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Abstract

The present paper shows possible effects of antiretroviral treatment on the dynamics of the spread of the disease of humal
immunodeficiency virus infection in a population of varying size. By introducing time delays, we model the latency period
and the delayed onset of positive treatment effects in the patients. The Hopf bifurcation and stability behaviour of the delay
differential-equation model are analysed and simulations for different scenarios depending on the size of the treatment-inducec
delay are presented, and the results are discussed in detaite this article: M. Bachar, A. Dorfmayr, C. R. Biologies 327
(2004).
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Résumé

Modéles de traitement des maladies HIV avec retard temporelCet article montre les effets possibles du traitement
anti-rétroviral de la dynamique de la propagation de l'infection par le virus de la maladie immunodéficitaire humaine au sein
d’'une population de taille variable. En inttuisant des retards tempts, nous modélisons la période de latence et I'apparition
des effets positifs du traitement sur les patients. La bifurcation de Hopf et le comportement en termes de stabilité du modele
d’équations différentielles a retard sont analysés et des simulations de différents scénarios dépendant de I'ampleur du retar
induit par le traitement sont présentées, et les résultats discutés enRittaditer cet article: M. Bachar, A. Dorfmayr, C. R.

Biologies 327 (2004).
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1. Introduction

The disease of human immunodeficiency virus
(HIV) infection has become a worldwide pandemic
[1,2]. UNAIDS reports about an estimated number of
34-46 million people living with HIV worldwide by
the end of 2003, ah5 million new infections in 2003
show that it is still growing rapidly. The disease is
a major problem first of all in the developing coun-
tries of Sub-Saharan Africa. This region accounts for
25.0-28.2 million people infected with HIV by the end
of 2003 and 4.2-8. million new infections in 2003
(source: UNAIDShttp://www.unaids.org/

Very effective treatmestfor HIV infected individ-
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suppression of the virus below the limit of detection
is possible. However, recent studies have shown that
HIV persists in a replicatin-competentformin resting
CD4'T cells, despite aggressive antiretroviral ther-
apy. Therapy-induced decreases in viral load and an
increasing number of CD4T cells were the most sig-
nificant prognostic indicators of positive clinical treat-
ment benefif4,5]. As a result, treated individuals can
live longer free of HIV-related symptoms.

The influence that antiretroviral therapy has on the
battle between the human immunodeficiency virus and
the human immune system has widely been analysed,
see e.g[6-12] The spread of HIV/AIDS amongst a
population or among interacting communities without

uals have been developed, and drug prices droppedireatment has also been investigaf¢8-19] Some

significantly the last years according to UNAIDS
(http://www.unaids.org/ Therefore, they may be wide-
ly distributed, not only in the industrial, but also in the
developing countries. Thus, it is worth studying the ef-
fects that the wide use of antiretroviral can have on the
spread of the disease.

HIV predominantly infects CD4T cells that are
crucial for the functioning of the human immune sys-
tem. In the course of the disease of HIV infection, an
increasing amount of viruses in the blood of the pa-
tients leads to a decrease in the CO4cell count, and
finally to the destruction of the immune systEa.

Several groups of anti-HIV drugs have been de-
veloped that interfere with several processes in the
replication cycle of HIV. The most important ones
among those areeverse transcriptase inhibitorand
protease inhibitorsantiretroviral drugs that inhibit the
process of reverse transcription and the viral matu-
ration process, respectively. To interfere with the in-

mathematical and statistical models deal with the
spread of HIV/AIDS amongst a population including
treatment and/or change of behavid8r17,20-25]
For more details on the mathematical modelling of the
dynamics of infectious diseases, $&8,26—30]

In [31], the authors formulated and analysed a
model for HIV transmission for a homosexual popula-
tion of varying size with rearitment into the suscepti-
ble class proportional to the active population size and
with stages of progression to AIDS [81]. In [32—
34], the authors modified this ordinary differential-
equation model by incorporating treatment effects.
The underlying assumption if32,33] is that of a
worst-case scenario, where infected individuals — no
matter if they are treated or not — do not change their
behaviour despite their knowledge of the riskg38],

a general staged progression model witmfectious
stages, including anti-HIV drug treatment, was for-
mulated and analysed in detail. A similar model with

tegration process, integrase is used as another targestaged progression based on clinical stages was dis-

for the development of anti-HIV drugs. Multiple core-
ceptors for different types of HIV strains have been
identified that probably play an important role in the

cussed in detail and simulations were show{Ri8].
Although there are lots of research going on in the
field of modelling the disease of HIV infection, many

process of binding to the host cell. These coreceptors effects that antiretroviral treatment has on the spread

are also promising targets for anti-HIV drugs. Starting
with highly active antiretroviral therapyHAART),

of HIV infection in a population remain unknown.
First of all, it has not been investigated, how the de-

an anti-HIV combination therapy that includes one layed onset of positive treatment effects influences the
protease inhibitor and two reverse transcriptase in- spread of the disease. Secondly, it is worth studying
hibitors, combination therapy has been used to re- the possible effects of the latency period, although it
duce resistance effects. In many cases, combinationis assumed to be very short in the case of HIV (in the
therapy leads to a delayed progression of HIV dis- range of a few days, s¢8]).

ease. If initiating therapy is used and if dose reduc- In the following, we will study the dynamics of the
tions and inconsistent therapy are avoided, a long-term spread of the disease of HIV infection in a population
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depending on this treatment-induced delay. We will and I, respectively. All individuals entering the pop-
present an ordinary differential-equation model based ulation are assumed to be susceptible, because vertical
on clinical stages as given [82,33]and the mainre-  transmission can be almost excluded by means of an-
sults in Sectior®. In Section3, we will then modify it tiretroviral treatmen{5]. The number of individuals
by introducing two time delays andr to model the entering the population per unit of time 48V with
delayed onset of treatment effectg @nd the latency  birth-rate constank, where ‘birth’ means that an in-
period @.). As there is no data on the sizemfwe will dividual becomes sexually active. Similarly,is the
show simulations for differet scenarios according to  natural death rate constant for all subpopulations. For
the size of this treatment-induced delay. A detailed dis- simplicity reasons, the total population size is assumed
cussion of the results is given in Sectién to grow exponentially with rate constaht- d in the
absence of the disease. It is further assumed that in-
fected individuals do not change their behaviour, no
matter if they are treated or not. Thus, the average
number of contacts of an individual per unit of time
is a constant for all subpopulations. The disease pro-
In the following transmission via sexual contact is gression rate constant from stagt stagej + 1 or the
assumed. Thus, we consider a sexually active popula-AlDS-stage is given by; for j = 1, 2, respectively. To
tion of varying sizeN. AIDS patients are assumed to model treatment effects as described in Sectiahis
be too sick to be sexually active. Thus, the total popu- assumed that an infected individual in the second stage
lation can be divided into a susceptible class of size  can move back to the first stage by means of successful
and an infectious class before the onset of AIDS. As drug treatment. The corresponding transfer-rate con-
the infectious period is very long>(10 years), it is stant is denoted bw. By 8 anda 8 we denote the
further divided into several stages. The widely-used probability of disease transmission during one contact
CDC-classification suggests 2—6 stages of infection with an infected individual in stages 1 and 2, respec-
before AIDS with the classes defined by either vi- tively.
ral load or CD4'T cell count, and clinical symptoms SeeTable 1for an overview of the parameters and
(see[5]). In our model, we use two stages according variables used in the formulation of the model equa-
to clinical stages, that is the asymptomatic and the tions. Here also the parameter values used in the sim-
symptomatic phases as defined18]. The numbers  ulations below are given. The values for the disease
of individuals in the infectious classes are givenlhy progression ratek; are taken fronf18]. The reasons

2. ODE model with two infectious stages: model
formulation and main results

Table 1

Parameters, variables and parameter values

S number, proportion of susceptibles
Ijforj=12 number, proportion of infectives in stage

11(0) =0.05,72(0) =0
N=S+11+1r

initial numbers of infectives (in thousands)
total active population size

Np = 5000 initial population size (in thousands)

A number of AIDS cases

b=0.001 ‘birth’ rate constant (number of people becoming sexually active per unit of time)

d =0.0006 natural death rate constant

c=03 average number of contacts of an individual per unit of time

B=05 probability of disease transmission per contact by an infective in the first stage
ap=0.6p8 probability of disease transmission per contact by an infective in the second stage

k1 =0.019Q k» = 0.0159 transfer rate const N and N , respectively (disease progression)
a=0210r02 transfer rate const — (successful treatment: medium or high level treatment)

¢ B (I +alp) with

average number of new infectiopsr unit of time (standard incidence)
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for using these quite old estimates are obvious: as D1 =d + k2 +« (2)
today antiretroviral treatments are widely used, Nnew p, = (d + k1) D1 — k1

estimates on these transfer rates always include treat-
ment effects. The main goal of our work was to study
the effects of treatment on the population growth and
the spread of the epidemic. This is why we have to
use these very old estimates for thethat hopefully N(t) = Noeb=D1
represent the spread of the epidemic in an untreated
population. In casé < d, an epidemic of HIV infec-
tion can only speed up extinction of the populatio
whereas in casé > d, the disease of HIV infection  ;(0)=0.05, 7(0)=0, N(0)= N
can slow down the population growth or even reverse
growth to decay. As the latter case is much more inter-
esting, the simulations shown in this paper use para-
meter value$ andd chosen such that the population

In the absence of virus, the total sexually active popu-
lation size of initial sizeNg is assumed to grow expo-
nentially:

Reasonable initial conditions for an infection-free
n population of initial sizeNg are:

If system(1) with an initial infection free steady state
Eo = (0.05,0, Ng) has a positive (infected) steady
stateE* = (I, I, N*), then:

grows in the absence of the disease. Accordin®}o 1 D1

o . . =1 Z= * (3)
the probability of disease transmission per contact is ‘1 R)Di+k
between 11% and 50%. It is highest right after infec- 1 k1
tion and in the last stage before AIDS, thus we take I35 = < - §> Dtk N* (4)
B =0.5anda 8 = 0.6 8. In the simulations we analyse ke 1A
two treatment levels — medium level and high level N* = 5 dlg‘ (5)

treatment withe = 0.1 anda = 0.2, respectively. It . . _ .
has to be pointed out that there is no data available W& can see eis!ly that is a bifurcation parameter:
for the size of parameter, thus our values are only N caseR < 1, I is negative and therefore the steady
reasonable estimates for different treatment levels. Pa-StateE™ is unphysical and does not exist. Whee= 1,
rameterc reflects the level of risky behaviour in the the infection-free and endemic (positive) steady states

population. collide and there is a transcritical bifurcation. Thus,
Let X denote the derivative ok with respect to E* exists if and only ifR > 1. Note that ?t tbe positive
time. The model equations are then given by: equilibrium point£™, a proportion 1 11;*12 = % of
the population will stay susceptible, that is uninfected.

N=S+h+1I The higher the treatment reproduction numBegets,
h=cBa(i+al) —(d+k)h+al the lower this proportion will be. '

. (1) To discuss the local stability of the endemic steady
lp=kily — (d+ka+a)l2 state E*, we consider the linearized system ()

N =(b—d)N —kaly at E*. The Jacobian at™ is given by:

define a threshold condition for the existence and sta- kol _fl b 0 d
bility of equilibrium points. It can be interpreted as the ERCE
average number of infections a typical infective causes Where

The treatment reproduction numbek is used to I (Ml Mz M3 )

in a completely susceptible population.[B2], a for- Mi=—(R—1). Dz

mula for R was derived for a very general model with 1= D1+ k1

n infectious stages. The complexity of this formulain- aki(d + k1) + k1o

creases significantly with increasing In the case of a D1 + aky 6)

two infectious compartments, it yields the following aD» ! D1 .

expression forR: My =o+ D1+ aky (R—1) D1+ k1 ()
(R-1> Dz

R= CD_ﬁ (D1+aki) with M3 = . (8)
2
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Fig. 1. The ODE model with high level treatment £ 0.2) and all parameter values as giverilable 1

Then the characteristic equation of the linearized sys- Thus, all the conditions given if13) are satisfied, and

temis
A3 +an’ +amd+az3=0 (9)
where
air=—(b—d)+ Dy — M, (20)
ap=—D1(b—d) — k1Mo — M1(D1—b+d) (11)
az = M1D1(b — d) + kikoM3 + kiMa(b —d)  (12)

By using the Routh—Hurwitz criteriof85], it fol-
lows that all eigenvalues of the characteristic equa-
tion (9) have negative real parts if and only if the
following condition is satisfied:

(13)

ai,as,araz —az >0

Theorem 1. The endemic population steady stdé
exists if and only iiR > 1 and is asymptotically stable
if the inequalities in(13) are satisfied.

For the parameter values as givenTable 1and
M1, Mo, M3 as defined in{6)—(8), we get:

a1 =0.377Q0 a2 =0.0336
a3 =2.9226e- 005> 0, aiaz —a3z3=0.0126 (14)

it follows from Theorem 1that the infected steady
state E* = (I], I;, N*) as given in Eqs(3)—(5)is
asymptotically stable. The numerical simulation for
the case of high-level treatment & 0.2) is given in
Fig. L

In [32], it was shown in detail thakt™ is asymptot-
ically stable fom infectious stages whenever it exists.

3. Models with time delay: latency period and
treatment induced delay

Let constant (in months) be the time delay from
the start of treatment in the symptomatic stdgentil
treatment effects become visible. As with every virus
infection, one has to distinguish between infected in-
dividuals having the virus in their bloodstream and in-
fectious individuals, who also can infect others. When
a patient is infected with HIV, he typically can trans-
mit the disease not at once, but after a short timespan
(in the range of a few days, s¢8]) called thela-
tency period In the following the latency period will
be modelled by a time-delay constan{in months).

We incorporate these two delays into our ordinary
differential-equation mod€ll) and use the same para-



988

meters as ifable 1 We then get the following delay
differential-equation model:

N=S+hL+1D
. S
L= Cﬂﬁ(ll(t M) +alz)—d+k)h
+alx(t —1) (15)

jz =k1l1 — (d+ ko) Io —alx(t — T)

N=(b-d)N —kal>

As for the ODE mode(1), we assume that the popu-

lation is completely susceptible in the beginning. That

is, the initial conditions are taken to be:

N(O) = No, I1(s)=0.05,
s € [—max®, 1),0]

Ir(s) =0

Again, we find the infected steady staté = (17, 15,
N*), wherel], I, andN* are given by Eqg(3)—(5)
To derive stability results of the steady stdié for
the delay systen{l5), we study the linearised sys-
tem of (15) at E*. By using the notationX (z) =
(1L(1), I,(t), N' (1)), corresponding to the linearised
model around&*, we then have:

X =A1X (1) + AaX (t — A) 4+ A3X (1 — T) (16)

whereA1, A> andAs are the following matrices (with
M1, M, M3 as given in(6)—(8)):

—(d +kp) 0
0 —ko

cB-x —cB- (A=) pig O
A2=| 0 0 0], and
0 0 0

0O o O
Az = (0 —o 0)
0O 0 O

The characteristic equation @6)is given by:

D
Ml—cﬂ~% M2—a+cﬂ-(1—%)~r_&k1 M3
A]_—

A@Q) =def{¢] — Ay — et Ay — 74T Ag)

teC a7)

We say thatE™* is asymptotically stable if all roots
of the characteristic equatidi7) have negative real
parts (see for examp[86,37)).
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Definition 1. The steady stat&* of system(15) is
called absolutely stable (i.e. asymptotically stable in-
dependently of delay) if it is asymptotically stable for
all delaysx andt. E* is called conditionally stable
(i.e. asymptotically stable depending on the delays) if
it is asymptotically stable fok andz in some inter-
vals, but not necessarily for all delaysandz.

The characteristic equatiofl?7) of the linearised
system at the endemic steady statecan be written
as a third-degree polynomial equation of the following
form:

34 (af + abe™ + €77 ag) % + (ay + abe

+ e Tag+ab et TN e fafe TN et

+ e_{ta:/l_o + a:/l_l = O

Here we have (again withf1, M>, M3 as given in

(6)—(8):

1
a’lz—b—Ml+k2+2d+cﬂ~E

, 1

a2=—c,B-E

ag=a

, 1
a4:<M1—C,3-E>-(b—2d—k2)

—(b—-d)(d+k2)

—i—kl(a—Mz)—Cﬁ-(l—l)

R
ag=cp- (1—%)

1
aé:—a(b—d—f—Ml—}-kl—cﬁ-E)

k1D
D1+ k1

k1D1

1
AL B Z(ko+2d—b
Dyt k1 cB R(2+ )

, 1
a7=—c,3-Eot

, 1
a8=c,3~Eoc(b—d)
ag=—cB(b—d)

k1D1
D14k

(%)

1
a/loza(b—d)<k1+M1—c,8-E>

1d k
+E( + 2))
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ahy = kikaMz + (b — d) - (k1(M2 — &) + M1(d + k2))
+cBb—4d)

((:-%)

(1=
R

Remark 1.We havea; + a5 + a5 = a1, ay+ag+ag+

ay = ap andag+ag+aj+ay, = az, where(a;);i—1,23
are defined in Eqg10)—(12)

ki1Dq
D1+ k1

1d k
_E( +2)>

The location of the roots of E§17) has been stud-
ied by many authors (s§88-46). The following re-
sult, giving necessary and sufficient conditions for the
absolute stability o{16), was proved by Hale et al.
in [37,47]

Lemma 1.The delay differential-equation syst¢h®)
is absolutely stable if and only:if

(1) REATE <Owith A= Ay + Ap + Ag,
(2) de[lwl — A1 — e_m’)LAZ _ e—lerS] ;é 0 for all
w > 0.

To study the delay case, we consider the ordinary
differential-equation modg1) first (with A =7 =0
for model (15)), and assume that conditiqa3) for
the asymptotic stability off* is satisfied. Thus, all
the roots of(1) have negative real parts, and assump-
tion (1) in Lemma 1is fulfilled. Assumption (2) in
Lemma 1means thatd, » > 0 is not a root of
Eq. (17). Then by using.emma 1 the delay system
is asymptotically stable if and only if the ODE system
is asymptotically stable athe characteristic equation
(17) has no purely imaginary roots.

Letd(t,A) =n(t,A) +iw(t, L), withw > 0, be the
eigenvalues of the characteristic equatiti), where
n(t, ) andw(t, A) depend on the delaysanda.

If, on the other hand, the characteristic equa-
tion (17) has a pair of purely imaginary roots,i
w > 0, then the delay syste(t5)is not absolutely sta-
ble, but could be conditionally stable. For example in
the case of one delay, say forand we suppose thab
is given, for some valueg. Hence, wherr < 1g, the
real parts of all roots of the characteristic equafibn)
still remain negative and the system is conditionally
stable. Whert = 1, the characteristic equatiqi7)
has a purely imaginary rootj w > 0, and the sys-
tem(15)loses its stability. By using Rouché’s theorem
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(Dieudonnd48], Theorem 9.17.4) and continuity in
and if the transversality condition holdg”aﬁi) |z, > 0)

at T = 19, then the characteristic equati¢h7) will
have at least one root with positive real part when
7 > 79 and becomes unstable.

To be able to find a condition for all eigenvalues to
have negative real parts, we will determingli¥) has
purely imaginary roots.

Since the positive equilibriunE* of the ODE
model is stable, we have(0) < 0 whent = A = 0.

By continuity, if T > 0, A > 0 are sufficiently small,
we still haven(z, A) < 0 andE* still remains stable.

If n(to, Ao) = O for certain valuesp > 0 andig > O,
the steady stat&™* loses its stability and becomes un-
stable whem(z, 1) > 0. On the other hand, if such an
(Lo, T0) does not exist for all delays, that is the char-
acteristic equatiorf17) does not have purely imagi-
nary roots, the system will always be stable.

Ifiw(t, A) =iw, w > 0isaroot of the characteristic
equation(17), then we have:

—iw® — (ay + dj(coswr — isinwi)
+ aj(coswt — isinwr))w?
+i(aj + ag(coswi — isinwi)
+ ag(coswt —isinwr)
+ ay(cosw(t +4) —isinw(t +1)))w
+ ag(cosw(t + 1)
—isinw(t +1)) + (CoswA — isinwA)ag
+ (coswt —isinwt)ajg+ay; =0
Separating the real and imaginary parts, we have the
following:
—(ahCoSwA + aj Coswt)w? + (ag Sinwh + ag Sinwt
+ aysinw(t + 1))w + agcosw(t + 1)
+ ag COSwA + ajoCoswt = ajw? — aj, (18)
and

(abSinwh + a4 Sinwt)w? + (ak CoSwA + ag cosoT
+ a4 cosw(t + 1)) — agSinw (T + 1)
(19)
For complexity and practically reasons, we study the

system(15) wheni = 0. In this case, the modél5)
reduces to a system with only one delay 0, where

— agsinwi — aypSinet = w® — djw



990

7 > 0 is the time from the start of treatmentinuntil
treatment effects become visible.

The resulting differential-equation model including
delayed onset of treatment effects but no latency pe-
riod is formulated as follows:

N=S+NL+1
h=cp(i+alr) —(d+k)l+alxt — 1) 20)
I =kili — (d+ ko)l —alr(t — 1)
N=(b—d)N — kol
In this case, Eq418) and (19Yyeduce to:
(—ahw? + af + ayg) coswt + (ag + dy)w sinwt
= w?(a} + ay) — (ay1 + ag) (21)
and
(ajw? — ag — a}o) SiNwT + (ag + ab)w coswt
=w® — (a)+ab)w (22)
Adding up the squares of both equations, we obtain the
following:
®+ a)4((a’l +ah)? —2ay+ ag) — (aé)z)
+w?((ay + ag)® — 2(ay + ay) (ay; + ag)
— (ag+ap)® + 2ag + dyp) af)
+ (a}y +ab)? — (ag+d;p? =0
Then we have

fa) =ud+rku’+vu+:=0 (23)
where

u :a)z,

K = (ay + ab)? — 2(ay + ag) — (aé)2
L= (ayy +ag)® — (ag + ajp)®
v=(ay+ a’5)2 — 2(ay +ay)(ayy + ay)
— (ag +a7)* + 2ag +ajp) aj
Remark 2. If « > 0 andv > 0, then Eq.(23) has no
positive real roots.

Notice that in the case of a population with high-
level treatmentd = 0.2) and all parameter values as
given in Table 1 we have:v = —7.9222e— 004 <
0 and: = 1.5178e— 009> 0. Thus, the equation
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has a positive roabg. Hence the characteristic equa-
tion (17)with A =0 has a purely imaginary roabi=
0.1983i.

Again, leté(r) = n(r) + iw(r) be the eigenval-
ues of EQ.(17) — with A = 0 — such thaty(rg) =
0, w(tg) = wp = 0.1983. From21) and(22), we have

1 2j
rjz—arcco<ﬁ>+1—ﬂ, =12...
o f2 %)
where

f1=(ag + ay)wo(ws — (@) + ab)wo)

+ (—azf + ag + ajo) (0hlay + ap)

— (d1; +ag)) (24)
fo= (aéwé —ag— a/lo)z + (ag + ab)%w} (25)
We can verify that the following conditions hold:
D@~ 02321- 0
dr S

Then the real part of () becomes positive when
T > 79 = 8.82035, and the steady state becomes un-
stable (sed-ig. 4). From that, it follows thatg is a
bifurcation value, and a Hopf bifurcation (s¢49])
occurs wherr passes through the critical valag in
Fig. 3. We can see ifrig. 2that the steady state* still
is stable for delayt < 1p, allthough the delay causes
transient oscillations. Thus, we have the following the-
orem.

Theorem 2.The infected steady statg* of the delay
model(20) is asymptotically stable when < g and
unstable when > g, where

1
0= — arccos{ f1

—) =8.82035
wo

f2
and f1, f» are given by(24)and(25).

If t = 19 = 8.82035 a Hopf bifurcation occurs,
thatis, a family of periodic solution bifurcates froft
ast passes through the critical valug = 8.82035

Biologically, this means that there is a critical value
for the treatment-induced delay, that determines the
stability of the endemic equilibrium point™*. With
the parameter values given Table 1 the endemic
equilibrium point is asymptotically stable when anti-
retroviral drugs in average show positive effects in the
patients within less thary = 8.82035 months. In this



M. Bachar, A. Dorfmayr / C. R. Biologies 327 (2004) 983-994 991

Number of infectives in stage 1 Number of infectives in stage 2
5000 1000
4000 800
] i 600
g 3000 g
i i
— 2000 400
1000 200
0 0
0 200 400 600 0 200 400 600
Total active population size
T T T T I
5000 — b =0.001, d =0.0008
a=02,1=8
40001
8 a000f -
]
= 2000} .
1000 1
D 1 1 1 1 1

0 100 200 300 400 500 600

Fig. 2. The ODE model witlx = 0.2, r = 8 and parameter values as giverable 1
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Fig. 3. The DDE model witlx = 0.2, = 8.82035 and parameter values as giveifable 1

case (se€ig. 2) the population will reach the infected 4. Discussion

steady staté&™ as given in Eqs(3)—(5). As soon as it

takes more thamg = 8.82035 months for the patients The underlying assumption in the present paper is
to feel better, the infected steady st&téloses its sta-  that people who are infected with HIV do not change
bility (seeFig. 4). their behaviour despite the knowledge of the risks.
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Fig. 4. The DDE model witlx = 0.2, r = 9.2 and parameter values as giverTable 1

In [50], S. Blower states that incidence rates of HIV tients have to be under medical treatment until positive
will fall as more HIV-positive individuals gain access treatment effects occur. If and only if the treatment re-
to treatment (HAART), but tht this public health ben-  production number is above one, there is a positive
efit will only occur if the levels of risky behaviour do  steady state. If in this case, the treatment induced de-
not increase. Computer simulations based on a simple|ay ¢ is below a critical value, the total sexually active
ordinary differential-equation model for an HIV epi-  population will reach the infected equilibrium point
demic (se€¢33]), on the contrary, show that treatment  (seeFig. 2). Note that at this positive steady state there
without reduction of risky behaviour may even in-  gre sjll people that have not been infected with HIV.
crease the proportion of infected individuals. This ef- 1,4 proportion of these susceptibles is given%:))As
fects can also be seen in the delay differential-equation soon asr increases and reaches the critical value, a
models presented ir)the present paper. The simu!ations'_iopf bifurcation occurs (seEig. 3), and, finally, the
for the O.DE quel In33] S.hOW that the cc_memgtmn endemic equilibrium point loses its stability above the
of reduction of risky behaviour together with antiretro- critical value (seig. 4)
viral drug treatment is a very promising strategy in The present Workwénts to be understood as a start-
fighting the epidemic of HIV infection. This has to be . . .
taken into account, when anti-HIV regimens are dis- 'ng pomt for furthgr research on analysing treatment
tributed in the poorest countries of the world, where Eﬁ?Cts |_nclud|ng time dela_y on the spread of an HIV
epidemic. The next step will be to analyse the general

behaviour change is hard to achieve because of low o 4
educational levels or cultural reasons. model withn infected stages. We also have to point out
In our delay differential-equation models we do that we assumed exponential growth for the total pop-

have two threshold parameters: The treatment repro-ulation in the absence of the disease, what is a very
duction numberR serves as a threshold for the exis- restrictive assumption. The simulations with |Ogi$tiC
tence of an endemic equilibrium point, and the size growth for the ODE model given i[82] show that the

of the treatment-induced delayhas enormous effects ~ disease of HIV infection also could lower the carrying
on the dynamics of the spread of the disease of HIV capacity or give rise to a second positive steady state
infection in the population. This treatment-induced de- below the carrying capacity. It remains to analyse the
lay T can be seen as the minimum time span that pa- delay differential-equation model with other than ex-
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ponential population growth and the role of treatment
and behaviour change under these circumstances.

Acknowledgements

The first author was supported by the Fonds zur

Forderung der wissenschaftliche Forschung under

SFB F003, ‘Optimierung und Kontrolle’, and by EC

programme Centers of Excellence of State in phase of

pre-accession, No. ICA1-CT-2000-70024.

References

[1] D.E. Bloom, River path associates something to be done: Treat-
ing HIV/AIDS, Science 288 (2000) 2171-2173.

[2] 3.M. Mann, D.J.M. Tarantal, HIV 1998: The global picture,
Sci. Am. 279 (1998) 82-83.

[3] J.M. Coffin, S.H. Hughes, H.E. Varmus (Eds.), Retroviruses,
Cold Spring Harbor LaboratgrPress, Cold Spring Harbor,
New York, 1997.

[4] J.H. Condra, E.A. Emini, Preventing HIV-1 drug resistance,
Sci. Med. 4 (1997) 2-11.

[5] B.S. Kamps, H.-R. Brodt, E.B. Helm, AIDS 2000: Diagnostik
und Therapie, Steinhauser Verlag, 2000.

[6] S. Blower, A.N. Aschenbach, H.B. Gershengorn, J.O. Kahn,
Predicting the unpredictable: Transmission of drug-resistant
HIV, Nat. Med. 7 (2001) 1016-1020.

[7] A.A. Ding, H. Wu, Relationsips between antiviral treatment
effects and biphasic viral decay rates in modeling HIV dynam-
ics, Math. Biosci. 160 (1999) 63-82.

[8] S.-F. Hsu Schmitz, Effects of treatment or/and vaccination on
HIV transmission in homosexualgith genetic heterogeneity,
Math. Biosci. 167 (2000) 1-18.

[9] D. Kirschner, Using Mathmatics to Understand HIV Immune
Dynamics, Not. AMS 43 (1996) 191-202.

[10] R.M. Ribeiro, S. Bonhoeffer, Production of resistant HIV
mutants during antiretroviralherapy, Proc. Natl Acad. Sci.
USA 97 (2000) 7681-7686.

[11] D. Wick, On T-cell dynamics and the hyperactivation the-
ory of AIDS pathogenesis, Math. Biosci. 158 (1999) 127—
144.

[12] D. Wick, S.G. Self, Early HIV infection in vivo: branching-
process model for the studying timing of immune responses
and drug therapy, Math. Biosci. 165 (2000) 115-134.

[13] C. Castillo-Chavez (Ed.), Mathematical and Statistical Ap-
proaches to AIDS Epidemiology, Lect. Notes Biomath.,
vol. 83, Springer Verlag, New York, 1989.

[14] V.R. Haynatzka, J. Gani, S.T. Rachev, The spread of AIDS
among interactive transmission groups, Math. Comput.
Modelling 32 (2000) 169-180.

[15] H.W. Hethcote, The mathematics of infectious diseases, SIAM
Rev. 42 (2000) 599-653.

993

[16] H.W. Hethcote, J.W. Van Ark, I.M. Longini, A simulation
model of AIDS in San Francisco: |. Model formulation,
and parameter estimation, Math. Biosci. 106 (1991) 203-
222.

[17] H.W. Hethcote, J.W. Van Ark, J.M. Karon, A simulation
model of AIDS in San Franciscdt. Simulations, therapy, and
sensitivity analysis, Math. Biosci. 106 (1991) 223-247.

[18] H.W. Hethcote, J.W. Van Ark, Modeling HIV Transmission
and AIDS in the United States, Lect. Notes Biomath., vol. 95,
1992.

[19] F. Lewis, D. Greenhalgh, Thee stage AIDS incubation pe-
riod: a worst-case scenario using addict needle interaction
assumptions, Math. Biosci. 169 (2001) 53-87.

[20] S. Blower, H.B. Gershengorn, R.M. Grant, A tale of two
futures: HIV and antiretroviral therapy in San Francisco,
Science 287 (2000) 650—654.

[21] D. Greenhalgh, M. Doyle, F. Lewis, A mathematical treatment
of AIDS and condom use, IMA J. Math. Appl. Med. Biol. 18
(2001) 225-262.

[22] A.B. Gumel, E.H. Twizell, P. Yu, Numerical and bifurcation
analyses for a population model of HIV chemotherapy, Math.
Comput. Simul. 54 (2000) 169-181.

[23] Y.-H. Hsieh, K. Cooke, Behaviour change and treatment of
core groups: its effect on the spread of HIV/AIDS, IMA J.
Math. Appl. Med. Biol. 17 (2000) 213-241.

[24] Y.-H. Hsieh, S.-P. Sheu, The effect of density-dependent
treatment and behavior change on the dynamics of HIV
transmission, J. Math. Biol. 43 (2001) 69-80.

[25] E. Massad, F.A.B. Coutinho, M.N. Burattini, L.F. Lopez, Mod-
eling the Impact of Imperfect HIV Vaccines on the Incidence
of the Infection, Math. Comput. Model. 34 (2001) 345-351.

[26] S. Busenbery, K. Cooke, Vertically Transmitted Dis-
eases, Springer-Verlag, New York, Berlin, Heidelberg,
1993.

[27] S. Busenberg, P. van den Driessche, Analysis of a disease
transmission model in a population with varying size, J. Math.
Biol. 28 (1990) 257-270.

[28] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemi-
ology of Infectious Diseases: Model Building, Analysis
and Interpretation, in: Wiley Series in Mathematical and
Computational Biology, Wiley, Chichester, 2000.

[29] H.W. Hethcote, M. ZhienL. Shengbing, Effects of quar-
antine in six endemic models for infectious diseases, Math.
Biosci. 180 (2002) 141-160.

[30] P. van den Driessche, J. Watmough, Reproduction numbers
and sub-threshold endemic equilibria for compartmental
models of disease transmission (preprint).

[31] X. Lin, H.W. Hethcote, P. ®n den Driessche, An epidemio-
logical model for HIV/AIDS with proportional recruitment,
Math. Biosci. 118 (1993) 181-195.

[32] A. Dorfmayr, HIV treatment models in mathematical epidemi-
ology, PhD thesis, Vienna University of Technology, Vienna,
2002.

[33] A. Dorfmayr, The effects of antiretroviral therapy on an
HIV/AIDS epidemic, in: Poc. PRIM 2002 (‘Mathematics
in Medicine and Pharmacy’), Novi Sad, 2002 (accepted for
publication).



994

[34] C.C. McCluskey, A model of l//AIDS with staged progres-
sion and amelioration, Math. Biosci. 181 (2003) 1-16.

[35] M. Reimer, Grundlagen der Numerischen Mathematik I,
Akademishe Verlagsgesellschaft Wiesbaden, 1982.

[36] J. Hale, Theory of Functionalifferential Equations, Springer
Verlag, New York, 1993.

[37] J.K. Hale, E.F. Infante, FS. Tsen, Theory and Applications
of Hopf Bifurcation, Cambridg&Jniversity Press, Cambridge,
1981.

[38] M. Baptistini, P. Taboas, On the stability of some exponential
polynomials, J. Math. Anal. Appl. 205 (1997) 259-272.

[39] R. Bellman, K.L. Cooke, Differential-Difference Equations,
Academic Press, New York, 1963.

[40] F. Brauer, Absolute stability in delay equations, J. Diff.
Equat. 69 (1987) 185-191.

[41] R.V. Culshaw, S. Ruan, A delay-differential equation model
of HIV infection of CD4+ T-cells, Math. Biosci. 165 (2000)
27-39.

M. Bachar, A. Dorfmayr / C. R. Biologies 327 (2004) 983-994

[43] K.L. Cooke, P. van den Driessche, On zeros of some transcen-
dental equations, Funkd#g Ekvacioj 29 (1986) 77-90.

[44] J.M. Mahaffy, A test for stability of linear differential delay
equations, Quart. AppMath. 40 (1982/83) 193-202.

[45] S. Ruan, J. Wei, On the zeros of transcendental functions with
applications to stability of delay differential equations to sta-
bility of delay differential equations with two delay, Dyn.
Contin. Discrete Impulsive Syst. 10 (2003) 863-874.

[46] R. Ouifki, M.L. Hbid, O. Arino, Attractiveness and Hopf bi-
furcation for retarded differential equations, Commun. Pure
Appl. Anal. 2 (2) (2003) 147-158.

[47] F.G. Boese, Stability criteria for second-order dynamical sys-
tems models with time delays, SIAM J. Math. Anal. 26 (1995)
1306-1330.

[48] J. Dieudonné, Foundations ®flodern Analysis, Academic
Press, New York, 1960.

[49] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Stability in linear
delay equations, J. Matinal. Appl. 105 (1985) 533-555.

[42] K.L. Cooke, Z. Grossman, Discrete delay, distributed delay and [50] S. Blower, Calculating the consequences: HAART and risky

stability switches, J. Math. Anal. Appl. 86 (1982) 592-627.

sex, AIDS 15 (2001) 1309-1310.



	HIV treatment models with time delay
	Introduction
	ODE model with two infectious stages: model formulation and main results
	Models with time delay: latency period and treatment induced delay
	Discussion
	Acknowledgements
	References


