̃

α∫
0

x
− λ

b̃ dx = ∞

asλ > b̃. Hence,λI − T is injective forλ > b̃ (even
on its maximal domain) andR(λ) = R(λ,T ). The re-
solvent is clearly a positive operator so that, by
Hille–Yosida theorem,(T ,D(T )) generates a positiv
semigroup satisfying(3.6).

From this proposition it follows that the operator

(3.9)
(
T̃ ,D(T )

) = (
T − b̃I,D(T )

)
generates a positive semigroup of contractions g
by

(3.10)ST̃ (t)u = e−b̃t ST (t)u

This shows that to prove the existence of a semigr
solving (a realization of)(2.1), characterize its gene
ator and thus analyze the dynamics of the process
can use the substochastic semigroup theory devel
recently in a series of papers[10,11,13,15–17]. Below
we shall recall the basic results of this theory.

4. Substochastic semigroups

In this section we shall summarize relevant fa
from substochastic semigroup theory as develo
in [10]. To avoid confusion, we shall use the same
tation for the abstract operators as for the particu
application discussed in this paper, however the the
is fairly general and requires only that the assumption
(A1)–(A3) be satisfied.

Let (Ω,µ) be a measure space and letX =
L1(Ω,µ). If Z ⊂ X is a subspace, thenZ+ denotes
the cone of nonnegative elements ofZ and forf ∈ X

the symbolsf± denote the positive and negative p
of f , that is,f+ = max{f,0} andf− = −min{f,0}.
Let (S(t))t�0 be a strongly continuous semigrou
on X. We say that(S(t))t�0 is a substochastic sem
group if for any t � 0, S(t) � 0 and‖S(t)‖ � 1, and
a stochastic semigroupif additionally‖S(t)f ‖ = ‖f ‖
for f ∈ X+.
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Accordingly, we consider linear operators inX:
T̃ ⊂ TB + Ã with D(T̃ ) ⊂ D(TB)∩D(Ã), andK, that
have the following properties:

(A1) (T̃ ,D(T̃ )) generates a substochastic semigro
(ST̃ (t))t�0;

(A2) D(K) ⊃ D(T̃ ) andKu � 0 for u ∈ D(T̃ )+;
(A3) for all u ∈ D(T̃ )+

(4.1)
∫
Ω

(T̃ u + Kf )dµ � 0

Theorem 4.1 [11,17]. Under the above assump
tions, there exists a smallest substochastic semig
(SG̃(t))t�0 generated by an extensioñG of the oper-

ator T̃ + K. This semigroup, for arbitraryu ∈ D(G̃)

and t > 0, satisfies:

(4.2)
d

dt
SG̃(t)u = G̃SG̃(t)u

(SG̃(t))t�0 can be obtained as a strong limit inX of

semigroups(Sr (t))t�0 generated by(T̃ + rK,D(T̃ ))

asr ↗ 1−; if f ∈ X+, then the limit is monotonic.
The generator̃G of (SG̃(t))t�0 is characterized by

(λI − G̃)−1f =
∞∑

n=0

(λI − T̃ )−1[K(λI − T̃ )−1]nf
(4.3)f ∈ X

Formula(4.3) does not provide any explicit infor
mation as to how large an extension ofT̃ + K the
generatorG̃ is and this problem is closely related
the behaviour of(SG̃(t))t�0. To make this remark pre
cise, we adapt the concept of honesty and dishon
from the theory of Markov processes[18].

Firstly, note that (4.1) can be written as:

(4.4)
∫
Ω

(T̃ + K)udµ = −c(u), u ∈ D(T̃ )+

wherec is a nonnegative (possibly zero) functional d
fined onD(T̃ ). In this paper, we shall consider on
the situation whenc can be written as an integral fun
tional, that is:

(4.5)c(u) =
∫
Ω

ς(x)u(x)dµx

for some positive measurable functionς . We do not
assume thatc is bounded or closed.
Definition 4.1.We say that a substochastic semigro
(S

G̃
(t))t�0 (generated by an extensioñG of the opera-

tor T̃ +K) is honest ifc is finite onD(G̃), and, for any

0 � ◦
u ∈ D(G̃), the solutionu(t) = SG̃(t)

◦
u of (4.2)

satisfies:

(4.6)
d

dt

∫
Ω

u(t)dµ = d

dt

∥∥u(t)
∥∥ = −c

(
u(t)

)

Remark 4.1. The definition of honesty is not re
stricted to contractive semigroups and is valid eve
c in (4.4)is of undetermined sign. In fact, for the ori
inal model(2.1)we shall be using this definition wit
a positive right-hand side in(4.6). However, for a gen
eral c, the existence part of the theory is usually n
a trivial matter and this is why we prefer to prese
a complete theory for substochastic semigroups,
then apply it to a wider class of models that can
transformed to a substochastic case.

It can be proved that the honesty of(SG̃(t))t�0,
(4.6) is equivalent to its integral version:(SG̃(t))t�0
is honest if and only if for anyf ∈ X+ andt � 0:

(4.7)
∥∥SG̃(t)f

∥∥ = ‖f ‖ − c

( t∫
0

SG̃(s)f ds

)

Dishonesty of a semigroup is manifested both in
time domain for semigroups, and at the level of
solvents. In the time domain, we introduce the def
function: forf ∈ X+ andt � 0 we define it by:

(4.8)ηf (t) = ∥∥SG̃(t)f
∥∥ − ‖f ‖ +

t∫
0

c
(
SG̃(s)f

)
ds

For resolvents, we have the following important res

Theorem 4.2.For any fixedλ > 0, there is0 � βλ ∈
X∗ with ‖βλ‖ � 1 such that:

(4.9)λ
∥∥R(λ, G̃)f

∥∥ = ‖f ‖ − 〈βλ,f 〉 − c
(
R(λ, G̃)f

)
Moreover,c extends to a nonnegative continuous l
ear functional onD(G̃), given again by(4.5).

The properties ofηf and its relation toβλ are sum-
marized in the proposition below.



J. Banasiak / C. R. Biologies 327 (2004) 1025–1036 1031

-

en

en
era-
ful.
ain
ned

at
set

do-

ent
ns.

on-

-
y

)–
an
a

Proposition 4.1.The following holds:

(i) for anyf ∈ X+, ηf is a non-positive and a non
increasing function fort � 0;

(ii )

∞∫
0

e−λtηf (t)dt = −1

λ
〈βλ,f 〉

hence(S
G̃
(t))t�0 is honest if and only ifβλ ≡ 0

for any(some) λ > 0;
(iii ) if (SG̃(t))t�0 is dishonest, then for somef ∈ X+

and anyt > 0:

∥∥SG̃(t)f
∥∥ < ‖f ‖ +

t∫
0

c
(
SG̃(s)f

)
ds

An important characterization of honesty is giv
in the following theorem.

Theorem 4.3.The following are equivalent:

(a) The semigroup(SG̃(t))t�0 is honest;

(b) G̃ = T̃ + K ;
(c) For anyu ∈ R(λ, G̃)X+, whereλ > 0 is arbitrary,

we have:

(4.10)
∫
Ω

G̃udµ � −c(u)

The problem with the characterization results giv
above is that they require the knowledge of the gen
tor itself and therefore they are not immediately use
To circumvent this problem, we shall be using cert
extensions of the involved operators, that are defi
below.

Define byE the set of measurable functions th
are defined onΩ and take values in the extended
of real numbers and byEf the subspace ofE consist-
ing of functions that are finite almost everywhere.E is
a vector lattice with respect to the usual relation:� al-
most everywhere,X ⊂ Ef ⊂ E with X andEf being
sublattices ofE.

In what follows, we shall denote bỹT ,K, G̃ andL̃λ

extensions of the operators̃T , K, G̃ andR(λ, T̃ ), re-
spectively. ByL we abbreviateL1. At this moment,
we shall require only that all the extensions have
mains and ranges inEf , thatK, L̃ andL̃λ are positive
operators on their domains and thatG̃ ⊂ T̃ +K.

We shall present here a theorem giving a suffici
condition for dishonesty in terms of these extensio

Theorem 4.4. Assume that there existsu ∈ D(G̃)+
such that

(i) [L̃λ(λI − T̃ )u](x) = u(x), a.e., for someλ > 0,
(ii ) for someλ > 0, λu(x) − [G̃u](x) = g(x) ∈ X+,
(iii ) c(u) is finite and

(4.11)
∫
Ω

G̃udµ < −c(u)

Then the semigroup(SG̃(t))t�0 is dishonest.

5. Back to the growth–fragmentation equation

Let us look at the problem(2.1) from the point of
view of the developed theory. Let us recall that we c
sider the operatorK defined by the expression:

[Ku](x) =
∞∫

x

p(y)k(x, y)u(y, t)dy

on the domainD(T̃ ). Firstly, by standard calcula
tions, see [13 (Lemma 4.1)] we obtain that for an
u ∈ D(T̃ )+:

∞∫
0

(T̃ u + Ku)x dx = −
∞∫

0

(
b̃x − b(x)

)
u(x)dx

(5.1)−
∞∫

0

d(x)u(x)x dx

which, due to(2.2), shows that the assumptions (A1
(A3) of Section4 are satisfied. Hence, there is
extensionG̃ of the operatorT̃ + K that generates
substochastic semigroup(SG̃(t))t�0. The relation of
(SG̃(t))t�0 and the solution to(2.1)is given in the next
proposition.

Proposition 5.1.There is an extensionG of T + K

given by(G,D(G)) = (G̃+ b̃I,D(G̃)) that generates
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a positive semigroup(SG(t))t�0 = (eb̃t S
G̃
(t))t�0.

Moreover, the generatorG is characterized by:

(5.2)

(λI − G)−1f =
∞∑

n=0

(λI − T )−1[K(λI − T )−1]nf
for f ∈ X andλ > b̃.

Proof. The operatorT̃ was constructed fromT by
subtracting the bounded operatorb̃I . Let us consider
the approximating semigroups(Sr (t))t�0, mentioned
in Theorem 4.1. They are generated by(T − b̃I +
rK,D(T )), 0< r < 1 and

(5.3)lim
r→1− Sr (t)f = SG̃(t)f

in X, uniformly in t on bounded intervals. Defin

semigroups(S′
r (t))t�0 = (eb̃t Sr (t))t�0 generated by

T + rK. As multiplication by ẽbt does not affect con
vergence, we see in(5.3) that (S′

r (t))t�0 converges

strongly to the semigroup(SG(t))t�0 = (eb̃t SG̃(t))t�0

which is generated byG = G̃ + b̃I and thus is an ex
tension ofT + K, defined on the same domain asG̃,
D(G) = D(G̃).

Formula(5.2) follows immediately from(4.3) by
noting that sinceλI − G = (λ − b̃)I − G̃, we have
(λI − G)−1 = (λ′I − G̃)−1 for λ > b̃ and the same
holds for the resolvent ofT . �

Formula(5.1)for T + K takes the form:
∞∫

0

(T u + Ku)x dx

=
∞∫

0

b(x)u(x)dx −
∞∫

0

d(x)u(x)x dx

(5.4)=: C(u)

and, as mentioned inRemark 4.1, we shall say tha
(SG(t))t�0 is honest if and only if:

(5.5)
d

dt

∞∫
0

u(t)x dx = d

dt

∥∥u(t)
∥∥ = C

(
u(t)

)

Thus, all the results characterizing honesty and
honesty can be applied to(SG(t))t�0 with −c(u) re-
placed byC(u). In particular,(SG(t))t�0 is honest if
and only ifG = T + K , which in turn is equivalent to

(5.6)

∞∫
0

Gux dx � C(u)

for anyu ∈ R(λ,G)X+, with λ > b̃.
To proceed, we have to specify the extensions of

operators which we will be working with. Possibly th
most general choice is as follows. Foru ∈ D(T ) :=
{u ∈ L1([0,∞), x dx); bu ∈ a.a.c.} we denote:

(5.7)[T u](x) = −(
b(x)u(x)

)
x
− a(x)u(x)

where, as beforea(x) = d(x)+p(x); thusT :D(T ) →
Ef . By K we denote the operator defined by the
pression:

(5.8)[Ku](x) =
∞∫

x

p(y)k(x, y)u(y)dy

defined on D(K) = {u ∈ L1([0,∞), x dx);x →
[Ku](x) is finite a.e.}. Using these two concepts, w
can define an operator that can be thought of as
maximal extension ofT + K in X:

(5.9)[Gu](x) := [T u](x) + [Ku](x)

defined on the domainD(G) = {u ∈ D(T ) ∩ D(K);
x → [Gu](x) ∈ L1([0,∞), x dx)}. In a similar way,
we consider the operatorLλ extendingR(λ,T ), λ > b̃

defined by the expression:

[Lλf ](x)

(5.10):= e−λB(x)−A(x)

b(x)

x∫
0

eλB(y)+A(y)f (y)dy

that is considered onD(Lλ) = {f ∈ E; x → [Lλf ](x)

is finite a.e.}. Since the kernels of bothK andL are
nonnegative, the existence of the respective integ
is equivalent to the existence of the integrals of b
the positive and negative parts of the integrands. It
be proved as in [10 (Lemma 4.1)] thatG ⊂ G, so that
the extensions are defined correctly.

We illustrate the usefulness of the concept of ext
sions in the following observation.

Proposition 5.2.Any functionu ∈ D(G) is continuous
on (0,∞).
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Proof. Let first f ∈ X+ and λ > b̃. SinceλI − T

extends to a positive integral operatorLλ on E,
by (5.2) the elementū+ = (λI − G)−1f = Lλg,

whereg = ∑∞
n=0[K(λI − T )−1]nf , is a well-defined

element ofE as the series is increasing. However,
ū+ ∈ D(G) ⊂ X, it must be finite almost everywher
From(5.10)we have:

u(x) = e−λB(x)−A(x)

b(x)

x∫
0

eλB(y)+A(y)g(y)dy

and as the functionsB, A and b can have zeroe
or singularities only at 0 and infinity, we see th
eλB(y)+A(y)g(y) is integrable over[0,N] for anyN <

+∞ and thereforeu is continuous with a possible ex
ception atx = 0. If we take now arbitraryu, we see
thatu = ū+ − ū− = (λI − G)−1f+ − (λI − G)−1f−,
wheref+, f− are the positive and negative parts off .
For f±, the correspondingg± are also positive an
henceū± are continuous on(0,N), which yields con-
tinuity of u. �

The following technical result can be proved as
[10 (Lemma 4.2)]

Lemma 5.1. Let K and Lλ be the extensions intro
duced above. If for someg ∈ D(L)+, both g and
KLλg belong to L1([α,N], x dx), where 0 � α <

N � ∞, then:
N∫

α

(−g(x) + [KLλg](x) + λ[Lλg](x)
)
x dx

= αb(α)[Lλg](α)

−
N∫

α

p(y)[Lλg](y)

( α∫
0

k(x, y)x dx

)
dy

− Nb(N)[Lλg](N)

+
∞∫

N

p(y)[Lλg](y)

( N∫
α

k(x, y)x dx

)
dy

(5.11)

+
N∫

α

b(x)[Lλg](x)dx −
N∫

α

d(x)[Lλg](x)x dx

A crucial rôle in the following considerations
played by the next theorem.
Theorem 5.1.If u ∈ D(G), then there are sequenc
αk → 0+ andNk → ∞ ask → ∞ such that:
∞∫

0

[Gu](x)x dx

= lim
k→∞

(
−

Nk∫
αk

p(y)u(y)

( αk∫
0

k(x, y)x dx

)
dy

+
∞∫

Nk

p(y)u(y)

( Nk∫
αk

k(x, y)x dx

)
dy

)

(5.12)+
∞∫

0

b(x)u(x)dx −
∞∫

0

d(x)u(x)x dx

Proof. Using a similar argument toProposition 5.2
we see that ifg ∈ E+ is such thatLλg ∈ X, theng ∈
L1([α,N], x dx) for any 0< α < N < ∞. Following
[10(Corollary 4.1)], we observe that ifu = R(λ,G)f ,
f ∈ X+ there isg ∈ Ef,+, constructed as in the proo
of Proposition 5.2, such thatu = Lλg and:

Gu = λLλg − g +KLλg

and, as g ∈ L1([α,N], x dx), we have KLλg ∈
L1([α,N], x dx) and, byLemma 5.1,
∞∫

0

[Gu](x)x dx

= lim
k→∞

(
αkb(αk)u(αk) −

Nk∫
αk

p(y)u(y)

×
( αk∫

0

k(x, y)x dx

)
dy − Nkb(Nk)u(Nk)

+
∞∫

Nk

p(y)u(y)

( Nk∫
αk

k(x, y)x dx

)
dy

)

+
∞∫

0

b(x)u(x)dx −
∞∫

0

x d(x)u(x)dx

for any sequences(αk)k∈N and (Nk)k∈N converging
to 0 and∞, respectively. This can be extended to
bitraryu using the decomposition ofProposition 5.2.
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Since we know thatu ∈ L1([0,∞), x dx) ∩ C(0,

∞), we have lim infx→∞ x2|u(x)| = 0. Thus, there
is a sequence(Nk)k∈N converging to∞ such that
limk→∞ N2

k |u(Nk)| = 0. Similarly, we obtain a se
quence(αk)k∈N that converges to 0 ask → ∞, such
that limk→∞ α2

k |u(αk)| = 0. Sinceb(x) � b̃x for x >

0, we obtain the thesis.�
Theorem 5.2.If

(5.13)lim
x→0+ p(x) + d(x) < +∞

thenG = T + K , thus(SG(t))t�0 is honest.

Proof. As in the previous proof, it is enough to co
sideru = R(λ,G)f , f ∈ X+, λ > b̃; for suchf we
have alsou = Lλg for someg ∈ E+. Sinceu ∈ X,
by (5.10)and Tonelli’s theorem, we obtain:

∞∫
0

(Lλg)(x)x dx

=
∞∫

0

yg(y)

(
eλB(y)+A(y)

y

∞∫
y

xe−λB(x)−A(x)

b(x)
dx

)
dy

=
∞∫

0

yg(y)ψ(y)dy

The functionψ(y) is continuous and non-negativ
and the only points where it may be zero are aty = 0
or asy → ∞. As y → 0, the integral term tends to in
finity, see(3.8). Sincea is bounded at 0, the other ter
tends to 0 by(3.3)and the l’Hospital rule gives:

lim
y→0+ ψ(y) = lim

y→0+
1

− b(y)
y

+ λ + p(y) + d(y)
> 0

as λ > b̃ and limy→0 b(y)/y = b′(0) � b̃. Thusg ∈
L([0,N], x dx) for anyN < +∞, and we can putα =
0 in (5.11), and thus in(5.12), getting:

∞∫
0

[Gu](x)x dx

= lim
N→+∞

( ∞∫
p(y)u(y)

( N∫
k(x, y)x dx

)
dy

)

N 0
+
∞∫

0

b(x)u(x)dx −
∞∫

0

xd(x)u(x)dx

� C(u)

so that(5.6) is obviously satisfied. �
The theorem on dishonesty below is intended

marily as an example so that the regularity assu
tions on the coefficients are not optimal. We shall a
putd ≡ 0 as adding or subtracting a bounded opera
does not change the domain of the generator; he
a ≡ p. Moreover, we restrict our attention tok given
by (2.6): k(x, y) = y−1h(x/y) and satisfying:

(5.14)−
1∫

0

zh(z) lnzdz < +∞

Theorem 5.3. Assume thatb ∈ C1([0,∞)) with
inf0�x<∞ b′(x) > −∞,

(5.15)

1

xp(x)
∈ L1

([0, η]), 1

xkp(x)
∈ L1

([N,∞)
)

for some η,N, k > 0, p ∈ C1((0,∞)),p > 0 on
(0,∞) and:

(5.16)sup
x∈[0,∞)

∣∣∣∣xp′(x)

p(x)

∣∣∣∣ = L < +∞

Then(SG(t))t�0 is dishonest.

Proof. To simplify notation, we putη = 1. We use
Theorem 4.4so that we work with the operator e
tensions introduced at the beginning of this sect
and constructu ∈ D(G)+ satisfying the assumption
of this theorem. Let us define:

(5.17)u(x) =



1
x2p(x)

for 0 < x < 1

1
x2+mp(x)

for x � 1

where m > 0 and m + 1 � k, see (5.15). Clearly
u ∈ X and it is continuous on(0,∞). Moreover,pu ∈
L1([N,∞), x dx) for anyN > 0, and therefore we ca
pass to the limit withN → ∞ in the integral terms on
the right-hand side of(5.11)(taking into account tha∫ N

α
k(x, y)x dx = ∫ y

α
k(x, y)x dx � y). Thanks to the

continuity, we can repeat the argument ofTheorem 5.1
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∞∫
0

[Gu](x)x dx

= − lim
k→∞

∞∫
αk

p(y)u(y)

( αk∫
0

k(x, y)x dx

)
dy

(5.18)+
∞∫

0

b(x)u(x)dx

for some(αk)k∈N converging to zero, where we use
the estimate(2.2)to pass to the limit in the last term.

Consider first the interval(0,1] where we have
u(x) = 1/x2a(x). Using k(x, y) = h(x/y)/y, we
have:

1∫
α

( α∫
0

k(x, y)x dx

)
1

y2 dy =
1∫

α

( r∫
0

zh(z)dz

)
1

r
dr

and since
∫ 1

0 (
∫ r

0 zh(z)dz)1
r

dr = − ∫ 1
0 zh(z) ln zdz,

the Tonelli’s theorem gives:

− lim
α→0+

1∫
α

( α∫
0

k(x, y)x dx

)
a(y)u(y)dy

=
1∫

0

zh(z) lnzdz < 0

Furthermore, the integral:

∞∫
1

p(y)u(y)

( α∫
0

k(x, y)x dx

)
dy

converges to zero aspu ∈ L1([1,∞)) and
∫ α

0 k(x, y) ·
x dx � y, by Lebesgue’s dominated convergence t
orem. Thus,(5.18)shows that assumption (iii ) of The-
orem 4.4is satisfied. Let us turn our attention to a
sumption (ii ). Let us write:(
λu(x) + (

b(x)u(x)
)′)

+
(

p(x)u(x) −
∞∫

x

p(y)h

(
x

y

)
y−1u(y)dy

)

= I1 + I2
Consider first the interval(0,1]. We have:

(5.19)

I1 = 1

x2p(x)

(
λ + b′(x) − 2b(x)

x
− b(x)

x

xp′(x)

p(x)

)

and by assumption all the terms within the brack
are bounded on[0,1] so thatI1 > 0 for sufficiently
largeλ. Moreover,I1 ∈ L1([0,1], x dx) by (5.15). Fur-
thermore, (2.4) in our case reduces to

∫ 1
0 zh(z)dz = 1

so that:

1

x2 = 1

x2

1∫
0

zh(z)dz =
∞∫

x

1

y3h

(
x

y

)
dy

�
1∫

x

1

y3
h

(
x

y

)
dy +

∞∫
1

1

y3+m
h

(
x

y

)
dy

for m � 0. Hence

0 � 1

x2 −
1∫

x

1

y3h

(
x

y

)
dy −

∞∫
x

1

y3+m
h

(
x

y

)
dy

= I2 � 1

x2 −
1∫

x

1

y3h

(
x

y

)
dy = 1

x2

x∫
0

zh(z)dz

which is integrable on[0,1] with respect tox dx

by (5.14).
Forx ∈ [1,∞) we have similarly to(5.19)

I1 = 1

x2+mp(x)

×
(

λ + b′(x) − (2+ m)b(x)

x
− b(x)

x

xp′(x)

p(x)

)

which is positive and integrable on[1,∞) with respect
to x dx, possibly with largerλ. ForI2 we have:

I2 = 1

x2+m
−

∞∫
x

1

y3+m
h

(
x

y

)
dy

= 1

x2+m
− 1

x2+m

1∫
0

z1+mh(z)dz

� 1

x2+m

(
1−

1∫
0

zh(z)dz

)
= 0
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and clearly, asm > 0,

0 � I2

� 1

x2+m

(
1−

1∫
0

z1+mh(z)dz

)
∈ L1

([1,∞), x dx
)

It remains to prove (i). Integrating by parts, we get:[
Lλ((bu)′)

]
(x)

= e−λB(x)−A(x)

b(x)

x∫
0

eλB(y)+A(y)
(
b(y)u(y)

)′ dy

= u(x) − e−λB(x)−A(x)

b(x)
lim

y→0+ b(y)eλB(y)+A(y)u(y)

− e−λB(x)−A(x)

b(x)

x∫
0

eλB(y)+A(y)

× (
λ + p(y)

)
u(y)dy

Since close to zero eλB(x)+A(x) � xλ/b̃, with λ > b̃,
and both(bu)′ and (λ + p)u behave as 1/x2p(x)

and 1/x2, respectively, we see that both integrals, a
hence the limit, exist. Since 1/xp(x) is integrable and
differentiable except at 0, we can prove as inTheo-
rem 5.1that there is a sequence(xn)n∈N converging
to zero such that 1/p(xn) → 0. Hence, using this se
quence we have:

b(xn)eλB(xn)+A(xn)u(xn)

� b̃xnx
λ/b̃
n

x2
np(xn)

= b̃x
λ/b̃−1
n

1

p(xn)
→ 0

and thusu satisfies assumption (i). �
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