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Abstract

This work presents two stock-effort dynamical models describing the evolution of a fish population growing and moving
between two fishing zones, on which it is harvested by a fishing fleet, distributed on the two zones. The first model corresponds
to the case of constant displacement rates of the fishing effort, and the second one to fish stock-dependent displacement rates
In equations of the fishing efforts, a control function is introduced as the proportion of the revenue to be invested, for each fleet.
The stabilizability analysis of the aggregated model, in the neighborhood of the equilibrium point, enables the determination
of a Lyapunov function, which ensures the existence of a stabilizing discontinuous feedback for this model. This enables us to
control the system and to lead, in an uniform way, any solution of this system towards this desired equilibriurfopmtat.
thisarticle: R. Mchich et al., C. R. Biologies 328 (2005).
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Résumé

« Stabilisabilité » d’'un systéme contréle décrivant la dynamique d’une pécherieCe travail présente deux modéles dy-
namiques stock-effort décrivant I'’évolution d’'une population de poissons croissant et se déplagant entre deux zones de péche
sur lesquelles elle est exploitée par une flotte de péche distribuée sur les deux zones. Le premier modele correspond au cas ¢
taux de déplacement de I'effort de péche constants, tandis que le second modéle correspond au cas de taux stock-dépendant
Dans les équations des efforts de péche, une fonction contr6le est introduite, en tant que proportion du revenu investie dans lg
dynamique de péche, pour chaque flotte. L'étude de la « stabilisabilité » du modele agrégé, au voisinage du point d’équilibre,
permet la détermination d'une fonction de Lyapunov qui assure I'existence d’un feedback discontinu stabilisant pour ce modéle.
Ceci nous permet de controler le systeme et de mener, d’'une maniére uniforme, n'importe quelle solution de ce systéme vers le
point d’équilibre désiréPour citer cet article: R. Mchich et al., C. R. Biologies 328 (2005).
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1. Introduction stock density becomes too small for some period, then
environmental fluctuations could lead to the extinction
The basic subdivision of fishing zones of a coastal of the stock. Thiscritical situation has been avoided
state consists on the artisan fishery which operatesby introducing a control parameter, in the catchabil-
on 3 miles from the coast, the coastal fishery be- ity terms of the model. This made possible to lead the
tween 3 and 12 miles and the high sea fishery beyond system to a stable equilibrium.
12 miles (se€8,20,21). The adjacent coastal state However, it is more realistic to introduce a control
who is the owner of the resource evolving in his Ex- function depending on time, rather than a control para-
clusive Economical Zone, is responsible for the man- meter. This is the aim of this work, where we introduce
agement of the global fishery which is shared by the a time dependent control function, in equations de-
above mentioned different types of fisheries. So, in scribing the fishing efforts variation. This control is
order to control the situation, it is important to have regarded as an investment proportion of the fishing in-
a good knowledge of the global evolution of the re- come for each fleet.
source and of the activity related to its exploitation. We first consider a simplest model with constant
The fishery management authorities must deal with the rates for the displacement of fleets, to show how we
possible fishery conflicts resulting, for instance, from can construct a Lyapunov function, a discontinuous
the simultaneous exploitation of two fishing zones (we feedback and to prove the stabilizability of the system.
guote, for example, the case of the North American Pa- Next, we consider the model studied in Mchich et al.
cific Salmon[11,13)). Theoretically, each kind of fleet  [10], where the displacement rates of the fishing effort
operates in its zone according to its own fishery char- are stock-dependent, and we introduce a control func-
acteristics. In practice, the fish stock does not remain tion to show how to avoid the case of a limit cycle and
in a given area and frequently moves between two ad- to stabilize the system in this case.
jacent zones. Consequently, the fishing vessels do not In the next section, we describe the first model
hesitate to cross the fuzzy boundary between two ad- which consists in a system of four ordinary differential
jacent zones in order to increase their catch. equations, governing the two local fish stocks and the
In Mchich et al.[9], we built a management bio-  two fishing efforts on each fishing area. The model in-
economical model of a fishery, exploited on two fish- cludes two time scales, a fast one associated to quick
ing zones by two fleets of different characteristics, movements between the fishing zones in comparison
with constant fishing efforts displacement rates. The to a slow one corresponding to the growth of the fish
model analysis leads to the determination of condi- population and the variation of the total number of ves-
tions for the durability of the fishing activity. Then, sels involved in the fishery. We take advantage of the
in Mchich et al.[10], we generalized this worf] to two time scales to build a reduced 2D reduced model,
a model with stock-dependent fishing efforts displace- called the aggregated model. It describes the dynamics
ment rates. The analysis of this second model showed of total fish stocks and total fishing efforts, at the slow
the possibility of a limit cycle. time scaler. For this, we use the aggregation method
From the point of view of a sustainable fishery, it of variables (sef,3,12,15]) which is based on pertur-
is better to avoid important variations of the total fish bation technics and on the application of an adequate
stock and fishing effort, because large periods of time version of the Center Manifold Theoref.
with small stocks and small fishing efforts is not of Thus, in SectiorB, we present the aggregated sys-
any social or economic interest. Moreover, if the total tem and equilibrium points. The analysis of the stabi-
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lizability of this model, by the construction of a Lya-
punov function (se¢l16]) and a feedback, is given in
Sectiond4. We also describe an equilibrium strategy in
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logistic model and its decrease due to the harvested

quantityg; E; x;.

Concerning the fishing effort, it is assumed to vary

finite time; and an extension of our results in the case with respect to the investment proportion of the fishing

where we consider a negative investment. In this last
case, we provide bioeconomical interpretations.

In Section5, we analyze the more realistic model
where the fleets displacement rates are fish stock-
dependent. We showed in Mchich et HO] that if
there is no control in the studied model, and under

revenue. That means that the fleet owners will invest
(or not), with respect to their revenues. Note that the
revenue, in the model, is the difference between the
income and the cost

We assume that unit prices and unit costs are con-
stant. This is a simplifying assumption as prices could,

some conditions, the dynamics can lead to a stable for example, depend on the abundance of fish available

limit cycle. So, we introduce a control function (as an
investment proportion) in order to avoid this limit cy-
cle and to stabilize the system. We show that in this

on the market at timg see Allen and McGladg] and
Clark [4]. We would like to investigate this process in
a future contribution.

case, any solution of the aggregated system can lead According to previous assumptions, the complete

to the desired stable equilibrium point.

2. Mathematical model

We consider a model which describes the dynamics
of two fish populations of densitieg andx», located
on a limit zone situated between two different fishing
zones, and exploited by two fleets represented by their
fishing efforts:E1 and E> (seeFig. 1).

We suppose that two processes occur at two differ-
ent time scales. At the fast time scale, the total stock
and the total fishing effort are constant. Thus, the fast
part of the model only describes the displacement of
fish and vessels between the two zones.

At the slow time scale, the total fish stock and
the total fishing effort are not constant. Regarding
fish stocks, their evolution, in each specific zone, is
represented by the stock-effort Schaefer model, also
called Graham—Schaefer model (see Schagfe)):
the growth of the fish population according to the

Zone 1

A7 e
o, 7 1V

Zone 2

Fig. 1. lllustration of two adjacent fishing zones with a small width
in the sea.

system, at the fast time scatewith respect ta (see
Mchich et al.[9,10]), reads as follows:

dx

d—l = (kx2 — k'x1) + 8[F1X1 (1 - ﬂ) - Q1E1X1}
T Ki

dx

=2 = (k'x1—kx2) +&|roxo|1— X2 _ q2E2x2

dr K>

dE; ,

& (mE2 —m'E1) + ea(t) E1(p1gix1 — c1)

dE> ,

o - (m'E1 —mE3) + ea(t) E2(p2g2x2 — c2)

2.1)

wherer; andK; (i =1, 2) represent, respectively, the
intrinsic growth rate and carrying capacity of the stock
in zonei. Patches have distinct characteristics, so we
suppose that parametefisandr; are different.

The catchability coefficient of the fleet on zohe
(i=12)isg. Itis supposed to be constant and, for
simplicity of calculations, we also assume=1 (i =
1,2).

Parametergy; andc¢; (i = 1,2) are, respectively,
the unit price of the catch and the unit cost of the
fishing effort unit in zone, and are assumed to be
constant. The constant coefficietendk’ represent
the fish per capita migration rates from zone 2 to zone
1 and from zone 1 to zone 2, respectively. The corre-
sponding migration coefficients for the fishing efforts
m andm’ are assumed to be constant.

The functiona(¢) is regarded as the proportion of
the fishing revenue to be invested, with respect to time.
We assume that: 8 « () < 1. We also assume that:
E € [Emin, EM®]. Clark et al.[5] and Touzeal18]
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used similar cases where the fishing effort is bounded

by two nonvanished values.
We can finally assume th@tmin > 1.

3. Aggregated system and equilibrium points

A simple calculation leads to the following fast
equilibria:

X =v1x, X3 =vx
{ EI =mkE, Eé‘ =nE
wherev1 andv; represent the fast equilibrium propor-
tions of the stock on each patch, whereasand 2
admit the same interpretation for the fishing effort. All
these proportions are given by:

(3.1)

k K
L

. "k (3.2)
M= e 2=

Now, coming back to the complete initial sys-
tem (2.1), we substitute the fast equilibri@.1) and
add the two fish stock and the two fishing effort equa-
tions. As

x(t) =x1(t) +x2(t) and

E(t) = E1(1) + E2(1)

one obtains the following system (with respect to slow
time scaler) which is called the aggregated model:

x(t)=rx(t) (l— %) —qE(t)x(1)

E(t)=a®E®)(px(t) —c)
where:

r =rqv1 +rov2
r

B riv2/K1 +rov3/Ko
q =n1vi—+ n2v2
and

(3.3)

P =nivipi -+ n2v2p2
c=mnic1+n2c2

The system(3.3) has 3 equilibrium points(0, 0),
(K,0) and(x*, E*), where:

x* = and E*=

2 1(1_L>
P q rK

(3.4)
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Fig. 2. lllustration of nullclines and equilibrium points.

These points permit us to subdivide tle, E)-
plane into 4 areas as fig. 2 This subdivision will
be important for the study of the aggregated system
stabilizability.

Note that the interesting equilibrium point is
(x*, E*), under the conditiorpK — ¢ > 0. If not,
this equilibrium point does not belong to the posi-
tive quadrant and no equilibrium point is of interest
for the fishing activity. This is a realizable condition.
It indicates that the fleets will participate to the fish-
ing activity only if they are ensured with a positive
minimal income, i.epK — ¢ > 0 is a condition which
permits the viability of the fishing activity and a posi-
tive revenue for the fleets owners.

Note also that the aggregated sysi@n3) contains
a control functiorx (¢), in the equation describing the
evolution of the total fishing effort. Thus, in the fol-
lowing section, we will study the stabilizability of the
system(3.3) in the neighborhood of the interesting
equilibrium point(x*, E*).

4. Main results of stabilizability
4.1. Stabilizability

In order to prove that a system:

X(0) = f(x@), u@))

is globally stabilized, we must prove the existence of
a (even discontinuous) feedbackR" — U/, such that
the equation:

x(t) = f(x,u(x))
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is globally asymptotically stable. This returns, in fact, Indeed,
to prove the existence of a smooth Lyapunov function

of control V(x(¢)) satisfying the following assump-

tion:

Vx#0, (VV(x), f(x,u))<0 (4.1)

This is a sufficient but not a necessary condition.
For more details about the stabilizability concept, see,

for example, the works of Clarké] and Rifford[16].
Now, we state the following result:

Theorem 4.1.The function

Vi E) = (x —x*)2 4 4 _ g2 (4.2)

P Lmin

where(x*, E*) is given by(3.4), is a smooth Lyapunov

function of control associated to the systé38B).
Moreover, the feedback(x, E) given by

E .
min X in R
K E
_ 0 in R
a(,Ey={p I (4.3)
min * . Ru
K FE
0 in Ry

where areasR|, Ry, R and Ry are given byFig. 2,
ensures that in each area of tiee, £)-plane, the con-
dition (4.1) is satisfied, which will ensuréseeTheo-
rem4.2) the system stabilizability.

Proof. Let us consider the function given I4.2):

Vix,E)=(x —x*)°+ ﬂ(E — E%)?
P Lmin

This function is aC*® function with respect to
(x, E). Moreover, it is positive definite{(x, E) > 0
forall (x, E) # (x*, E*)), and lim|, £)|—+oc0 V(x, E)
= 400 holds.

Furthermore, the functiorV (x, E) satisfies the
condition (4.1), indeed, let us subdivide thex, E)-
plane into 4 areas as givenhig. 2 Thus, with:

fx,a)= <rx<1— %) —qgEx;aE(px — c))

and for allx £ x* andE # E*, we have:

e Inthe areaR|, we haver > x* andE < 3(1— %)
so we choose

Emini
K E’

a(x, E)=

(VV(x), fx, @)

=2(x —x%) [rx (1 - %) - qu]

2Kq =
(E—-—E%a(x,E)(px —o)E

P Enmin

=2x|:(x —x*)(r(l— %) —qE)
+LE- E*)p(x - 5)]
p p

=2x(x—x*)|:r<1— i) —qgE

+

K

r x*
ra(e-(1-%))]
(because™ = % andE* = 3(1 —x*/K))

rx rx*
:Zx —x* —_——
(x x)( K+K)
2r

= ——x.(x—x

K
<0

*)2

e In the areaR), we havex < x* and E < 3(1 -

%), S0 we choose
a(x,E)=0
Indeed,

(VV (), f(x, @)

=2(x —x%) (rx (1— %) - qu>

2Kq -~ =
+ (E—E%ax,E)(px —o)E
PEmin
* _X)\_
=2(x —x )[x(r(l K) qE>i|
=A.B
where

A=2(x—-x"<0 and

B:x(r(l—%) —qE) >0
So
(VV(x), f(x,@)) <0
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e In the areaR), we havex < x* andE > 2(1—
%), S0 we choose

Emin ﬁ
K FE

a(x,E)=
Indeed:

(VV(x), f(x, @)

=2(x — x*)|:rx (1— %) — quj|

2Kq
PEmin
2r

=—E(x—x

+ (E— EMa(x, E)(px —c)E

<0

e In the areaRy, we havex > x* andE > g(l—
%), S0 we choose

a(x,E)=0
Indeed:

(VV (), fx, @)

=2(x — x*)(rx <1— %) - qu)

2Kq =
+ (E—E%a(x,E)(px —o)E
P Enmin
* TN
=2(x—x )|:x<r(1 K> qE)]
=A.B
where

A=2(x—-x">0, and

B:x(r(l— %) —qE) <0
So
(VW&), f(x,@))<0 O

Remark 4.1 (The trajectory behavior when reaching
the nullcline3. Let us consider a trajectory starting at
an initial point(xg, Eg), whichisin the are®)y . So, it
decreases until reaching the nullcline- x*. Here, we
have:i (1) =rx(1— %) — gEx <0 andE(t) = 0, so

the trajectory continue decreasing and enters into the
region Ry . Then, the trajectory decreases until reach-

ing the nuliclineE = 2(1 — %). On this nullcline,

R. Mchich et al. / C. R. Biologies 328 (2005) 337—350

x(1) =0 and E(¢) < 0. So, the trajectory leaves the
nullcline by decreasing and enters into the aRpa

We can give the same interpretation when the trajec-
tory reaches the nullclines= x* andE = g(l— %)
when leaving areaR; and R, respectively.

Now, we state the following theorem, which en-
sures the stabilizability of the systef8.3), with the
discontinuous feedbadk(x, E):

Theorem 4.2. For the Lyapunov functiorV (x, E)
given by(4.2), and the discontinuous feedback given
by (4.3), associated to the systefd.3), then this sys-
tem is globally asymptotically stable near the equilib-
rium point(x*, E*).

Proof. In order to demonstrate this theorem, we first
give some notations, to translate the equilibrium point
(x*, E*) towards(0, 0). For that, we set:

X()=(x(),E®) and X*=(x* E¥)
F(X®), BX)) = f((x+x* E+E*), B(X))
where

fx. E) =[rx<r><1— %) —GE@x(1);

a(t)E(t)(px(t) — c):|
and
B(X)=a(x +x* E+E*)

wherea(x, E) is given by(4.3).
Thus, the probleng3.3)is reduced to the following
one:

Xt = f(X®), BX))

with the equilibrium pointX = 0.
On the other hand, let us consider the following
Lyapunov function associated to the problétd).

(4.4)

VX)=V(x+x* E+E"

whereV (x, E) is given by(4.2).
Now, let Xg be given, then the system:

{ X@t) = f(X®),B(X0), t=0
X(0) = Xo
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admits a local solution of0, o[ (thanks to the Cau-
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In other words, the solution of the systef.5),

chy-Lipschitz theorem). Moreover, let us assume that; at a given time, enters and remains in the whole set

lim X () = X1 < +00
t—1o
so the system:

{X(t) = f(X®), B(XD),
X (o) = X1

admits also a solution ofmg, #1[. AS a consequence, if
the functionX (¢) remains bounded, then we can con-
struct gradually, a global solution of the systétn4)
on [0, 4ool.

Thus, we must prove that the local solution of the
system(4.4) is bounded. Indeed, sindé satisfies the
condition(4.1), we have:

t>1o

d - _ _ _
3V (X@)=V'(X0)F(x). f(X (1)) <O

so, the functiorr — V(X (1)) is decreasing ofD0, ro|.
If we setc = V(X (0)), then

X(t)eE.={seR" V(s)<c}

The setE. is closed (becaus& is continuous),
bounded (thanks to the coercivity &f). This implies
that the solutionX () remains in a compact set. So,
this solution is bounded, and we can defiXi¢.) on
[0, 4-o0.

Now, we must prove that the solutioxi(z) of the
system(4.4), converges uniformly towards 0. For that,
let us set:Vao = lim;_ 100 V(X (1)) (< 00, because
X() € E.).

Lemma4.3.V, =0.

Proof. Let us assume thdf,, > 0: then, letX (r) be
a solution (in the Euler solutions way) ¢4.4), such
that: lim,_, 00 X(t) = Xoo- SO, we necessarily have
V(Xso) = Voo, and thusV,, < V(X (7)) forall 1 >0
(becausé/ (X (1)) is a decreasing function).

Let us consider the functioX (.) which is a solu-
tion of the following system:

{ X0 = f(X0), B(X1)).
X0) =X

120 (4.5)

As the functiory — \Z(f((t)) is decreasing, we will
have (from a time) V(X (1)) < Veo.

{s, V(s) < Vao}. And thus, from a larger timé, the
function X (¢) verify:

X(t) e s, V(s) < V!,
Then

Ve>T

Voo =V (Xoo) V(X (1)) < Veo,

Which is absurd. Thu¥,, = 0, which finishes the
demonstration of the lemma.o

forallt >T

So, we finish the proof of the theorem, sinkg =
O implies that lim_, 1o X(#) =0. O

4.2. Finite time strategy

The feedback defined in the preceding section sta-
bilizes the system in infinite time. But it is more prac-
tical and realistic, for the coastal state and the fleets
owners, to describe a strategy which will accelerate
the procedure of convergence of the system towards a
small neighborhood of the equilibrium point, in a fi-
nite time (sed-ig. 3).

Thus, let us consider a trajectory starting at an ini-
tial point A located in the are®)y. We havex > x*
and E > E*, so, we takex(r) = 0. Thus, the fishing
effort remains constant while the stock decreases. So,
the trajectory decreases horizontally until reaching a
point B on the linex = x*. Next, when passing the
point B, we change the strategy by taking:) = 1,

/\E

E*

D x‘

Fig. 3. A finite time equilibrium strategy. Data have been chosen
(in the case of the trajectony —~ B — C — D — (x*, E*)) as:
r=05K=1,¢4=05,p=04,c=02.
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in order to keepE (¢) andx(¢) decreasing, until reach-  where(x*, E*) is given by(3.4), is a smooth Lyapunov
ing the nullclineE = ~(1 — %) at a pointC. When function of control associated to the systé31B).
passing this last poing continues decreasing white Moreover, the feedback(x, E) given by

starts increasing, until reaching a poibton the line

Eminx .
E = E*. Next, we choose the feedback @) = 0, Ir;m E in Ry
and so one remains on the lide= E* until reaching E—_E*
the equilibrium point. ) E in R
One can also start from an initial poirt’ in the (. E)=3p =\ 4.7)
areaR), and make a similar reasoning to reach the X E in Ry
equilibrium point(x*, E*). E¥_E
z In Ry

4.3. Extension of the results where areasR|, Ry, Ry and Ry are given byFig. 2,

ensures that in each area of tie, £)-plane, the con-
dition (4.1) is satisfied. And the systefd.3) is glob-
ally asymptotically stable, near the equilibrium point
(x*, E*).

In order to avoid any overexploitation of the fish-
ery, we think that it will be better for a coastal state to
intervene directly in the fishing activity, by imposing a
reduction or an increase in the fishing efforts.

This can be done by considering, in systef2s) Remark 4.2. Similarly to some analysis concerning
and (3.3) the investment proportion(r) as a con- 3 pegative control given by Clafé] and Clark et al.
trol function, bounded betweenl and 1. A negative [5], we analyze the results of our model with nega-

control can be seen in this case as a reduction (by tiye control. We notice that a problem can occur in
the decision maker, which is the coastal state in our {he case wher& (px — ¢) < 0, which implies a neg-

case) of boats fish capacity (number of boats, techni- ative income. In this case, if one imposes a control
cal characteristics..). Note that a negative investment ,, ;) — 0, which implies an investment withdrawal,
was already used in preceding works, see, for exam- then £ (1) = « (1) E(px — ¢) becomes positive, which
ple, Clark[4] and Clark et alf5]. implies an increase in the number of boats. And this

Thus, concerning the evolution of fishing efforts at  can appear contradictory.
the slow time, they increase or decrease with respect  However, we suggest in this case two different in-
to the investment rate of the fishing revenue, if the terpretations. The first one is that the control can be
revenue of the fishery and the investment rate are pos-regarded as a subsidy from the coastal state to the
itive or negative. That means that the fleet owners are fieets owners, in order to increase their fishing efforts.
obliged to invest or disinvest, with respect to their in-  The second one is that one could see in the investment
comes, a part of their revenue to increase or reduceyjthdrawal a reduction of the number of boats, which
their fishing efforts (number of boats, efficiency, ...).  will act positively on their efficiency, and in this case,

From a mathematical point of view, the results al- e can interpret the fishing efforts as the efficiency of
ready obtained in the preceding sections remain valid, the fishing boats. Note that the fishing effort of a fleet
one could even find another feedback (fOf the stabiliz- can even be interpreted as the number of boats, days
ability) which is negative in some areas. We think that of fishing, boats efficiency... (for this, one can refer to
this can also be interesting in the case of the study of the web-site of the FAO organizati¢h9]).
the feedback optimality, or in the case where a coastal
state has to manage between a national and a foreignProof of Theorem 4.1. In areasR| and Ry , the proof
fleets. We hope to investigate this way in forthcoming remains the same as in Theorehil On the other
works. hand, we have:

We state a result for a negative feedback:

e In the areaR), we havex < x* andE < f{(l -

Theorem 4.4.The function %), S0 we choose

K _
V(x,E) = (x —x)2 4 —1(E — E")? (4.6) e By=""F
P Emin E
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Indeed,

(VV (), f(x, @)

=2(x — x*)(rx <1— %) - qu)

2K g =
+ (E—-—E%a(x,E)(px —0o)E
P Emin
* L
=2(x —x )|:x<r<l K) qE)
Kq * 2i|
+ E—-E
Emin( )
= A[B + (],
where

A=2(x—-x"<0

B=x<r<l—i> —qE) >0
K
K
c=29 (E—E"?>0
Emin

So

(VV(x), f(x,&)) <0
In the areaRy, we havex > x* and E > 5(1—
%), SO we choose

E*—E

a(x, E)= z

Indeed:

(VV (), f(x, @)

=2(x — x*)(rx <1— %) — qu)

2Kq =
+ (E—E%a(x,E)(px —o)E
PEmin
* L
=2(x —x )|:x<r<l K) qE)
Kq * 2i|
— E—-FE
Emin( )
= A[B + (]
where

A=2(x—-x%>0

oo 5) )

Kq

Enin

C= (E—E*)?<0

So

(VV(x), f(x,@)) <0

Finally, for the global asymptotical stability, the
proof remains the same as the one Tieo-
rem4.2 O

Remark 4.3. For the finite time strategy, we can de-
scribe it as follows (seEig. 4).

Thus, let us consider a trajectory starting at an ini-
tial point A located in the are®)y. We havex > x*
andE > E*, so, we takex(r) = —1, thus, we have two
cases:

(1) The trajectory decreases until reaching the line
E = E* at a pointBs. In this case, we choose the
feedback a&(r) = 0, and one remains on this line
until reaching the equilibrium poirtc™, E*).

(2) The trajectory decreases until reaching the null-
cline x = x* at a pointB,. Next, when passing
the point B2, we change the strategy by taking
a(r) =1, in order to keefE () andx(t) decreas-
ing, until reaching the nullcling = 2(1— %) ata
point C. When passing this last poink, continue
decreasing while start increasing, until reaching
apointD onthe lineE = E*. Next, we choose the
feedback as(r) = 0, and so one remains on the
line E = E* until reaching the equilibrium point.

/\E A

E*

0 x* i

Fig. 4. A finite time equilibrium strategy. Data have been chosen
(in the case of the trajectory — Bo — C — D — (x*, E*)) as:
r=05K=1,¢q=05,p=04,c=0.2.
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One can also start from an initial poidt’ in the

areaR), and make a similar reasoning to reach the

equilibrium point(x*, E*).

5. Stabilizability in the case of fish
stock-dependent migration rates

In Mchich et al.[10], we built and studied a model
which exhibits, under some conditions, a stable limit
cycle. The complete system read as follows:

dxq , X1

o (kxo — k'x1) + 8|:r1x1<1 — K_1> — E1x1:|

% = (k'x1 — kx2) + 8|:r2x2<1 — E) — E2x2:|

dr K>

dEq ,

o (m(x2) E2 —m/(x1) E1) + € E1(p1x1 — c1)

dE

G = (m' () ExL = m(x2) E2) + e Ea(paxa = c2)
T (5.1)

We had taken the migrations rates as:

"(x1)= ———— and
m'(x1) L+ 0
(x2) !
m(xg) = ———
2 Bx2+ao

and the aggregated system read as follows:

x(t)=rx (1— %) —q(Xx)Ex

(5.2)
E(t) = E(p(x)x — c(x))
where:
r =rqv1 +rov2
-
k= r1(v1)?/ K1+ r2(v2)?/ K2 (5:3)
q(x) = vini(x) + van2(x)
p(x) = pivini(x) + pavan2(x) (5.4)
c(x) = can1(x) + canz2(x)
and
k avix +ao
= k+k’ ni(x) = (v + Br2)x + 209
kK Bvox + ap
2= k+k’ n2(x) = (v + Bra)x + 209

(5.5)
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Fig. 5. lllustration of nullclines and equilibrium points.

We showed that the aggregated sys{&m®) has 3
equilibrium points:(0, 0), (K, 0) and(x*, E*), where
x*>0andE* = ﬁ(l— X—K*).

By settingry = av1 + vz andt = av? + fv3, we
showed in[10] that if 22 < 77 andx™* < x < K then
(x*, E*) belongs to the positive quadrant, is unsta-
ble and presents a limit cycle, whil&, 0) is a stable
node. We recall thak represents the maximum value
of the nontrivialx-nullcline andx the corresponding
fish stock value (seEig. 5).

We introduced a control parameter as a term of
catchability to avoid this case and to lead the sys-
tem to the desired stable equilibrium poipt*, E*).
However, it is more realistic to control the aggregated
system by a control function depending on time. In this
section, we analyze this case by studying the following

model:
dx
bt (kxp — k'x1) + 8[;’1)61 (l — ﬂ) — E1x1i|
dr K1

X2

% = (k'x1 — kxp) + 8[;’2)62 (1 — —) — E2x2i|
dr K>

dE;
dr

(m(xz)Ez — m/(xl)El)
+ea(t)E1(p1x1 — c1)
= (m’(xl)El — m(XZ)EZ)
+ea(t)E2(p2x2 — c2)

dE>

dr

As in preceding sections, the control functierr)
is regarded as an investment (or investment with-
drawal) proportion of the fishing revenue. In this case,
the aggregated system reads as follows:
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{%(r):rx(l— %) —q(x)Ex 5.7)
E(t)= a(t)E(p(x)x — c(x))

with all parameters as in systetfis3), (5.4)and(5.5).

This system has also 3 equilibrium point§; 0),
(K,0) and (x*, -5 (1 — ), (x* > 0). So, we can
subdivide thgx, E)-plan as inFig. 5.

Note that ifx > x* thenp(x)x —c(x) > 0. Letx :=
x*+ewheres < 1,andu := p(x)x —c(x) > 0. Then
forall x > x, we havep(x)x — c(x) > u.

On the other hand, ¥ < x* thenp(x)x —c(x) < 0.
So, letx :=x* — ¢ (with ¢ < 1), andu := p(x)x —
¢(x) < 0. Then for allx < x, we havep(x)x — c(x) <

n.
In the two cases, we have:

|
(p(x)x —c(x))

Now, we state a theorem for the stabilizability of
the aggregated systef.7).

Theorem 5.1.The function

2
1' (x —x"%+ K2 (E — E%)? (5.8)

min ML min

is a smooth Lyapunov function of control associated to
the systen(5.7).
Moreover, the feedback(x, E) given by

Vx,E)=

2

riEnin x(x —x*)
K2 (p(x)x —c(x))E(E* — E)
in Ry
a(x,E)=10 inRy,RsandR; (i=1,...,4)
MEmn  q(0)x(x —x*) (5.9)
K2 (p()x —c(x)(E — E*)
in R3

where areasrk; andR; (i = 1,...,4) are given by
Fig. 5, ensures that in each area of tlie, E)-plane,
the condition(4.1)is satisfied. And the aggregated sys-
tem (5.7) is globally asymptotically stable, near the
equilibrium point(x*, E*).

Proof. Let us consider the function given i§y.8).

2

1
(x —x*)?+ ——(E — E*)?
Enmin HEmin

Vx,E)=

This function is aC® function with respect to
(x, E). Moreover, it is positive definite{(x, E) > 0
for all (x,E) # (x*, E*)), and |in’]‘(x,E)||_>+oo Vx,E)
= 400 holds.

Furthermore, the functiorV (x, E) satisfies the
condition(4.1); indeed, with

fx,a)= <rx(1— %) —q(x)Ex;
o E(p(x)x — c(x)))
and for allx #£ x* andE # E*, we have:

e Inthe areaR;, we haver > x* andE < _{5(1 -
%), S0 we choose

rnE2. x(x — x*)

K2 “(p(x)x —c(x)E(E* — E)

a(x, E)=

Indeed,

(VV (), f(x, @)

_2(x —x¥) x
B o)

2K? _
+— (E—E*)a(x,E)E(p(x)x—c(x))
min
= %[r — % —q(x)Ei|
—2rx(x —x™)
2x(x —x™) x
= ﬁ[—”? —qE+ (- Emini’)i|

<0

becauser — x* > 0 and Enmin > 1 which implies
thatr — Eminr < 0.

e Inthe areaR,, we havex > x* andE > ﬁ(l—
%), S0 we choose

a(x,E)=0
Indeed,

(VV (), f(x, @)

_2(x —x¥) x
"~ Emin (rx <1_ E) —CI(X)EX>

2K? o
+ 5 (E—E )oe(x,E)E(p(x)x—c(x))

min
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_ 2x(x —x¥) X
= (1) o]
=A.B

where
2x(x —x*)

min

A= >0 and

B:r(l—%) —qg(x)E <O
So

(VV(x), f(x,&)) <0

e Inthe areaRs, we haver < x* andE > (1 —
%), S0 we choose

“Emin q(x)x(x —x*)

alx, b) =—7> (p()x — c())(E — E¥)

Indeed:

(VV(x), f(x, @)

_ 2(x —x") X
=2 (- %) o]

2K? -
+ 5 (E— EMa(x, E)(p(x)x — c(x))E
min
_ 2x(x —x¥) x
_ 2rx(x —x) <1_ i)
B Emin K

<0

because < x* < K.
e Inthe areaR,, we havex < x* andE < ﬁ(l—

%), S0 we choose
a(x,E)=0
Indeed:

(VV(x), fx, @)

_ 2(x —x¥) x
= W[FXO-_ E) - q(x)Exi|

+ 2K* (E — EMa(x E)( (x)x —c(x))E
'U“E%in 7 P
_ 2x(x —x¥) X
= 7Emin [r(l— E) - q(x)Ei|
=A.B

where

_ *
A:M<O

Emin
B=r(1-2 (X)E >0
=7r —_ — —

k)

So

<VV(x), f(x, 64)) <0

e Asthe areas; (i =1,...,4) are of small width,
we do not control the system (i.e(x, E) = 0),
and then we are ensured with the convergence of
the trajectory. Indeed, if we consider a trajectory
starting from an initial point in are®», for ex-
ample, then when it crosses arggsand R3, we
havex(r) < 0 andE(¢) = 0, so the trajectory de-
creases and enters in arga. In the same way,
when the trajectory crosses aregand Ry, we
havex(t) > 0 andE(¢) = 0, so the trajectory in-
creases and enters in arRa

Finally, for the global asymptotical stability of the
aggregated syster(b.7) near the equilibrium point
(x*, E*), the proof remains the same as the one of
Theorem 4.2 O

6. Conclusion

In this paper, we generalized our previous works
(Mchich et al[9,10]), where we studied the stability of
some bioeconomical models. In some cases, we found
the existence of a stable limit cycle. This is a critical
situation, as it does not permit a satisfied durability
of the fishing activity. Indeed, large periods (of time)
with small fish stocks and external fluctuations could
lead to the extinction of the fish stock.

In order to avoid such situations, in this work, we
introduce a control function depending on time, which
is considered as an investment proportion of the fish-
ing revenue, into the fishing efforts equations. We con-
struct Lyapunov functions and feedbacks to show that
any solution of the aggregated systems, converges in
an uniform way, towards the desired equilibrium point.
This means that we can find a feedback, which allows
us to avoid the undesired cases.

An important limitation of our models comes from
the fact that we consider only two fishing zones. The
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Fig. 6. The first figure represents the map of Morocco and the second one illustrates a subdivision of a fisherpires.

application of our results would be more interesting in sults obtained could be used as a platform for the elab-
the case ofV fishing zones¥ > 2). Also, it would be oration of a plan for the management of different kinds
useful to confront our models with real data, and to try of fisheries, particularly, the repartition between the
to validate our analytic results. Thus, the model could coastal and the high sea fisheries.
be concretely applied to the Moroccan coast which
is 3500 km long with several important fishing zones
(seeFig. 6). Fishing vessels can move from north to Acknowledgements
south to exploit different fish species, and also they
can operate either on coastal or high sea fisheries. Fish We thank the anonymous referee for the valuable
stocks could be considered with respect to different comments that allowed us to improve the manuscript.
species, ages and various aspects intervening in fish-
eries (sedig. 6).
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