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Abstract

A model of phytoplankton dynamics introduced by Arino describes the evolution of aggregates of phytoplankton by a kinetic-
type equation composed of terms describing the growth of the aggregates and their splitting, where the latter is modelled by
a singular integral operator of the same form as in the classical fragmentation theory. In this paper we shall show that despite
the presence of the growth term, the model displays the typical properties of the fragmentation models; in particular, if the
fragmentation rate is unbounded as the size of aggregates tends to zero, then there occurs an unaccounted for loss of tt
phytoplankton though formally nothing is taken out of the sysfortite thisarticle: J. Banasiak, C. R. Biologies 327 (2004).
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Résumé

Sur la conservativité et I'éclatement d’'une équation de dynamique du phytoplanctonUn modeéle de dynamique du
phytoplancton introduit par Arino et Rudnicki décrit I'évolution d’agrégats de phytoplancton au moyen d'une équation de type
cinétique composée de termes décrivant la croissance d’agrégats et leur éclatement, ou ce dernier phénoméne est modélisé |
un opérateur intégral singulier de la méme forme que dans la théorie classique de la fragmentation. Nous montrerons dans ce
article que, malgré la présence du terme de croissance, le modele présente les propriétés typiques des modeles de fragmentatic
en particulier, si le taux de fragmentation est illimité alors que la taille des agrégats tend vers zéro, alors il y a un terme non
pris en compte traduisant une disjtion de phytoplacaton, quoique rien it formellement quitté le systémBour citer cet
article: J. Banasiak, C. R. Biologies 327 (2004).
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1. Introduction the conservativity of the fragmentation process. If this
is the case, then such a process is said thdoeest

In their recent papdt], O. Arino and R. Rudnicki ~ However, for pure fragmentation models and models
considered a model of phytoplankton at the level of combining fragmentation of clusters with their disso-
aggregates of cells. The aggregates are structured bylution in the surrounding solute, it has been known
their size and the phytoplankton system consists of ag- for some time[6-9], that if the fragmentation rate
gregates of all possiblez@s. The aggregate size can of small clusters is large enough, then there appears
change due to the usual birth and death of individual an unexpected leakage @ from the system, that
cells, but also there are bnother mechanisms acting is, the amount ofQ in the system is strictly smaller
at the level of aggregate: splitting of an aggregate into than predicted by the laws of nature used to build the
several parts and combining of two or more aggre- model.
gates into a bigger one. The latter two are known in In the existing physical literature, op. cit., this un-
physics and chemical engineering as fragmentation—accounted for loss ofQ (in this case, mass-loss),
coagulation processes and describe a variety of phe-termed shattering fragmentatignis attributed to a
nomena ranging from polymerization/polymer degra- phase transition and formation of a ‘dust’ of parti-
dation, droplets break-up and build-up, through rock cles with zero size and non-zero mass (a similar but
crushing and grinding, solid drugs break-up in organ- in some sense opposite process of forming an ‘in-
isms, to blood cell aggregation and fragmentation. In finitely large’ particle is known in coagulation as a
phytoplankton, the major role in fragmentation and co- gelatior). For some relatively simple models, shat-
agulation processes is played by the substance calledtering fragmentation was analyzed [#,7] by prob-
TEP (Transparent Exopolymer Particles) that is a by- abilistic methods. In a series of recent pag&fs-14]
product of the growth of phytoplankton, and its stick- the shattering and non-shattering fragmentation was
iness causes the cells to remain togetfZet5]. On fully characterized by the properties of the generator
the contrary, a low level of concentration of TEP re- of the semigroup describing the evolution and the the-
sults in fragmentation of the aggregate due to exter- ory was applied to a wide range of processes providing
nal causes, like currents or turbulence on one hand,a comprehensive classification of fragmentation mod-
and internal unspecified forces of biotic nature on the els.
other. In particular, in[10], a model where fragmenta-

In [1], the authors considered a relatively simple tion occurs together with a continuous mass loss due
model of binary fragmentation and coagulation with to dissolving of the substance has been analyzed and
bounded fragmentation and coagulation rates, as theirconditions ensuring conservativity and shattering have
aim was to investigate the long-time behaviour of the been provided. A crucial r6le in the analysis is played
solution, and they succeeded in proving the existence by the theory of substochastic, that is, positivity pre-
of a time-invariant distribution to which the popula- serving and contractive semigroups. In this paper, we
tion of aggregates converges as time tends to infinity, shall show that the model introduced by Arino and
whatever the initial population might be. Rudnicki, though obviously not substochastic due to

Our aim in this paper is to analyze more closely the the appearance of the growth term, can be nevertheless
inter-relation between the growth and fragmentation of transformed into one, and treated by a generalization
aggregates so that we shall disregard the coagulationof the theory developed [10] yielding similar results,
part. By the very nature of the model, the fragmenta- that s, the process is honest for rates of fragmentation
tion process itself should be conservative, that is, the bounded at 0, otherwise shattering fragmentation oc-
total amount (mass, the number of particles or cells) of curs irrespective of the growth rate (within the limits
the described quantity, say, contained in all the ag-  of the model).
gregates before and after a fragmentation event should It is, however, fair to admit that shattering frag-
be the same. Thus, if in some system the fragmen- mentation, as related to the creation of infinitesimally
tation occurs alongside another process of growth or small aggregates, is not really a biological (or physi-
decay determined by a ceirtdaw, then the evolution  cal) phenomenon as in the real world there is always a
of the total amount of) should follow this law due to lowest size of objects beyond which we cannot reach
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without encountering quantum effects. If one adopts
such a point of view, then our results can be restated
as saying that the models with fragmentation rates that
are unbounded at 0 are non-biological.

2. The model

Following[1], we consider the following fragmen-
tation model with mass loss:
oru(x,t)

= —0y [b(x)u(x, t)] —dx)ux,t) — p(x)u(x,t)

e¢]

+/p(y)k(x, Yu(y,t)dy

X

(2.1)

whereu is the distribution function of all the aggre-
gates according to their size which, depending on
the model, can be the number of cells, the total mass of
the cells, or the total length of cells forming the aggre-
gate. By the total size of the system, we understand the

sum of sizes of all the aggregates the system consists

of, that is,fé’o u(x)x dx. Thus a natural requirement
is that the total size of the system is finite at all fi-
nite times, which leads to the natural setting @r1),
which is:

X =L1(Ry, xdx)

= {u; [lue]| :=/|u(x)|xdx<oo}
0

Further, the growth ratkis a sufficiently smooth func-
tion on[0, co), satisfying:
x>0

0<b(x) Sl;x, (2.2)

for some constarit > 0. From(2.2)we haveb(0) = 0
and we assume also that:

b'(0) >0 (2.3)

The functiond is the death rate, which we assume to
be continuous and bounded.

The fragmentation is characterized by two func-
tions: p andk. The functionp is the fragmentation
rate, that is, the number of fragmentation events of
aggregates of size per unit time. We assume that
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P € Lo loc(R4) and p > 0 a.e Further,k is a non-
negative measurable function that describes the distri-
bution of particle masses spawned by the fragmen-
tation of a particle of masg. Formal balance of mass

in fragmentation requires:

y
/xk(x, y)dx=y
0

that expresses the fact that the sizes of all daughter
aggregates after fragmentation must add up to the size
of the parent. The integral:

(2.4)

y
/k(x, y)dx =M,
0

gives the expected number of daughter aggregates re-
sulting from the fragmentation of a parent of sige
in general,M, may be infinite. Note that iff1] the
authors considered only binary fragmentation, that
is, M, = 2, and the normalized functioR (x, y) =
k(x,y)/2.

The typical choices fok used in the literature are:
the power lam(v + 2)x¥/y"+1 with —2 < v < 0, and
its generalization

k(x,y) = Eh(f)
y y

which describes the situation when the fragmentation
depends on the daughter size/parent size ratio and not
on their sizes separately.

Integrating(2.1) multiplied byx, we obtain the for-
mal equation governing the evolution of the total size
of the system:

d o0
P / u(x,H)xdx =
0

(2.5)

(2.6)

e¢]

— / d(x)u(x, t)xdx

0
9]

+ / b(x)u(x,t)dx
0

where we use(.4)and integration by parts. Itis to be
stressed thg®.7)is far from obvious — apart from the
validity of the integration by parts, each term(&f1)
should be an integrable function so that we can use
Fubini’s theorem an¢R.4). In fact, in this paper we de-
termine classes of coefficients for whi¢h7)is valid
and for which it is not.

2.7)
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3. Transport semigroup In particular, by the Hille—Yosida theorem, we obtain
for g € X andi > b:
In this section we consider the differential part of 1
Eq.(2.1) that is, the Cauchy problem: IR, Tr)g| < P gl (3.5)
Oru(x,t) = —0y [b(x)u(x, t)] —dX)u(x,t) Using the above we can prove the following result
— p(u(x,1), x>0, 1>0 3.1) for the the semigroup solving@.1).
u(x,0)=g(x) Proposition 3.1.The operatoi” defined by the formal

The solution of this problem can be written down ex- EXPression:

plicitly. However, .for the purppse.of this paper, We [Tu](x) = —(b(x)u(x))x — a(x)u(x)

shall need a precise characterization of the domain of .

the generator of the semigroup solvi(@1) and this ~ ©n the domain:

is not olbvious due to possikingularities of the frag- D(T) = {u € X.au e X, buis a.a.c. andbu), ¢ X}

mentation ratep and degeneracy é¢fatx = 0. It turns N _

out that direct estimates of the resolvent of the right- Wherea(x) = p(x) +d(x), generates a positive semi-

hand side of the equation {8.1)are not easy, thuswe  9roup, Say(Sr (1)), o, satisfying for any: € X:

shall simplify the problem even further and as the first i

step we shall deal with the Cauchy problem: [ Sz @ul < & ljul (3:6)
whereb is defined in(2.2).

oru(x,t) = —0y [b(x)u(x, t)], x>0 1t>0

(3.2)
u(x,0) =g(x) Proof. Let us consider the resolvent equatior{®fL).
Define the operator (b(x)u(x))x T a()ux) 4+ ru(x) = fx)
[(Tpul(x) = —(b(x)u(x)), Solving the above equation, we see that a good candi-
. date for the resolvent is:

on the domain

e AB—AR) | Q
D(Tp) = {u € X; buisa.a.c.andbu), € X} [RVg](x) = - /e*B(«V”A(”g(y) dy

X
0

where the abbreviation ‘a.a.c.’ stands for almost ab-
solutely continuous, that is, absolutely continuous on whereA(x) is a fixed antiderivative of (x)/b(x). Di-

each compact interval @D, co). rect integration gives:

Denoting byB a fixed antiderivative of A, say, RO
B(x) = [; /5., we see, due to & b(x) < bx for | RG]
x > 0, that: T /e hB)-AM) |

< [ (S [ oleolay e
lim B(x) =400,  lim B(x)=—o00 (3.3) b(x)
X—>00 x—0 0
thus B is globally invertible onR. Hence, defining < é”g”
Y(t,x):=B Y(B(x) —1),x > 0,0<t < 0o, we can A=b
prove as if1] that: where we used the fact that &™) is non-increasing,
[S o ()]( : b(Y (1, x))g (Y (1, x)) and(3.5). Further, we have:
. X)=

718 b(x) a(x) e HBO—A()
is aCo-semigroup generated 95, D(Tp)), that sat- b(x)
isfies: = _Le—)\B(x)—A(x) — Ee—)\B(x)—A(x) (3.7)

b(x) dx

Sz, ()| < € full 34)  sothat
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[ee]

e BO+AL)
J(
y
0

/ xa(x)e—)\B(x)—A(x)

)

b(x)
y
x [g(y)|ydy
o B(v A o0
</<1+eA 0+ (y)/e—wm-f‘(x)dx)
0 Y y

x y|g(y)|dy
<(1+x-b gl

where we again used monotonicity of£*) and(3.5).

Next we observe that fof € X,

X

b(xX)u(x) = @ AB()—A) / eP»B(y)-i-A(y)f(y) dy

and both e*8®)—=A() and the integral (as a function
of its upper limit) are almost absolutely continuous
and bounded over any fixed interval, 8] C 10, ool.
Therefore, it follows that the productis absolutely con-
tinuous o, B] and thereforéu is almost absolutely

0

continuous. Moreover,

—(b(x)u(x))x = ()» + a(x))

=A+a@))ux)— fx)eX

so thatR(A)X ¢ D(T). Since clearlyx — T)D(T) C
X, we have(AI — T)R(A) f = f forany f € X. To
show thatR (1) is the resolvent fofT", it is enough to
show that./ — T is injective onD(T). We see that the
only solution (up to a multiplicative constant) to

e MB()—A(x)

b(x)

x [ @B gy dy - fw)
0

(b@)u(x)), +a(x)u(x)+iu(x) =0

is uy (x) = e *BM=AW /p(x). Firstly, we observe that
since 4™ is positive and decreasing, &) > ¢ >
0 in some interval0, a]. Moreover, sincé (x) < bx,

we have forx < 1:

=X

A

b

d 1 ds
e B _ o1 5 5

o =g e > e

—2nx

b

Therefore, forr < 1:

T e hBx)—AW) + e hB()
||uA||:/7xdx>c/ x dx
b(x)

/x‘%dx=oo (3.8)

asi > b. Hence\I — T is injective fori > b (even
on its maximal domain) an& (1) = R(A, T). The re-
solvent is clearly a positive operator so that, by the
Hille—Yosida theorem(T', D(T')) generates a positive
semigroup satisfying3.6).

From this proposition it fbows that the operator

(T, D(T)) = (T — b1, D(T)) (3.9)

generates a positive semigroup of contractions given
by

Sa(tu = e Sp(t)u (3.10)

This shows that to prove the existence of a semigroup
solving (a realization of§2.1), characterize its gener-
ator and thus analyze the dynamics of the process, we
can use the substochastic semigroup theory developed
recently in a series of papdii0,11,13,15-17Below

we shall recall the basic results of this theory.

4. Substochastic semigroups

In this section we shall summarize relevant facts
from substochastic semigroup theory as developed
in [10]. To avoid confusion, we shall use the same no-
tation for the abstract operators as for the particular
application discussed in this paper, however the theory
is fairly general and requisonly that the assumptions
(A1)—(A3) be satisfied.

Let (£2,u) be a measure space and I&t=
L1(£2, ). If Z C X is a subspace, ther, denotes
the cone of nonnegative elementsdfand for f € X
the symbolsfy denote the positive and negative part
of f, thatis, f = max f, 0} and f_ = —min{f, 0}.

Let (S(1));>0 be a strongly continuous semigroup
on X. We say thaiS(r)),>o is asubstochastic semi-
groupif forany ¢+ > 0, S(t) > 0 and||S(¥)|| < 1, and

a stochastic semigrouip additionally || S) f 1l = || f I
for fe X,.
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_ Accordingly, we consider linear operators X
T C T + A with D(T) c D(Tg) N D(A), andK, that
have the following properties:

(A1) (T, D(T)) generates a substochastic semigroup 9

(S7()e>0; )
(A2) D(K) > D(T) andKu >0 foru € D(T)4;
(A3) forallu € D(T)+

/(Tu+Kf)du<0 (4.1)
2

Theorem 4.1 [11,17] Under the above assump-
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Definition 4.1. We say that a substochastic semigroup
(S¢ (1)) >0 (generated by an extensichof the opera-
tor T + K) is honest f is finite onD(G), and, for any

< i e D(G), the solutionu(t) = Se (1) i of (4.2)
satisfies:

d d
3 / undp= Ju@)| = —c(u@)) (4.6)
2

Remark 4.1. The definition of honesty is not re-
stricted to contractive semigroups and is valid even if
cin (4.4)is of undetermined sign. In fact, for the orig-

tions, there exists a smallest substochastic semigroupin@l model(2.1)we shall be using this definition with

(S ():r>0 generated by an extensidn of the oper-
ator T + K. This semigroup, for arbitrary. € D(G)

andr > 0, satisfies:

d -
3 560 =GS5(0u (4.2)

(S (H)):>0 can be obtained as a strong limit ik of

semigroups S, (1)), >0 generated by7 + rK, D(T))

asr /' 17;if f € X4, then the limit is monotonic.
The generatof? of (S5 (t)): >0 is characterized by:

o0
WM =G)tf=> 01 -T) K -T) " f
n=0
fex (4.3)
Formula(4.3) does not provide any explicit infor-
mation as to how large an extension Bf+ K the
generatorG is and this problem is closely related to
the behaviour ofS (1)),>0. To make this remark pre-

a positive right-hand side if#.6). However, for a gen-
eral ¢, the existence part of the theory is usually not
a trivial matter and this is why we prefer to present
a complete theory for substochastic semigroups, and
then apply it to a wider class of models that can be
transformed to a substochastic case.

It can be proved that the honesty & (2));>o,
(4.6) is equivalent to its integral versioniS (1)) >0
is honest if and only if for any € X, andr > 0O:

t

Isg@ =11 —C</Sg(s)fds)

0

4.7)

Dishonesty of a semigroup is manifested both in the
time domain for semigroups, and at the level of re-
solvents. In the time domain, we introduce the defect
function: for f € X1 andr > 0 we define it by:

cise, we adapt the concept of honesty and dishonesty t

from the theory of Markov processgs3].
Firstly, note that4.1) can be written as:

/(T + Kyudu=—cw), ueDT); (4.4)
2

wherec is a nonnegative (possibly zero) functional de-
fined onD(T). In this paper, we shall consider only

the situation whei can be written as an integral func-
tional, that is:

c(u) = / ¢ (0)u(x) dpux
2

for some positive measurable functign We do not
assume that is bounded or closed.

(4.5)

np@ = [Sef ] = 171+ / (Ss()f)ds  (4.8)

0
For resolvents, we have the following important result:

Theorem 4.2.For any fixedi > 0, there isO < 8, €
X* with || 8]l < 1such that:

KRG GYF| =171 = (Brs £) — (RO, G) f) (4.9)
Moreover,c extends to a nonnegative continuous lin-
ear functional onD(G), given again by(4.5).

The properties ofj » and its relation tgg;, are sum-
marized in the proposition below.
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Proposition 4.1.The following holds:

(i) forany f € X4, ny is a non-positive and a non-
increasing function for > 0;

(ii)
i —At 1
/e nf(f)dtz—x(ﬂ)uf>
0

hence(S¢ (1)) >0 is honest if and only i3, =0
for any(somé i > 0;

(iii) if (S () >0 is dishonest, then for somee X
and anyr > 0:

t

ISef] <171+ / ¢(S5(5) f) ds

0

An important characterization of honesty is given
in the following theorem.

Theorem 4.3.The following are equivalent:

(@) The semigroupsS(¢));>o is honest;

(b) G=T +K,; ~
(c) Foranyu € R(A, G)X 4, wherex > Qis arbitrary,
we have:

/ Gudp > —c(u) (4.10)

2

The problem with the characterization results given
above is that they require the knowledge of the genera-
tor itself and therefore they are notimmediately useful.
To circumvent this problem, we shall be using certain
extensions of the involved operators, that are defined
below.

Define byE the set of measurable functions that
are defined o2 and take values in the extended set
of real numbers and bl s the subspace @& consist-
ing of functions that are finite almost everywhegds
a vector lattice with respect to the usual relatiaral-
most everywhereX C Ey C E with X andEy being
sublattices oE.

In what follows, we shall denote b, K, G andZ;,
extensions of the operatofs K, G andR(x, T), re-
spectively. ByL we abbreviateC;. At this moment,
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we shall require only that all the extensions have do-
mains and ranges i, thatk, £ and ;. are positive
operators on their domains and tigat 7 + K.

We shall present here a theorem giving a sufficient
condition for dishonesty in terms of these extensions.

Theorem 4.4. Assume that there existse D(G),
such that

(i) [£n(M — THul(x) =u(x), a.e., for some. > 0,
(ii) forsomer > 0, Au(x) — [Gu](x) = g(x) € X4,
(iit) c(u) is finite and

/éu du < —c(u) (4.11)
2

Then the semigrou(S (1)),>o is dishonest.

5. Back to the growth—fragmentation equation

Let us look at the problert2.1) from the point of
view of the developed theory. Let us recall that we con-
sider the operatoK defined by the expression:

o0

[Kul(x) = / p(Wk(x, y)u(y,t)dy

X

on the domainD(T). Firstly, by standard calcula-
tions, see 13 (Lemma 4.1)] we obtain that for any
uc D(T)+

o0 (o8}

/(fu + Ku)xdx = — /(Ex - b(x))u(x) dx

0 0
0

— /d(x)u(x)x dx
0

which, due tq(2.2), shows that the assumptions (Al)—
(A3) of Section4 are satisfied. Hence, there is an
extensionG of the operatofl + K that generates a
substochastic semigroui (¢));>o0. The relation of
(S (1)) >0 and the solution t¢2.1)is given in the next
proposition.

(5.1)

Proposition 5.1.There is an extensiot of 7 + K
given by(G, D(G)) = (G + bl, D(G)) that generates
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a positive semigroup(Sg(1));>0 = (e‘;’SG(t)),>o.
Moreover, the generata is characterized by:

WM =-G) =Y 0r-T) K -1) " f
n=0
(5.2)

for f € X and > b.

Proof. The operatorl’ was constructed fronT’ by
subtracting the bounded operatar. Let us consider
the approximating semigrougs, (¢)),; >0, mentioned
in Theorem 4.1 They are generated b§f — bl +
rK,D(T)),0<r <2land

lim s, (1) f = S50 f

in X, uniformly in 7 on bounded intervals. Define
semigroups(S..(t));>0 = (e‘”S,(t)),>o generated by
T + rK. As multiplication by & does not affect con-
vergence, we see i(b.3) that (S/.(r)),>0 converges
strongly to the semigrou@c (¢));>0 = (e"’Sé (®))i>0
which is generated b = G + b1 and thus is an ex-
tension of7" + K, defined on the same domain @s
D(G) = D(G).

Formula(5.2) follows immediately from(4.3) by
noting that since\/ — G = (» — b)I — G, we have
M —G)y =01 —-G) 1 for » > b and the same
holds for the resolvent df. O

(5.3)

Formula(5.1)for T + K takes the form:

/(Tu + Ku)x dx
0
:/b(x)u(x) dx—/d(x)u(x)xdx
0 0
=:C(u) (5.4)

and, as mentioned iRemark 4.1 we shall say that
(S¢ (1))r>0 is honest if and only if:

d [ d
p / u(t)x dx = e lu@®)]| =C(u®) (5.5)
0

Thus, all the results characterizing honesty and dis-
honesty can be applied (& (7)),>0 With —c(u) re-
placed byC (). In particular,(Sg (¢)),>0 is honest if
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andonly ifG =T + K, which in turn is equivalent to:
(e.¢]

/Gux dx > C(u)
0

(5.6)

foranyu € R(x, G)X ., with A > b.

To proceed, we have to specify the extensions of the
operators which we will be working with. Possibly the
most general choice is as follows. Ferc D(7) :=
{u € L1([0, 00), x dx); bu € a.a.c} we denote:

[Tul(x) = —(b)ux)), —ax)u(x) (5.7)

where, as before(x) = d(x)+ p(x);thus7 : D(7) —
Es. By K we denote the operator defined by the ex-
pression:

o0

[lCu](x)=/p(y)k(x,y)u(y)dy

X

defined on D(K) = {u € L1([0,00), xdx); x —
[Kul(x) is finite a.e.}. Using these two concepts, we
can define an operator that can be thought of as the
maximal extension of’ + K in X:

(5.8)

[Gul(x) := [Tul(x) + [Ku](x) (5.9)

defined on the domai®(G) = {u € D(7) N D(K);

x — [Gul(x) € L1([0, 00), xdx)}. In a similar way,
we consider the operatd¥, extendingR(x, T), A > b

defined by the expression:

(Lo f1(x)
e B()—A)

b(x)

X

/eAB(Y)+A(y)f(y) dy
0

(5.10)

thatis considered oD (L) ={f € E; x — [L, f1(x)
is finite a.e.}. Since the kernels of botkl and £ are
nonnegative, the existence of the respective integrals
is equivalent to the existence of the integrals of both
the positive and negative parts of the integrands. It can
be proved as in]0 (Lemma 4.1)] thaG C G, so that
the extensions are defined correctly.

We illustrate the usefulness of the concept of exten-
sions in the following observation.

Proposition 5.2.Any functioru € D(G) is continuous
on (0, c0).
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Proof. Let first f € X, and A > b. Sincerl — T
extends to a positive integral operatd; on E,
by (5.2) the elementi, = (Al — G)"1f = L,g,
whereg =Y J[K (.1 — T)"11" £, is a well-defined

element ofE as the series is increasing. However, as
i+ € D(G) C X, it must be finite almost everywhere.

From(5.10)we have:
e MBI —AX)

"=

X
/ SBOHAD)o(y) dy
0

and as the function®, A and b can have zeroes

or singularities only at 0 and infinity, we see that

e BOI+AM 6 (y) is integrable ovef0, N] for any N <
+o00 and thereforer is continuous with a possible ex-
ception atx = 0. If we take now arbitrary;, we see
thatu =ity —ii_ =l —G) 1fy — (I —G) 11,
where f, f— are the positive and negative partsfof
For f., the corresponding. are also positive and
henceiiy are continuous of0, N), which yields con-
tinuity of u. 0O

The following technical result can be proved as in

[10(Lemma 4.2)]

Lemma 5.1.Let £ and £, be the extensions intro-
duced above. If for somg € D(L)y, both g and
KL,g belong to L1([a, N],xdx), where0 < o <
N < o0, then:

N

/(—g(x) + [KLr81(x) 4+ A[L;.g]1(x))x dx

o

— ab(@)[L1g](@)
N o
—/p(y)[ﬁxg](y)</k(x,y)XO'X) dy
o 0
— NB(N)L3g](N)
e’} N
+ / p(y)[aguy)( / k(x, y)x dx) dy
N o
N N
+ / b(O[L3g10x) dx — / d()[L1.g](x)x dr

(5.11)

A crucial réle in the following considerations is
played by the next theorem.
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Theorem 5.1.1f u € D(G), then there are sequences
oy — 0t and Ny — oo ask — oo such that:

e¢]

/[Gu](x)x dx

0
Ni

ak
zkimm<—/p(y)u(y)</k(x,y)XO'X) dy

Qg 0
00 N

+ / p(y)u(y)( / k(x,y)xdx) dy)

Nk 673
o0

+/b(x)u(x) dx—/d(x)u(x)xdx
0 0

(5.12)

Proof. Using a similar argument t®roposition 5.2

we see that ifg € E; is such that, g € X, theng €

L1i([a, N],xdx) for any O< o < N < oco. Following
[10(Corollary 4.1)], we observe thatif= R(A, G) f,

f e X4 thereisg € Ef 1, constructed as in the proof
of Proposition 5.2such thai: = £, ¢ and:

Gu=2\yg—g+KLg

and, asg € Li([a, N],xdx), we have KL, g €
L1([a, N], xdx) and, byLemma 5.1

e¢]

/[Gu](x)x dx

0
Nk

=k|LmOo (akb(ak)u(ak) —/p(y)u(y)

279

ag

X (/ k(x, y)x dx) dy — Nib(Np)u(Ny)
0

00 N

+f p(y)u(y)( / k(x,y)xdx) dy)
Nk *73

+/b(x)u(x) dx—/xd(x)u(x) dx
0 0

for any sequence6x;)ren and (Ng)ren CONverging
to 0 andoo, respectively. This can be extended to ar-
bitrary u using the decomposition &froposition 5.2
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Since we know that; € L1([0, 00), xdx) N C(0,
00), we have liminf_ o x2|u(x)| = 0. Thus, there
is a sequencé&Ny)ren converging tooo such that
limy_oc N?|u(Ni)| = 0. Similarly, we obtain a se-
quence(ay)ken that converges to 0 d@s— oo, such
that limy_ oc ?|u ()| = 0. Sinceb(x) < bx for x >
0, we obtain the thesis.O

Theorem 5.2.1f

Iir‘r(}+ px)+d(x) < +o0 (5.13)

thenG =T + K, thus(Sg (¢)),>0 is honest.

Proof. As in the previous proof, it is enough to con-
sideru = R(A,G) f, f € X4, x> b; for such f we
have alsou = £, ¢ for someg € E;. Sinceu € X,
by (5.10)and Tonelli’s theorem, we obtain:

[e¢]

/ (Lrg)(0)x dx

0
00

/ SBOIHAGY) T e hB)-AW)
= [ yg(y) /
y b(x)
0 y

dx) dy

o0

= / yeMv¥(y)dy
0

The functiony(y) is continuous and non-negative,
and the only points where it may be zero arg at 0
orasy — oo. As y — 0, the integral term tends to in-
finity, see(3.8). Sincea is bounded at 0, the other term
tends to 0 by(3.3)and the I'Hospital rule gives:

lim ¥(y)= lim !
y—0t Y Ty

ot _b0) Pt
v TA+p() +d(y)

asi > b and limy_ob(y)/y = b'(0) < b. Thusg €
L([0, N1, xdx) foranyN < +o0, and we can put =
0in(5.11) and thus in(5.12), getting:

/[Gu](x)x dx
0

o0 N

_ lim ( / p(y)u(y)( / k(x, y)x dx) dy)
N—+o00

N 0
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o0 o0

+/b(x)u(x) dx—/xd(x)u(x)dx
0 0
= Cu)

so that(5.6)is obviously satisfied. O

The theorem on dishonesty below is intended pri-
marily as an example so that the regularity assump-
tions on the coefficients are not optimal. We shall also
putd = 0 as adding or subtracting a bounded operator
does not change the domain of the generator; hence
a = p. Moreover, we restrict our attention togiven
by (2.6) k(x, y) = y~th(x/y) and satisfying:

1
—/zh(z)lnzdz <400 (5.14)
0

Theorem 5.3. Assume thatb € CL([0, c0)) with
inf0§x<oo b'(x) > —o0,

1
——— e L1(IN, o))

eLa(om). s

xp(x)
(5.15)

for somen, N,k > 0, p € C1((0,00)), p > 0 on

(0, o0) and:

xp'(x)

px)

Then(Sg (1)) >0 is dishonest.

=L <+00

(5.16)

x€[0,00)

Proof. To simplify notation, we puty = 1. We use
Theorem 4.4so that we work with the operator ex-
tensions introduced at the beginning of this section
and construct: € D(G) satisfying the assumptions
of this theorem. Let us define:

1
x2p(x)
u(x)= [ 1

x2+"’p(x)

forO<x <1

(5.17)
forx>1

wherem > 0 andm + 1 > k, see(5.15) Clearly
u € X and itis continuous or0, co). Moreover,pu €
L1([N, 00), x dx) forany N > 0, and therefore we can
pass to the limit withV — oo in the integral terms on
the right-hand side of5.11)(taking into account that
faN k(x,y)xdx = [ k(x, y)xdx < y). Thanks to the
continuity, we can repeat the argumenfbieorem 5.1
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getting:
/ [Gul(o)x cx
0
o0 (073
= — lim / p(y)u(y)( / k(x, y)x dx) dy
[£73 0
+ / b(x)u(x)dx (5.18)

0

for some(ay)ren COnverging to zero, where we used
the estimatg2.2)to pass to the limit in the last term.

Consider first the interval0, 1] where we have
ulx) = 1/x2a(x). Using k(x,y) = h(x/y)/y, we
have:

1 o 1 r

/(/k(x,y)xdx)%dyz/(/zh(z)dz)}dr
y r

o 0 o 0
and sincefol(for zh(2) dz)%dr = —folzh(z)lnzdz,
the Tonelli’s theorem gives:

1 o

/ ( / k(x, y)x dx)a(y)u(y) dy

o 0
1

Z/Zh(z)lnzdz <0
0
Furthermore, the integral:

— lim
a—0t

o) o

/ p(y)u(y)( / k(x,y)xdx) dy

1 0

convergesto zero gs: € L1([1, 00)) andf(;" k(x,y)-
xdx < y, by Lebesgue’s dominated convergence the-
orem. Thus(5.18)shows that assumptioiii() of The-
orem 4.4is satisfied. Let us turn our attention to as-
sumption {i). Let us write:

(ux) + (b(ux))')

[ee]

+ (p(x)u(x) - / p(y)h(%)y—lu@)dy)

X

=h+1D
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Consider first the intervdD, 1]. We have:

2b(x)  b(x) xp’()é))
x  px)
(5.19)

and by assumption all the terms within the brackets
are bounded ori0, 1] so that/; > O for sufficiently
largex. Moreoverl; € L1([0, 1], x dx) by (5.15) Fur-
thermore, 2.4) in our case reduces tfbl zh(z)dz=1

Ilzm<k+b()€)_

so that:
101 r1
X
— h(z)dz= | —<h|—-])d
x2 xZO/Z () /y?’ (y> Y
X

>

=

1 1 00 1
X X
iy dy+/ h(—)
x/y3 <y> J y3 oy

form > 0. Hence

1 1 T
X X

0< = — | =n(Z)dy— | —n(Z)d
x2 /y3 <y>y /y3+’" <y>y
171 17
—2—/—3hfdy= /zh(z)dz
x ¥y \y

X 0

2 2
which is integrable on[0, 1] with respect tox dx

by (5.14)
Forx € [1, oo) we have similarly tq5.19)
L1
LT X p()
y <A+b’(x) @24+ m)b(x)  b(x)xp (X)>
x x  px)

which is positive and integrable ¢h, co) with respect
to x dx, possibly with largei. For I> we have:

1 r 1
x
12:x2+m _/y3+mh<;> dy
X
L 1
_ 1+
_W—szrm/z "h(z)dz
0
1
1
>x2+’" 1— | zh(z)dz | =0

0
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and clearly, as > 0,
0< b

1
1

< i (1— /zl+mh(z) dz) € Ll([l, 00), xdx)
0

It remains to proveij. Integrating by parts, we get:

[L((bu))](x)

e AB)—AR) |

_ B(y)+A(y) /
e / & (bGu()) dy
0

e B()—A®X)

=u(x) — lim b(y)eBOTAy(y)

b(x)  yoot
e B-AR) |

_ / A BOIHAG)
b(x)

X (A4 p(y))u(y)dy

Since close to zero*8W+A) < x4/b with A > b,
and both(bu) and (A + p)u behave as Mx?p(x)
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