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Abstract

The present paper shows possible effects of antiretroviral treatment on the dynamics of the spread of the disease
immunodeficiency virus infection in a population of varying size. By introducing time delays, we model the latency
and the delayed onset of positive treatment effects in the patients. The Hopf bifurcation and stability behaviour of t
differential-equation model are analysed and simulations for different scenarios depending on the size of the treatmen
delay are presented, and the results are discussed in detail.To cite this article: M. Bachar, A. Dorfmayr, C. R. Biologies 327
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modèles de traitement des maladies HIV avec retard temporel.Cet article montre les effets possibles du traitem
anti-rétroviral de la dynamique de la propagation de l’infection par le virus de la maladie immunodéficitaire humaine
d’une population de taille variable. En introduisant des retards temporels, nous modélisons la période de latence et l’appar
des effets positifs du traitement sur les patients. La bifurcation de Hopf et le comportement en termes de stabilité d
d’équations différentielles à retard sont analysés et des simulations de différents scénarios dépendant de l’ampleu
induit par le traitement sont présentées, et les résultats discutés en détail.Pour citer cet article : M. Bachar, A. Dorfmayr, C. R.
Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The disease of human immunodeficiency vi
(HIV) infection has become a worldwide pandem
[1,2]. UNAIDS reports about an estimated number
34–46 million people living with HIV worldwide by
the end of 2003, and 5 million new infections in 2003
show that it is still growing rapidly. The disease
a major problem first of all in the developing cou
tries of Sub-Saharan Africa. This region accounts
25.0–28.2 million people infected with HIV by the en
of 2003 and 4.2–5.8 million new infections in 2003
(source: UNAIDShttp://www.unaids.org/).

Very effective treatments for HIV infected individ-
uals have been developed, and drug prices drop
significantly the last years according to UNAID
(http://www.unaids.org/). Therefore, they may be wid
ly distributed, not only in the industrial, but also in th
developing countries. Thus, it is worth studying the
fects that the wide use of antiretroviral can have on
spread of the disease.

HIV predominantly infects CD4+T cells that are
crucial for the functioning of the human immune sy
tem. In the course of the disease of HIV infection,
increasing amount of viruses in the blood of the
tients leads to a decrease in the CD4+T cell count, and
finally to the destruction of the immune system[3].

Several groups of anti-HIV drugs have been
veloped that interfere with several processes in
replication cycle of HIV. The most important on
among those arereverse transcriptase inhibitorsand
protease inhibitors, antiretroviral drugs that inhibit th
process of reverse transcription and the viral ma
ration process, respectively. To interfere with the
tegration process, integrase is used as another t
for the development of anti-HIV drugs. Multiple cor
ceptors for different types of HIV strains have be
identified that probably play an important role in t
process of binding to the host cell. These corecep
are also promising targets for anti-HIV drugs. Start
with highly active antiretroviral therapy(HAART),
an anti-HIV combination therapy that includes o
protease inhibitor and two reverse transcriptase
hibitors, combination therapy has been used to
duce resistance effects. In many cases, combina
therapy leads to a delayed progression of HIV d
ease. If initiating therapy is used and if dose red
tions and inconsistent therapy are avoided, a long-t
t

suppression of the virus below the limit of detecti
is possible. However, recent studies have shown
HIV persists in a replication-competent form in restin
CD4+T cells, despite aggressive antiretroviral th
apy. Therapy-induced decreases in viral load and
increasing number of CD4+T cells were the most sig
nificant prognostic indicators of positive clinical trea
ment benefit[4,5]. As a result, treated individuals ca
live longer free of HIV-related symptoms.

The influence that antiretroviral therapy has on
battle between the human immunodeficiency virus
the human immune system has widely been analy
see e.g.[6–12]. The spread of HIV/AIDS amongst
population or among interacting communities witho
treatment has also been investigated[13–19]. Some
mathematical and statistical models deal with
spread of HIV/AIDS amongst a population includin
treatment and/or change of behaviour[8,17,20–25].
For more details on the mathematical modelling of
dynamics of infectious diseases, see[15,26–30].

In [31], the authors formulated and analysed
model for HIV transmission for a homosexual popu
tion of varying size with recruitment into the suscept
ble class proportional to the active population size
with stages of progression to AIDS in[31]. In [32–
34], the authors modified this ordinary differentia
equation model by incorporating treatment effec
The underlying assumption in[32,33] is that of a
worst-case scenario, where infected individuals –
matter if they are treated or not – do not change th
behaviour despite their knowledge of the risks. In[32],
a general staged progression model withn infectious
stages, including anti-HIV drug treatment, was f
mulated and analysed in detail. A similar model w
staged progression based on clinical stages was
cussed in detail and simulations were shown in[23].

Although there are lots of research going on in
field of modelling the disease of HIV infection, man
effects that antiretroviral treatment has on the spr
of HIV infection in a population remain unknown
First of all, it has not been investigated, how the
layed onset of positive treatment effects influences
spread of the disease. Secondly, it is worth study
the possible effects of the latency period, althoug
is assumed to be very short in the case of HIV (in
range of a few days, see[5]).

In the following, we will study the dynamics of th
spread of the disease of HIV infection in a populat

http://www.unaids.org/
http://www.unaids.org/
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depending on this treatment-induced delay. We w
present an ordinary differential-equation model ba
on clinical stages as given in[32,33]and the main re
sults in Section2. In Section3, we will then modify it
by introducing two time delaysλ andτ to model the
delayed onset of treatment effects (τ ) and the latency
period (λ). As there is no data on the size ofτ , we will
show simulations for different scenarios according t
the size of this treatment-induced delay. A detailed d
cussion of the results is given in Section4.

2. ODE model with two infectious stages: model
formulation and main results

In the following transmission via sexual contact
assumed. Thus, we consider a sexually active pop
tion of varying sizeN . AIDS patients are assumed
be too sick to be sexually active. Thus, the total po
lation can be divided into a susceptible class of sizS

and an infectious class before the onset of AIDS.
the infectious period is very long (� 10 years), it is
further divided into several stages. The widely-us
CDC-classification suggests 2–6 stages of infec
before AIDS with the classes defined by either
ral load or CD4+T cell count, and clinical symptom
(see[5]). In our model, we use two stages accord
to clinical stages, that is the asymptomatic and
symptomatic phases as defined in[18]. The numbers
of individuals in the infectious classes are given byI1
andI2, respectively. All individuals entering the po
ulation are assumed to be susceptible, because ve
transmission can be almost excluded by means of
tiretroviral treatment[5]. The number of individuals
entering the population per unit of time isbN with
birth-rate constantb, where ‘birth’ means that an in
dividual becomes sexually active. Similarly,d is the
natural death rate constant for all subpopulations.
simplicity reasons, the total population size is assum
to grow exponentially with rate constantb − d in the
absence of the disease. It is further assumed tha
fected individuals do not change their behaviour,
matter if they are treated or not. Thus, the aver
number of contacts of an individual per unit of tim
is a constantc for all subpopulations. The disease p
gression rate constant from stagej to stagej +1 or the
AIDS-stage is given bykj for j = 1,2, respectively. To
model treatment effects as described in Section1, it is
assumed that an infected individual in the second s
can move back to the first stage by means of succe
drug treatment. The corresponding transfer-rate c
stant is denoted byα. By β and a β we denote the
probability of disease transmission during one con
with an infected individual in stages 1 and 2, resp
tively.

SeeTable 1for an overview of the parameters a
variables used in the formulation of the model eq
tions. Here also the parameter values used in the
ulations below are given. The values for the dise
progression rateskj are taken from[18]. The reasons
Table 1
Parameters, variables and parameter values

S number, proportion of susceptibles
Ij for j = 1,2 number, proportion of infectives in stagej

I1(0) = 0.05,I2(0) = 0 initial numbers of infectives (in thousands)
N = S + I1 + I2 total active population size
N0 = 5000 initial population size (in thousands)
A number of AIDS cases

b = 0.001 ‘birth’ rate constant (number of people becoming sexually active per unit of time)
d = 0.0006 natural death rate constant

c = 0.3 average number of contacts of an individual per unit of time
β = 0.5 probability of disease transmission per contact by an infective in the first stage
a β = 0.6β probability of disease transmission per contact by an infective in the second stage
k1 = 0.0190, k2 = 0.0159 transfer rate constantI1 → I2 and I2 → A , respectively (disease progression)

α = 0.1 or 0.2 transfer rate constantI2 → I1 (successful treatment: medium or high level treatment)

c β S
N

(I1 + aI2) with average number of new infectionsper unit of time (standard incidence)
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for using these quite old estimates are obvious
today antiretroviral treatments are widely used, n
estimates on these transfer rates always include t
ment effects. The main goal of our work was to stu
the effects of treatment on the population growth a
the spread of the epidemic. This is why we have
use these very old estimates for thekj that hopefully
represent the spread of the epidemic in an untre
population. In caseb < d , an epidemic of HIV infec-
tion can only speed up extinction of the populatio
whereas in caseb � d , the disease of HIV infection
can slow down the population growth or even reve
growth to decay. As the latter case is much more in
esting, the simulations shown in this paper use p
meter valuesb andd chosen such that the populatio
grows in the absence of the disease. According to[5],
the probability of disease transmission per contac
between 11% and 50%. It is highest right after infe
tion and in the last stage before AIDS, thus we ta
β = 0.5 anda β = 0.6β . In the simulations we analys
two treatment levels – medium level and high le
treatment withα = 0.1 andα = 0.2, respectively. It
has to be pointed out that there is no data availa
for the size of parameterα, thus our values are onl
reasonable estimates for different treatment levels.
rameterc reflects the level of risky behaviour in th
population.

Let Ẋ denote the derivative ofX with respect to
time. The model equations are then given by:

(1)

N = S + I1 + I2

İ1 = c β S
N

(I1 + aI2) − (d + k1)I1 + αI2

İ2 = k1I1 − (d + k2 + α)I2

Ṅ = (b − d)N − k2I2

The treatment reproduction numberR is used to
define a threshold condition for the existence and
bility of equilibrium points. It can be interpreted as t
average number of infections a typical infective cau
in a completely susceptible population. In[32], a for-
mula forR was derived for a very general model wi
n infectious stages. The complexity of this formula
creases significantly with increasingn. In the case of
two infectious compartments, it yields the followin
expression forR:

R = c β
(D1 + a k1) with
D2
-

(2)D1 = d + k2 + α

D2 = (d + k1)D1 − k1α

In the absence of virus, the total sexually active po
lation size of initial sizeN0 is assumed to grow expo
nentially:

N(t) = N0 e(b−d)t

Reasonable initial conditions for an infection-fr
population of initial sizeN0 are:

I1(0) = 0.05, I2(0) = 0, N(0) = N0

If system(1) with an initial infection free steady sta
E0 = (0.05,0,N0) has a positive (infected) stead
stateE∗ = (I∗

1 , I∗
2 ,N∗), then:

(3)I∗
1 =

(
1− 1

R

)
D1

D1 + k1
N∗

(4)I∗
2 =

(
1− 1

R

)
k1

D1 + k1
N∗

(5)N∗ = k1

b − d
I∗
2

We can see easily thatR is a bifurcation paramete
in caseR < 1, I∗

1 is negative and therefore the stea
stateE∗ is unphysical and does not exist. WhenR = 1,
the infection-free and endemic (positive) steady sta
collide and there is a transcritical bifurcation. Thu
E∗ exists if and only ifR > 1. Note that at the positiv

equilibrium pointE∗, a proportion 1− I ∗
1 +I ∗

2
N∗ = 1

R
of

the population will stay susceptible, that is uninfect
The higher the treatment reproduction numberR gets,
the lower this proportion will be.

To discuss the local stability of the endemic stea
stateE∗, we consider the linearized system of(1)
atE∗. The Jacobian atE∗ is given by:

J =
(

M1 M2 M3
k1 −D1 0
0 −k2 b − d

)

where

M1 = −(R − 1) · D2

D1 + k1

(6)− ak1(d + k1) + k1α

D1 + ak1

(7)M2 = α + aD2

D1 + ak1
− (R − 1) · D1

D1 + k1

(8)M3 = (R − 1)2
· D2
R D1 + k1
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Fig. 1. The ODE model with high level treatment (α = 0.2) and all parameter values as given inTable 1.
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Then the characteristic equation of the linearized s
tem is

(9)λ3 + a1λ
2 + a2λ + a3 = 0

where

(10)a1 = −(b − d) + D1 − M1

(11)a2 = −D1(b − d) − k1M2 − M1(D1 − b + d)

(12)a3 = M1D1(b − d) + k1k2M3 + k1M2(b − d)

By using the Routh–Hurwitz criterion[35], it fol-
lows that all eigenvalues of the characteristic eq
tion (9) have negative real parts if and only if th
following condition is satisfied:

(13)a1, a3, a1a2 − a3 > 0

Theorem 1.The endemic population steady stateE∗
exists if and only ifR > 1 and is asymptotically stabl
if the inequalities in(13) are satisfied.

For the parameter values as given inTable 1and
M1,M2,M3 as defined in(6)–(8), we get:

a1 ∼= 0.3770, a2 ∼= 0.0336

(14)a3 ∼= 2.9226e− 005> 0, a1a2 − a3 ∼= 0.0126
Thus, all the conditions given in(13)are satisfied, and
it follows from Theorem 1that the infected stead
stateE∗ = (I∗

1 , I∗
2 ,N∗) as given in Eqs.(3)–(5) is

asymptotically stable. The numerical simulation
the case of high-level treatment (α = 0.2) is given in
Fig. 1.

In [32], it was shown in detail thatE∗ is asymptot-
ically stable forn infectious stages whenever it exis

3. Models with time delay: latency period and
treatment induced delay

Let constantτ (in months) be the time delay from
the start of treatment in the symptomatic stageI2 until
treatment effects become visible. As with every vi
infection, one has to distinguish between infected
dividuals having the virus in their bloodstream and
fectious individuals, who also can infect others. Wh
a patient is infected with HIV, he typically can tran
mit the disease not at once, but after a short times
(in the range of a few days, see[5]) called thela-
tency period. In the following the latency period wil
be modelled by a time-delay constantλ (in months).

We incorporate these two delays into our ordin
differential-equation model(1) and use the same par
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meters as inTable 1. We then get the following dela
differential-equation model:

N = S + I1 + I2

İ1 = c β
S

N

(
I1(t − λ) + aI2

) − (d + k1)I1

(15)+ αI2(t − τ )

İ2 = k1I1 − (d + k2)I2 − αI2(t − τ )

Ṅ = (b − d)N − k2I2

As for the ODE model(1), we assume that the pop
lation is completely susceptible in the beginning. T
is, the initial conditions are taken to be:

N(0) = N0, I1(s) = 0.05, I2(s) = 0

s ∈ [−max(λ, τ ),0
]

Again, we find the infected steady stateE∗ = (I∗
1 , I∗

2 ,

N∗), whereI∗
1 , I∗

2 , andN∗ are given by Eqs.(3)–(5).
To derive stability results of the steady stateE∗ for
the delay system(15), we study the linearised sys
tem of (15) at E∗. By using the notationX(t) =
(I l

1(t), I
l
2(t),N

l(t)), corresponding to the linearise
model aroundE∗, we then have:

(16)Ẋ = A1X(t) + A2X(t − λ) + A3X(t − τ )

whereA1, A2 andA3 are the following matrices (with
M1, M2, M3 as given in(6)–(8)):

A1 =
(

M1 − c β · 1
R

M2 − α + c β · (1− 1
R

) · D1
D1+k1

M3

k1 −(d + k2) 0
0 −k2 b − d

)

A2 =

 c β · 1

R
−c β · (1− 1

R
) · D1

D1+k1
0

0 0 0
0 0 0


 , and

A3 =
(0 α 0

0 −α 0
0 0 0

)

The characteristic equation of(16) is given by:

�(ζ ) = det
(
ζ I − A1 − e−ζλA2 − e−ζτA3

)
(17)ζ ∈ C

We say thatE∗ is asymptotically stable if all root
of the characteristic equation(17) have negative rea
parts (see for example[36,37]).
Definition 1. The steady stateE∗ of system(15) is
called absolutely stable (i.e. asymptotically stable
dependently of delay) if it is asymptotically stable f
all delaysλ and τ . E∗ is called conditionally stable
(i.e. asymptotically stable depending on the delays
it is asymptotically stable forλ andτ in some inter-
vals, but not necessarily for all delaysλ andτ .

The characteristic equation(17) of the linearised
system at the endemic steady stateE∗ can be written
as a third-degree polynomial equation of the followi
form:

ζ 3 + (
a′

1 + a′
2 e−ζλ + e−ζτ a′

3

)
ζ 2 + (

a′
4 + a′

5 e−ζλ

+ e−ζτ a′
6 + a′

7 e−ζ(τ+λ)
)
ζ + a′

8 e−ζ(τ+λ) + e−ζλa′
9

+ e−ζτ a′
10 + a′

11 = 0

Here we have (again withM1, M2, M3 as given in
(6)–(8)):

a′
1 = −b − M1 + k2 + 2d + c β · 1

R

a′
2 = −c β · 1

R

a′
3 = α

a′
4 =

(
M1 − c β · 1

R

)
· (b − 2d − k2)

− (b − d)(d + k2)

+ k1(α − M2) − c β ·
(

1− 1

R

)
· k1D1

D1 + k1

a′
5 = c β ·

(
1− 1

R

)
· k1D1

D1 + k1
− c β · 1

R
(k2 + 2d − b)

a′
6 = −α

(
b − d + M1 + k1 − c β · 1

R

)

a′
7 = −c β · 1

R
α

a′
8 = c β · 1

R
α(b − d)

a′
9 = −c β(b − d)

·
((

1− 1

R

)
· k1D1

D1 + k1
+ 1

R
(d + k2)

)

a′
10 = α(b − d)

(
k1 + M1 − c β · 1

R

)
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11 = k1k2M3 + (b − d) · (k1(M2 − α) + M1(d + k2)

)
+ c β(b − d)

·
((

1− 1

R

)
· k1D1

D1 + k1
− 1

R
(d + k2)

)

Remark 1.We havea′
1+a′

2 +a′
3 = a1, a′

4+a′
5 +a′

6+
a′

7 = a2 anda′
8+a′

9+a′
10+a′

11 = a3, where(ai)i=1,2,3
are defined in Eqs.(10)–(12).

The location of the roots of Eq.(17)has been stud
ied by many authors (see[38–46]). The following re-
sult, giving necessary and sufficient conditions for
absolute stability of(16), was proved by Hale et a
in [37,47].

Lemma 1.The delay differential-equation system(16)
is absolutely stable if and only if:

(1) Re[A] ξ < 0 with A = A1 + A2 + A3,
(2) det[iωI − A1 − e−iωλA2 − e−iωτA3] �= 0 for all

ω > 0.

To study the delay case, we consider the ordin
differential-equation model(1) first (with λ = τ = 0
for model (15)), and assume that condition(13) for
the asymptotic stability ofE∗ is satisfied. Thus, al
the roots of(1) have negative real parts, and assum
tion (1) in Lemma 1is fulfilled. Assumption (2) in
Lemma 1 means that iω, ω > 0 is not a root of
Eq. (17). Then by usingLemma 1, the delay system
is asymptotically stable if and only if the ODE syste
is asymptotically stable and the characteristic equatio
(17)has no purely imaginary roots.

Let θ(τ, λ) = η(τ,λ)+ iω(τ,λ), with ω > 0, be the
eigenvalues of the characteristic equation(17), where
η(τ,λ) andω(τ,λ) depend on the delaysτ andλ.

If, on the other hand, the characteristic eq
tion (17) has a pair of purely imaginary roots iω,
ω > 0, then the delay system(15)is not absolutely sta
ble, but could be conditionally stable. For example
the case of one delay, say forτ , and we suppose thatω0
is given, for some valueτ0. Hence, whenτ < τ0, the
real parts of all roots of the characteristic equation(17)
still remain negative and the system is conditiona
stable. Whenτ = τ0, the characteristic equation(17)
has a purely imaginary root iω, ω > 0, and the sys
tem(15)loses its stability. By using Rouché’s theore
(Dieudonné[48], Theorem 9.17.4) and continuity inτ ,
and if the transversality condition holds (dη(τ)

dτ
|τ0 > 0)

at τ = τ0, then the characteristic equation(17) will
have at least one root with positive real part wh
τ > τ0 and becomes unstable.

To be able to find a condition for all eigenvalues
have negative real parts, we will determine if(17) has
purely imaginary roots.

Since the positive equilibriumE∗ of the ODE
model is stable, we haveη(0) < 0 whenτ = λ = 0.
By continuity, if τ > 0, λ > 0 are sufficiently small
we still haveη(τ,λ) < 0 andE∗ still remains stable
If η(τ0, λ0) = 0 for certain valuesτ0 > 0 andλ0 > 0,
the steady stateE∗ loses its stability and becomes u
stable whenη(τ,λ) > 0. On the other hand, if such a
ω(λ0, τ0) does not exist for all delays, that is the ch
acteristic equation(17) does not have purely imag
nary roots, the system will always be stable.

If i ω(τ,λ) = iω, ω > 0 is a root of the characterist
equation(17), then we have:

−iω3 − (
a′

1 + a′
2(cosωλ − i sinωλ)

+ a′
3(cosωτ − i sinωτ)

)
ω2

+ i
(
a′

4 + a′
5(cosωλ − i sinωλ)

+ a′
6(cosωτ − i sinωτ)

+ a′
7

(
cosω(τ + λ) − i sinω(τ + λ)

))
ω

+ a′
8

(
cosω(τ + λ)

− i sinω(τ + λ)
) + (cosωλ − i sinωλ)a′

9

+ (coswτ − i sinwτ)a′
10 + a′

11 = 0

Separating the real and imaginary parts, we have
following:

−(a′
2 cosωλ + a′

3 cosωτ)ω2 + (
a′

5 sinωλ + a′
6 sinωτ

+ a′
7 sinω(τ + λ)

)
ω + a′

8 cosω(τ + λ)

(18)+ a′
9 cosωλ + a′

10cosωτ = a′
1ω

2 − a′
11

and

(a′
2 sinωλ + a′

3 sinωτ)ω2 + (
a′

5 cosωλ + a′
6 cosωτ

+ a′
7 cosω(τ + λ)

)
ω − a′

8 sinω(τ + λ)

(19)− a′
9 sinωλ − a′

10sinωτ = ω3 − a′
4ω

For complexity and practically reasons, we study
system(15) whenλ = 0. In this case, the model(15)
reduces to a system with only one delayτ > 0, where
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τ > 0 is the time from the start of treatment inI2 until
treatment effects become visible.

The resulting differential-equation model includin
delayed onset of treatment effects but no latency
riod is formulated as follows:

(20)

N = S + I1 + I2

İ1 = c β S
N

(I1 + aI2) − (d + k1)I1 + αI2(t − τ )

İ2 = k1I1 − (d + k2)I2 − αI2(t − τ )

Ṅ = (b − d)N − k2I2

In this case, Eqs.(18) and (19)reduce to:(−a′
3ω

2 + a′
8 + a′

10

)
cosωτ + (a′

6 + a′
7)ω sinωτ

(21)= ω2(a′
1 + a′

2) − (a′
11 + a′

9)

and

(a′
3w

2 − a′
8 − a′

10)sinωτ + (a′
6 + a′

7)ω coswτ

(22)= ω3 − (a′
4 + a′

5)ω

Adding up the squares of both equations, we obtain
following:

ω6 + ω4((a′
1 + a′

2)
2 − 2(a′

4 + a′
5) − (a′

3)
2)

+ ω2((a′
4 + a′

5)
2 − 2(a′

2 + a′
1)(a

′
11 + a′

9)

− (a′
6 + a′

7)
2 + 2(a′

8 + a′
10) a′

3

)
+ (a′

11 + a′
9)

2 − (a′
8 + a′

10)
2 = 0

Then we have

(23)f (u) = u3 + κu2 + νu + ι = 0

where

u = ω2, κ = (a′
1 + a′

2)
2 − 2(a′

4 + a′
5) − (a′

3)
2

ι = (a′
11 + a′

9)
2 − (a′

8 + a′
10)

2

ν = (a′
4 + a′

5)
2 − 2(a′

2 + a′
1)(a

′
11 + a′

9)

− (a′
6 + a′

7)
2 + 2(a′

8 + a′
10) a′

3

Remark 2. If ι � 0 andν � 0, then Eq.(23) has no
positive real roots.

Notice that in the case of a population with hig
level treatment (α = 0.2) and all parameter values
given in Table 1, we have:ν ∼= −7.9222 e− 004<

0 and ι ∼= 1.5178 e− 009 > 0. Thus, the equatio
has a positive rootω0. Hence the characteristic equ
tion (17)with λ = 0 has a purely imaginary root iω ∼=
0.1983 i.

Again, let θ(τ ) = η(τ) + iω(τ) be the eigenval
ues of Eq.(17) – with λ = 0 – such thatη(τ0) =
0,ω(τ0) = ω0 ∼= 0.1983. From(21)and(22), we have

τj = 1

ω0
arccos

(
f1

f2

)
+ 2jπ

ω0
, j = 1,2, . . .

where

f1 = (a′
6 + a′

7)ω0
(
ω3

0 − (a′
4 + a′

5)ω0
)

+ (−a′
3ω

2
0 + a′

8 + a′
10

)(
ω2

0(a
′
1 + a′

2)

(24)− (a′
11 + a′

9)
)

(25)f2 = (
a′

3ω
2
0 − a′

8 − a′
10

)2 + (a′
6 + a′

7)
2ω2

0

We can verify that the following conditions hold:

dη(τ)

dτ

∣∣∣∣
τ=τ0

∼= 0.02321> 0

Then the real part ofθ(τ ) becomes positive whe
τ > τ0 ∼= 8.82035, and the steady state becomes
stable (seeFig. 4). From that, it follows thatτ0 is a
bifurcation value, and a Hopf bifurcation (see[49])
occurs whenτ passes through the critical valueτ0 in
Fig. 3. We can see inFig. 2that the steady stateE∗ still
is stable for delayτ < τ0, allthough the delay cause
transient oscillations. Thus, we have the following th
orem.

Theorem 2.The infected steady stateE∗ of the delay
model(20) is asymptotically stable whenτ < τ0 and
unstable whenτ > τ0, where

τ0 = 1

ω0
arccos

(
f1

f2

)
∼= 8.82035

andf1, f2 are given by(24)and (25).
If τ = τ0 ∼= 8.82035, a Hopf bifurcation occurs

that is, a family of periodic solution bifurcates fromE∗
asτ passes through the critical valueτ0 ∼= 8.82035.

Biologically, this means that there is a critical val
for the treatment-induced delayτ0, that determines th
stability of the endemic equilibrium pointE∗. With
the parameter values given inTable 1, the endemic
equilibrium point is asymptotically stable when an
retroviral drugs in average show positive effects in
patients within less thanτ0 ∼= 8.82035 months. In this
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Fig. 2. The ODE model withα = 0.2, τ = 8 and parameter values as given inTable 1.

Fig. 3. The DDE model withα = 0.2, τ ∼= 8.82035 and parameter values as given inTable 1.
d

ts r is
ge
ks.
case (seeFig. 2) the population will reach the infecte
steady stateE∗ as given in Eqs.(3)–(5). As soon as it
takes more thanτ0 ∼= 8.82035 months for the patien
to feel better, the infected steady stateE∗ loses its sta-
bility (seeFig. 4).
4. Discussion

The underlying assumption in the present pape
that people who are infected with HIV do not chan
their behaviour despite the knowledge of the ris
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Fig. 4. The DDE model withα = 0.2, τ = 9.2 and parameter values as given inTable 1.
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In [50], S. Blower states that incidence rates of H
will fall as more HIV-positive individuals gain acces
to treatment (HAART), but that this public health ben
efit will only occur if the levels of risky behaviour d
not increase. Computer simulations based on a sim
ordinary differential-equation model for an HIV ep
demic (see[33]), on the contrary, show that treatme
without reduction of risky behaviour may even i
crease the proportion of infected individuals. This
fects can also be seen in the delay differential-equa
models presented in the present paper. The simula
for the ODE model in[33] show that the combinatio
of reduction of risky behaviour together with antiretr
viral drug treatment is a very promising strategy
fighting the epidemic of HIV infection. This has to b
taken into account, when anti-HIV regimens are d
tributed in the poorest countries of the world, whe
behaviour change is hard to achieve because of
educational levels or cultural reasons.

In our delay differential-equation models we
have two threshold parameters: The treatment re
duction numberR serves as a threshold for the ex
tence of an endemic equilibrium point, and the s
of the treatment-induced delayτ has enormous effect
on the dynamics of the spread of the disease of H
infection in the population. This treatment-induced d
lay τ can be seen as the minimum time span that
tients have to be under medical treatment until posi
treatment effects occur. If and only if the treatment
production numberR is above one, there is a positiv
steady state. If in this case, the treatment induced
lay τ is below a critical value, the total sexually acti
population will reach the infected equilibrium poi
(seeFig. 2). Note that at this positive steady state th
are still people that have not been infected with H
The proportion of these susceptibles is given by1

R
. As

soon asτ increases and reaches the critical value
Hopf bifurcation occurs (seeFig. 3), and, finally, the
endemic equilibrium point loses its stability above t
critical value (seeFig. 4).

The present work wants to be understood as a s
ing point for further research on analysing treatm
effects including time delay on the spread of an H
epidemic. The next step will be to analyse the gen
model withn infected stages. We also have to point o
that we assumed exponential growth for the total p
ulation in the absence of the disease, what is a v
restrictive assumption. The simulations with logis
growth for the ODE model given in[32] show that the
disease of HIV infection also could lower the carryi
capacity or give rise to a second positive steady s
below the carrying capacity. It remains to analyse
delay differential-equation model with other than e
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ponential population growth and the role of treatm
and behaviour change under these circumstances
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