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Abstract

In this work we show how mathematical models and optimal control techniques can help us to solve some prob
environmental engineering, more precisely, water pollution problems arising from wastewater discharges into coasta
rivers. We deal with a complete two-dimensional mathematical model for the evolution of pollutant concentration in a
water domain. By integrating this model we obtain a zero-dimensional one and we use it to study the global performan
system in a realistic situation. Finally, by using the two-dimensional model, we recall two optimal control problems re
the wastewater disposal problem.To cite this article: L.J. Alvarez-Vázquez et al., C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un modèle mathématique pour un contrôle optimal des décharges d’eaux usées : la performance globale. On considère
des modèles mathématiques et des techniques de contrôle optimisées pour l’étude de quelques problèmes environ
et, plus précisément, des problèmes de pollution de la côte et des rivières par les eaux résiduelles. Nous proposons
mathématique bidimensionnel de l’évolution de la concentration en polluants dans un domaine d’eaux peu profon
l’intégration de ce modèle, on obtient un modèle adimensionnel, que nous utilisons pour l’étude de la performance
du système dans une situation réaliste. Enfin, en utilisant des modèles bidimensionnels, on étudie deux problèmes d
optimal liés à la gestion des eaux d’égout.Pour citer cet article : L.J. Alvarez-Vázquez et al., C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Usually, wastewater originated from urban are
or industry undergoes a physical/chemical/biologi
treatment in a purifying plant. From there, wastew
ter is discharged through a submarine outfall into
aquatic media like a lake, a river or a coastal area
a suitable distance from protected areas like beac
fisheries or marine recreation zones. When severa
rifying plants are going to discharge wastewater i
the same domain, the problem of design and man
ment of the whole treatment system arises. To so
this problem, optimal control theory and optimizati
methods can be very useful: they can help decis
makers in formulating rational policies in order
minimize costs while keeping the prescribed levels
water quality. Sections4 and 5are devoted to presen
two typical examples: the optimal management o
wastewater treatment system and the optimal loca
of the submarine outfalls.

Obviously, the knowledge of mathematical mod
for the evolution of pollutant concentration is a u
avoidable first step if one wants to use optimal con
techniques. So, the first part of this work is devo
to study in detail one of them, related withBiochem-
ical Oxygen Demand (BOD) andDissolved Oxygen
(DO), which is frequently used in the case of dom
tic discharges. In Section2 we deal with the complet
two-dimensional model consisting of two uncoupl
system of partial differential equations which give
the height of water, the depth-averaged horizontal
locity of water and the depth-averaged concentra
of BOD and DO. In Section3 we obtain a new zero
dimensional model, by integrating the previous o
which can be very useful to study the global perf
mance of the system. We apply this model in thería of
Arousa (Spain) to obtain the global concentration
BOD and DO along the time.
,

2. A complete two-dimensional model for
Biochemical Oxygen Demand and Dissolved
Oxygen

We consider a domainΩ occupied by shallow wa
ter (as can be aría or an estuary), where pollutin
wastewater are discharged throughNE submarine out-
falls located at pointsbj ∈ Ω and connected to the
respective purifying plants located at pointsaj ∈ Γ

(seeFig. 1). Moreover, we assume the existence
several areasAi ⊂ Ω, i = 1, . . . ,NZ, representing
fisheries, beaches or marine recreation zones whe
is necessary to guarantee the water quality with po
tion levels lower than some allowed threshold level

The flow of an effluent from a submarine outfall
a shallow water domain is mainly governed by h
izontal transport due to currents (produced by tid
wind . . . ) and turbulent diffusion. It allowsuncou-
ple hydrodynamical equations and transport equati
The former give the height and the velocity field whi
are used in latter to obtain the pollution levels.

2.1. Hydrodynamic model: the shallow water
equations

In this section we recall the shallow water equ
tions which constitute an useful mathematical mo
for hydrodynamic flows in shallow regions. If we co
siderΓ , the boundary ofΩ , divided into three parts
Γ − (corresponding to the effluent),Γ + (correspond-
ing to open sea) andΓ 0 (corresponding to the cost
then the shallow water equations can be written in

Fig. 1. DomainΩ .
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following way:

(1)

∂h

∂t
+ �∇ · (h�u) = 0 in Ω × (0, T )

∂ �u
∂t

+ (�u · �∇)�u − ν��u + g �∇h = �F
in Ω × (0, T )

h = η onΓ − × (0, T )

h = φ onΓ + × (0, T )

h(0) = h0 in Ω

�u · �n = q onΓ − × (0, T )

�u · �n = 0 onΓ 0 × (0, T )
�∇ · �u = 0 onΓ + × (0, T )

�u(0) = �u0 in Ω




where h(x, t) and �u(x, t) denote, respectively, th
height of water and the depth-averaged horizontal
locity of water,η, φ, h0, q and�u0 are given functions
ν (kinetic eddy viscosity coefficient) andg (grav-
ity acceleration) are physical parameters experim
tally known, �n denotes the unit outer normal vector
boundaryΓ and the second member�F collects all the
effects of atmospheric pressure, wind stress, bot
friction and so on.

There are several works related to the existen
uniqueness and regularity of solution of(1) in partic-
ular cases (see, for instance,[1–5]) but in the genera
case it is still an open problem. A numerical appro
imation ofh and �u in Ω × (0, T ) can be obtained b
finite difference, finite element or finite volume met
ods (see, for instance,[6–9]) in order to be employed
in the pollutant dispersion model.

2.2. Pollutant dispersion: the BOD-DO model

Firstly, in order to simulate the water quality inΩ ,
we have to choose some indicators of pollution lev
Two of the most important (especially in the case
domestic discharges) are theDissolved Oxygen (DO)
and the organic matter, which can be measured
terms of the need of oxygen to decompose it, the
called Biochemical Oxygen Demand (BOD). If the
pollution level is not too high the BOD can be satisfi
by the DO. However, if the organic matter increas
beyond a maximum value the DO is not enough
its decomposition, leading to important modificatio
(anaerobic processes) in the ecosystem. To avoid t
a threshold value of BOD may not be exceeded an
minimum level of DO must be guaranteed.
The evolution of the BOD and the DO in the d
main Ω ⊂ R

2 is governed by a system of partial d
ferential equations (cf.[10]). Let us denote byρ1(x, t)

and ρ2(x, t) the concentrations of BOD and DO
point x ∈ Ω and at timet ∈ [0, T ], respectively. Then
these concentrations are obtained as the solution o
following two initial-boundary value problems:

(2)

∂ρ1

∂t
+ �u · �∇ρ1 − β1�ρ1

= −κ1ρ1 + 1

h

NE∑
j=1

mjδ(x − bj ) in Ω × (0, T )

∂ρ1

∂n
= 0 onΓ × (0, T )

ρ1(x,0) = ρ10(x) in Ω

∂ρ2

∂t
+ �u · �∇ρ2 − β2�ρ2

= −κ1ρ1 + 1

h
κ2(ds − ρ2) in Ω × (0, T )

∂ρ2

∂n
= 0 onΓ × (0, T )

ρ2(x,0) = ρ20(x) in Ω




where�u andh are given by(1), mj(t) is the mass flow
rate of BOD discharged at pointbj , δ(x − bj ) denotes
the Dirac measure located atbj and positive para
metersβ1 and β2 (horizontal viscosity coefficients)
κ1, κ2 (kinetic coefficients related to BOD eliminatio
and oxygen transfer through the surface, respectiv
and ds (oxygen saturation density) can be obtain
from experimental measurements.

For this system we can prove the existence
uniqueness of solution (cf.[11]). A numerical solution
for (2) can be obtained by a method which combin
characteristics for time discretization with finite e
ments for space discretization (cf.[12]).

3. The global performance: a zero-dimensional
model

The main aim in this paper is to study the glob
performance of the BOD-DO model in aría, an es-
tuary or a lake. In order to do it we integrate t
system(2) in the region occupied by water. Thus, w
obtain a new simple zero-dimensional model.
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Let M1(t) and M2(t) be, respectively, the tota
mass of BOD and DO in the region at timet , that is
to say,

M1(t) =
∫
Ω

h(x, t)ρ1(x, t)dx

M2(t) =
∫
Ω

h(x, t)ρ2(x, t)dx

Then, by integrating inΩ Eq.(2) in their conservative
form and applying the Green’s formula, we obtain

(3)




dM1

dt
= −κ1M1 + Q + F1

dM2

dt
= −κ1M1 + Aκ2

(
ds − M2

V

)
+ F2

whereA is the area of water surface in contact w
air, V is the whole water volume,Q denotes the mas
flow rate of BOD discharged in the region (that is,Q =∑NE

j=1 mj ), andF1 andF2 are, respectively, the mas
flow rate of BOD and DO across the boundary (Fi =∫
Γ

hρi �u�ndσ , for i = 1,2).
If we study a stationary region (as can be a clo

lake)A andV are constant along the time. In this ca
if we also suppose thatQ, F1 andF2 are constant, the
exact solution of(3) is given by:

M1(t) = M1(0)e−κ1t + Q + F1

κ1
(1− e−κ1t )

M2(t) = M2(0)e−at

+ Q + F1 − κ1M1(0)

a − κ1
(e−κ1t − e−at )

(4)+ b − Q − F1

a
(1− e−at )

wherea = κ2
A
V

andb = κ2dsA + F2.
In order to develop an asymptotic study, fort � 1

κ1

and t � 1
a
, the terms with e−κ1t and e−at can be

negligible in (4) and the asymptotic values of BO
and DO areM1(∞) = (Q + F1)/κ1 and M2(∞) =
(b − Q − F1)/a. However, it is as well to point ou
that, in a shallow water domain, the typical valu
of κ1 anda are, respectively, of the order of 10−5 and
10−13 s−1, and then, the previous asymptotic valu
would be reached 300,000 years later!

For 1
κ1

� t � 1
a

(only about some days later), w
can neglect e−κ1t and approximate e−at 	 1 − at .
Then we obtain an asymptotic value for the BOD a
a linear approximation for the DO:

M1(t) 	 Q + F1

κ1

M2(t) 	
(

M2(0) + Q + F1 − κ1M1(0)

κ1 − a

)

+
(

b − Q − F1

− a

(
M2(0) + Q + F1 − κ1M1(0)

κ1 − a

))
t

When we are working in an open region (as c
be aría or an estuary), we must take into account
water renewal. For example, in aría, we can assum
that inflow water is more pure than outflow water
the sense that DO concentration is greater and B
concentration is lesser) and, moreover, we know
DO concentration in inflow water is always lesser th
oxygen saturation density (ds). In this case, ifφ(t) de-
notes the height over a fixed level (half tide) at t
mouth of thería andṼ denotes the water volume co
responding to half tide, then, by geometrical reaso
we have

V (t) = Aφ(t) + Ṽ

Moreover, taking into account the purification
the water in thería because of the seawater renew
we obtain the following expressions for the mass fl
rates across the boundary:

F1(t) = φ′(t)AαM1(t)

V (t)

F2(t) = φ′(t)AC(t)

whereC(t) = min{βM2(t)
V (t)

, ds}, andα and β are two
experimental parameters verifyingα = β = 1 if φ′(t) <

0, α < 1 < β if φ′(t) > 0. According to this, the sys
tem(3) is rewritten as follows:

(5)




dM1(t)

dt
= −κ1M1(t) + Q + φ′(t)AαM1(t)

V (t)

dM2(t)

dt
= −κ1M1(t) + Aκ2

(
ds − M2(t)

V (t)

)

+ φ′(t)AC(t)

This system can be easily solved by finite d
ference methods. We have used the backward E
scheme to solve it for data corresponding to thería of
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Fig. 2. BOD concentration in thería of Arousa (Spain) along the
time.

Arousa (Spain). Moreover, in order to study the wei
of the water renewal in thería, we have compared th
result with the exact solution of(3) with V (t) = V

and F1 = F2 = 0 (in this case the exact solution
given by(4)). As one can see inFigs. 2 and 3, for data
given inTable 1, the BOD concentration reaches an
ymptotic value in both cases, but the DO concentra
observes a linear decrease without water renewal
reaches an asymptotic value (very close to saturat
when the water renewal is considered.

4. Problem 1: Optimal management
of a wastewater treatment system

In this section we pose an optimal control pro
lem related to the management of a wastewater tr
Fig. 3. DO concentration in thería of Arousa (Spain) along the time

ment system. We recall the situation is Section2: we
consider a domain occupied by shallow water wh
polluting wastewater is discharged throughNE sub-
marine outfalls (in this section we suppose that th
outfalls are located at fixed pointsbj ∈ Ω). More-
over, there exist severalsensitive areas, Ai ∈ Ω , in
the domain, where it is necessary to guarantee
water quality with pollution levels lower than an a
lowed threshold. We suppose that wastewater arr
to the purifying plants with a certain BOD conce
tration. Before discharging it into the sea, its BO
concentration can be reduced in the plants by diffe
biological or biochemical treatments. From the e
logical point of view the depuration in each plant mu
be as high as possible but, from the economical p
of view, there is a cost proportional to the develop
Table 1
Data for models (3) and (5) corresponding to thería of Arousa (Spain)

– Total time T = 4 · 106 s
– Initial mass of BOD M1(0) = 0 kg
– Initial mass of DO M2(0) = 1.16311· 107 kg
– Mass flow rate of BOD discharged in the region Q = 0.256 kg s−1

– Oxygen saturation density ds = 8.98· 10−3 kg m−3

– Kinetic coefficientsκ1 andκ2 κ1 = 1.15· 10−5 s−1

κ2 = 9 · 10−12 m s−1

– Area of water surface in contact with air A = 6.77399· 107 m2

– Water volume corresponding to half tide V = 1.43897· 109 m3

Exclusive data for model(5)

– Height over a fixed level at the mouth of thería φ(t) = 1.4

(
sin

(
8πt

178560− π

)
+ 1

)

– Parametersα andβ if φ′(t) < 0 α = 1, β = 1
– Parametersα andβ if φ′(t) > 0 α = 0.95,β = 1.02
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depuration. Then, the optimal management prob
is determining the depuration at each plant along
time, in such a way that the global depuration c
is minimized and the above constraints on the wa
quality are satisfied.

4.1. Mathematical formulation

In order to formulate this problem we need to ta
into account some issues. Firstly, ifmj denotes the
BOD of wastewater arriving to thej th plant andmj

is the BOD corresponding to the maximum depurat
at that plant, then determining the depuration at
j th plant is equivalent to finding the mass flow ra
of BOD, mj(t), discharged through the correspondi
outfall. We assume that they satisfy the constraints

(6)m � mj(t) � m, j = 1,2, . . . ,NE

Secondly, if we take BOD and DO as indicators of t
water quality, then the environmental constraints o
can be written as follows (see Section2):

(7)

{
ρ1|Ai

� σ i = 1, . . . ,NZ

ρ2|Ai
� ζ i = 1, . . . ,NZ

where σ and ζ are, respectively, critical levels fo
BOD and DO.

Finally, we suppose that the cost of the depurat
process at thej th plant is known and it is a strictly con
vex C2-function of the BOD discharged through th
corresponding outfall. Hence, iffj denotes the cos
function atj th plant, the cost of the whole depuratio
is given by,

(8)J1(m) =
NE∑
j=1

T∫
0

fj

(
mj(t)

)
dt

According to this, the optimal management probl
(P1) consists of finding the functionsmj(t), j = 1,

. . . ,NE, minimizing the cost function(8) in such a
way that the corresponding state of the system g
by (2) satisfies the constraints(6) and (7).

This is an optimal control problem with pointwis
state constraints and with pointwise control. We c
obtain the existence and uniqueness of solution an
optimality system in order to characterize it (see[11]
for further details).
4.2. Numerical resolution

The numerical solution of the optimal control pro
lem (P1) requires a discretization of the state s
tem(2). Moreover, in practice, because of the partic
lar shape of the functionsfj , the constraintsmj(t) �
m can be suppressed. Thus, we are led to conside
discretized constraints:

g1 :m → g1(m) = (ρ1 − σ, ζ − ρ2)

g2 :m → g2(m) = m − m

Then, the optimal control problem(P1) can be
written as follows,

(P1D)

{
minJ1(m)

such thatgi(m) � 0, i = 1,2

Now this problem can be solved by different numeri
methods (we refer to[13] for a numerical resolution
of (P1D) by using a sequential quadratic programm
algorithm and an admissible points method).

4.3. Numerical results

In this work we resolve this problem in a reali
tic situation posed in thería of A Coruña (Spain).
We consider one purifying plant and one protec
area (seeFig. 4). We assume pollutant concentrati
of the wastewater arriving to the purifying plant
150 kg m−3 (then the depuration cost above this va
is constant and equal to 100) and we suppose tha
complete depuration is not possible. Thus, we take
following cost function

f1(x) =



100× 1503

x3 − 3× 150x2 + 3× 1502x
if x � 150

100 if x � 150

We fix a maximum value for BOD (σ1 = 5.2416 ·
10−4 kg m−3) and a minimum value for DO (ζ1 =
8.03891· 10−3 kg m−3) in the protected area and w
resolve the problem(P1) in order to find the optima
discharge during a complete tidal cycle (T = 12.4 h).
The result can be seen inFig. 5. We observe that th
worst moment to discharge is low tide (t = 0); from
this moment, the depuration can be less and less st
until after hide tide when the BOD discharge must
again to decrease (for this discharge, the fulfillmen
the BOD constraints in the protected area at the
point of time can be seen inFig. 4).
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Fig. 4. BOD concentration at the end of the tidal cycle, for the discharge inFig. 5(ría of A Coruña).
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Fig. 5. Optimal discharge during a complete tidal cycle (ría of
A Coruña).

Fig. 6. Optimal discharge during three tidal cycles (ría of A Coruña).

In order to make sure that the previous interpre
tion is correct we have found the optimal discha
during several tidal cycles. InFig. 6, we show the
optimal discharge during three cycles. In effect,
observe some periodicity, however, because of B
accumulation, the discharge is greater in the next
cle than in the previous one. The DO concentratio
the last point of time, when the saturation of the co
straints takes place, can be seen inFig. 7.

5. Problem 2: Optimal location of wastewater
outfalls

The second problem is connected with the optim
design of a wastewater treatment system. Particul
it consists of finding the optimal location of the su
marine outfalls.

We consider a similar situation to the previous o
a domain occupied by shallow water where we
going to discharge polluting wastewater through s
marine outfalls and where there exist severalsensitive
areas in which we have to guarantee the water qua
in terms of BOD and DO. Moreover, we also suppo
that there areNE purifying plants (located at point
aj ∈ Γ ) but, unlike the previous problem, we now a
sume that the depuration in every plant is fixed (
functionsmj(t) are known beforehand) and our go
is to determine the pointsbj where wastewater wil
be discharged. These points must be determined in
der to minimize the construction cost of the submar
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Fig. 7. DO concentration at the end of the three cycles, for the discharge inFig. 6(ría of A Coruña).
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outfalls while guaranteeing the water quality at t
protected areas.

5.1. Mathematical formulation

The constraints on the water quality are giv
in (7). Moreover, taking into account technologic
limitations, thej th outfall must be placed in a sui
able regionUj , whereUj ⊂ Ω\⋃NZ

i=1 Āi is a compact
convex polyhedral set representing all the admiss
points where outfalls can be located. Thus, the opti
locations must verifybj ∈ Uj , ∀j = 1, . . . ,NE. If we
defineUad = ∏NE

j=1 Uj , this constraint can be writte
in the simpler way

(9)b ∈ Uad

Finally, we suppose that the construction cost of
j th outfall depends on the distance between the
rifying plant (located at pointaj ) and the point of
discharge,bj ∈ Ω . Hence we consider that the glob
cost of the system is given by

(10)J2(b) =
NE∑
j=1

1

2
‖bj − aj‖2

Then the problem of optimal design, denoted by(P2),
consists of finding the pointsbj , j = 1, . . . ,NE mini-
mizing the cost function(10)under the constraints(7)
and (9).
This is a control problem with quadratic cost b
with nonconvex pointwise state constraints wh
makes difficult its analysis and resolution. A comple
theoretical analysis of this problem can be seen in[14].

5.2. Numerical resolution

Now, in order to solve the problem(P2), we in-
troduce a discretization of the control problem in t
same way that the previous problem. Firstly, the fu
tion collecting the discretized state constraints is
noted byḡ1,

ḡ1 :b → ḡ1(b) = (ρ1 − σ, ζ − ρ2)

Secondly, we define a function̄g2 collecting all the
linear constraints on the control which correspond
the characterization ofUad, i.e., ḡ2 is such thatb ∈
Uad⇔ ḡ2(b) � 0.

Then the optimal control problem(P2) is approxi-
mated by the followingdiscrete optimization problem,

(P2D)

{
minJ2(b)

such that̄gi(b) � 0, i = 1,2

In [15], three different algorithms are used to obta
the numerical solution of(P2D) namely an admissibl
points algorithm, the Nelder–Mead simplex meth
and a duality method. As we can see in that pa
due to the geometric nature of the problem, the th
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Fig. 8. Optimal BOD concentration (hight tide,ría of Vigo).
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algorithms present a good performance, specially
Nelder–Mead method.

5.3. Numerical results

In this section we present the numerical results
tained when solving the problem(P2) for a realis-
tic situation posed in thería of Vigo (Spain) during
a complete tidal cycle. We have taken two purifyi
plants, located near the coast at pointsa1 = (0,11000)
anda2 = (6630,7200), and two protected areas (s
Fig. 8).

The state constraints for both protected areas co
sponds toσ1 = 0.0002,σ2 = 0.000135,ζ1 = 0.008067,
ζ2 = 0.0000805. The admissible setUad and the opti-
mal locationsb1 = (69,10224) andb2 = (5535,8278),
given by the Nelder–Mead method can be seen
Fig. 8. Moreover, this figure shows the BOD conce
tration at high tide, at the end of the tidal cycle that
have simulated.

6. Conclusions

In this work, mathematical modelling and optim
control theory have been successfully applied to
interesting ecological problem: the management
design of a wastewater treatment system for coa
areas. In the last sections of the paper we presen
merical results for two different cases related to t
ecological problem.

However, the main contribution of this paper is t
obtaining of a zero-dimensional model, which can
used in the study of the global performance of the s
tem; we present an application of this simple mode
a realistic situation posed in thería of Arousa (Spain).

Obtained results indicate the good performance
our models and show how mathematical tools can
very useful in the study of a wide range of ecologi
problems.
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