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Abstract

A major challenge confronting neuroscientists is associated with the multiple spatial and temporal scales of investigation
of neural structure and function. | shall discuss the use of computational neural modeling as one method to bridge some of
the different spatial and temporal levels. This approach will be illustrated using large-scale, neurobiologically realistic network
models of auditory and visual pattern recognition that relate neuronal dynamics to fMRI data. It will be demonstrated that the
models are capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are
in agreement with empirically observed dafa.cite thisarticle: B. Horwitz, C. R. Biologies 328 (2005).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Un défi majeur a relever en neurosciences est celui des différences de résolution spatiale et temporelle existant entre le
différentes techniques d'investigation du fonctionnement neuronal. Je discuterai ici I'intérét de la modélisation neuronale com-
putationnelle, méthode visant a pallier certaines de ces différences. Cette approche sera illustrée par des modeles de résea
de neurones a large échelle, neurobiologiquement réalistes. Ces réseaux modélisent les patrons de reconnaissance auditive
visuelle dans le cerveau humain et permettent de relier la dynamique du fonctionnement neuronal aux données acquises €
imagerie par résonance magnétique fonctionnelle (IRMf). Il sera démontré que les modéles utilisés sont capables de rendr
compte a la fois des caractéristiques IRMf et électrophysiologiques de I'activité neuronale, en accord avec les données obsel
vées empiriquemenPour citer cet article: B. Horwitz, C. R. Biologies 328 (2005).
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1. Introduction: The problem of multiple spatial the striatum. The resulting loss of this dopaminergic
and temporal scales striatal innervation leads to a movement disorder char-
acterized by tremor, bradykinesia and rigidity. Some-

The papers in this issue d@@omptes rendus Bi- times patients present with other non-motor symp-

ologies provide overviews of many new approaches toms, which can include cognitive deficiencifs.
directed toward understanding the central nervous sys- The motor symptoms often are alleviated by drugs that
tem and its disorders. As a brief examination of the replace the lost dopamifé], although this therapeu-
table of contents makes clear, these approaches ex4ic approach may fail as the disease process continues.
tend from the molecular to the systems level. They Treatment for advanced Parkinson’s disease includes
are based on the extraordinary achievements in sciencepallidotomy[7], and deep brain stimulation of either
and technology in the last half century, which have the globus pallidus or the sub-thalamic nucl¢8k
been characterized by the development of powerful Because deep brain stimulation has proved to be more
techniques for the acquisition, storage, and analysis of effective, it has essentially replaced unilateral pallido-
massive quantities of data. Perhaps nothing exempli- tomy [4]. The cause of the neurodegeneration of the
fies this better than the mapping of the human genome nigral neurons that is the basis of Parkinson’s disease
with its 3 x 10° base pairs arranged into about 30000 is unknown, but has been attributed to a number of
geneq1-3]. We have witnessed similar achievements factors, including aging, environmental exposure and
in neuroscience, especially in the last 20 years or so, genetic susceptibility. In their review, Samii et f]

with the proliferation of brain imaging devices, with  point out that studies of genetic markers associated
the development of sophisticated electrophysiological with familial parkinsonism suggest that the common
hardware and software, and with utilization of power- final pathway leading to neurodegeneration involves
ful genetic, molecular and biochemical methods. the ubiquitin—proteasome system.

One thing that the papers in this issue make clear As can be seen is this brief and simplified de-
is that in neuroscience, as in almost all areas of bi- scription of Parkinson’s disease, scientific investiga-
ology, we now have the ability to acquire vast quan- tion concerned with understanding the neuroscientific
tities of data at multiple spatial and temporal scales aspects of the disease —the basis of the disease, the cel-
of investigation. The spatial scales range all the way lular and molecular mechanisms that lead to neurode-
from the brain as a whole to subcellular and molecu- generation, the ways in which the loss of nigral neu-
lar dimensions, and the temporal dimensions go from rons result in movement abnormalities, how dopamine
days, months, years to submillisecond intervals. Be- replacement therapy first brings relief, but ultimately
cause there is no one method that transcends all theleads to dyskinesias and refractory motor fluctuations
different levels, it is difficult for investigators to in-  (on-off phenomena), and how deep-brain stimulation
terpret their data in terms of a single, unified account (or pallidotomy) may alleviate tremor and dyskine-
relating specific behaviors to their underlying neural sia — must address problems at multiple levels — the
mechanisms. Therefore, in order for neuroscience to genetic and molecular, the synaptic and neuronal, the
advance, it will be essential for us to develop system- neural circuit and the neural system. Results obtained
atic ways to bridge these levels — to integrate neuro- at one level (e.g., dopamine replacement therapy alle-
scientific information across them so as to generate viates the motor symptoms of PD) must be integrated
coherent and unified accounts of the phenomena thatwith other results (e.g., the development of motor fluc-
are being investigated. tuations after long-term use of dopamine replacement

Neurodegenerative diseases provide apt examplestherapy).
to illustrate some of these issues. Consider Parkinson’s  In the past, most neuroscientists were content with
disease (PD), which has been extensively studied andqualitative arguments for bridging the various levels.
for which we now know a great deal (see Samii et However, several facts suggest that quantitative tech-
al. [4] for a recent review). It has long been recog- niques will be necessary for integrating our under-
nized that the essential neuropathological basis for the standing of neural systems across many of the levels
disease is the degeneration of dopaminergic neuronsof analysis. First, many of the methods now used gen-
in the substantia nigra pars compacta that project to erate rich and complex data sets, and this very com-
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plexity will often require computational methods to focal brain lesions, and electrophysiological micro-
manage and manipulate such data. Second, these datalectrode recordings acquired during specific behav-
have features that differ from one another, making ioral tasks. More recently, techniques like transcranial
them difficult, if not impossible, to relate directly to magnetic stimulation, which can produce ‘virtual’ le-
one another. Finally, neural systems do not act in iso- sions, have become valuable tools for studying the
lation, but rather are part of complex networks with brain basis of cognition. Of course, these methods
both feedforward and feedback interactions. Such sys- still constitute a significant component of cognitive
tems tend to possess nonlinear properties that only canneuroscience. However, human functional neuroimag-
be dealt with in the context of mathematical analysis. ing methods [positron emission tomography (PET),
Thus, one important feature of the neurosciences of functional magnetic resonance imaging (fMRI), elec-
the future will be the increasing use of computational tro(magneto)encephalography (EEG/MEG)], devel-
neuroscientific methods in conjunction with the rich oped primarily within the last twenty-five years, have
and detailed data sets that will flow from experimental produced an extraordinary wealth of new data that
laboratories. have added considerable information about the func-
In the remainder of this article | want to expand tional neuroanatomy of specific cognitive functions
upon these general remarks with some specific exam-(and dysfunctions).
ples, illustrating some of the work that my colleagues Several features make functional brain imaging
and | have performed that attempt to develop meth- data so extraordinary: (1) they, of course, permit one
ods that bridge different levels of analysis, and to use to directly have a measure of brain functional activity
these methods to understand the neural basis of certairthat can be related to brain structure and to behavior;
aspects of human cognition. Of course, nobody and no (2) they can be acquired non-invasively from healthy
single method can bridge all the different levels simul- normal subjects, as well as from patients with brain
taneously. Rather, different efforts are being made by disorders; (3) because these data are obtained simulta-
different groups to cross a few levels. In our case, we neously from much of the brain, they are quite unique
are interested in relating neuronal activity to functional  for investigating not just what a single brain area does,
neuroimaging data to specific behavior. Although this but also how brain regions work together during the
approach is just getting under way, and our initial re- performance of individual cognitive tasks. This latter
sults are modest and tentative, | think these examplespoint is significant because the more traditional meth-
represent interesting illustrations of how neuroscience ods used to understand the neural basis of human cog-
will likely proceed in the near future. nition investigate one ‘object’ at a time (e.g., the ideal
brain damaged patient has a single localized brain le-
sion; single unit recordings from primates are obtained
from individual neurons in one brain region). The po-
tential to assess how brain regions interact to imple-
Cognitive neuroscientists have used a number of ment specific cognitive functions has necessitated the
different methods to understand the neural basis of development of network analysis methods. Thus, we
human cognitive functiof9]. For a long time, most  are now witnessing what may be conceived as a con-

2. Investigating the neural basis of human
cognition

knowledge concerning the neurobiological correlates
of human cognition was derived from neuropsycho-
logical investigation of brain damaged patients, by
electrical stimulation and recording of individuals

undergoing neurosurgery, or by examining behav-
ior in conjunction with genetic analysis or follow-

ing psychopharmacological intervention. This infor-
mation was further enhanced and clarified by the

ceptual revolution in cognitive neuroscience, in that
one prevailing paradigm — that of each cognitive func-
tion corresponding to an encapsulated functional (and
possibly neuroanatomical) modu[&0] — is giving
way to a new paradigm which views cognitive func-
tions being mediated by distributed interacting neural
elementg11-14]

However, all the different neuroscience methods —

analysis in nonhuman primates and other mammals whether neuroimaging or non-neuroimaging based —
of their neuroanatomical connections, neurochemi- produce data possessing differing spatial and tempo-
cal architecture, performance changes produced byral features, as well as other distinctive properties. For
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example, the temporal resolution of fMRI is on the tions in neural terms, not cognitive terms. The goal
order of seconds, whereas that for MEG is in the mil- will be to have the cognitive behaviors appear as emer-
lisecond range. In essence, one can say that the datgyent phenomena.

produced by each method are incommensurate with

one another; that is, there is no easy way to make sure ) , ) )

that the interpretations produced by one method lead 3. Visual and auditory object perception

to conclusions that are consistent with those produced 1o jllustrate the large-scale neural modeling ap-

by the others. proach presented in the previous section, | will discuss
For the remainder of this paper, the functional brain  my |aboratory’s research investigating the neural sub-
imaging data | will focus on come from PET and strates of object perception. My group is interested in
fMRI, which are methods that measure changes in poth visual objects and auditory objects (for a useful
hemodynamic and metabolic activity in the brain (see discussion of the nature of visual and auditory ob-
[15] for a brief overview of these methods). The ideais jects, seg29]). Although many nonhuman primates
that, because neural activity requires energy, regional show great interest in visual objects, humans appear
increases in neural activity lead to regional changes to be unique among primates in that they have a well-
in oxidative metabolism, which are met by increas- developed interest in several types of auditory objects.
ing the local cerebral blood flow. The different brain | jke visual objects (such as tables, chairs, people), au-
imaging methods aid in locating the neural popula- ditory objects can be thought of as perceptual entities
tions engaged by particular cognitive operations by susceptible to figure-ground separat{@9]. Besides
producing maps of changes in one or another of the definable environmental sounds, humans are particu-
indicators of metabolism. The exact relationship be- |arly interested in words and musical patterns, and thus
tween neural activity and altered metabolism is not the number of auditory objects human beings have the
well understood, but it is a topic of active research ability to distinguish is in the hundreds of thousands.
[16-18] and is discussed in the article by Nikos Lo- Conversely, the corresponding number for nonhuman
gothetis in this issugl 9]. primates is likely to be several orders of magnitude
To understand the neural basis for cognitive func- smaller; such objects likely consist of some species-
tion in humans, we have used a combined neural specific sounds as well as some important environment
modeling-functional brain imaging strategy. There are sounds (e.g., sounds associated with a predagg).
two kinds of modeling that we empld0]. The first Understanding the neural basis for how such auditory
seeks to identify the brain regions that comprise the objects are processed is a major challenge.
functional network mediating a specific cognitive task, Our starting point for thinking about this problem
and to determine the functional strength of the connec- was to examine the similarities between auditory and
tions between these brain regidagd—25] visual object processing. Both start as signals at the re-
The second modeling method, which is the one | ceptor surface (retina for vision, cochlea for audition).
will discuss in greater detail in this article, involves Following Roy Patterson’s notiof31], a great deal of
the construction of large-scale, biologically realistic lower brain level processing occurs, resulting in the
neural models of the cognitive task of interest in construction of what Patterson terms an auditory (or
which we can simulate both neural activity, and func- visual) image — and what | will somewhat loosely call
tional brain imaging dat§26—28] This is the mod- a percept — at the level of primary auditory (or visual)
eling method that enables us to bridge different spa- cortex. However, neural processing does not stop there
tiotemporal scales. The simulated neural activity is —rather, higher cortical areas engage in integrating the
compared to experimental values obtained in nonhu- percept with other aspects of the world, at least in pri-
man primates, when available, and the simulated func- mates; that is, the percept is transformed into a concept
tional brain imaging data are compared to PET or (Fig. 1). Understanding the processing of auditory ob-
fMRI data from human subjects. The model incor- jects at the higher levels is critical for understanding
porates specific hypotheses about how we think the speech perception.
cognitive processes are mediated by different neural It has been well known for over 20 years that there
components. Note that we try to phrase our assump- are multiple areas in the primate brain that respond
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From Signal to Percept to Concept

Comparison of Auditory & Visual Pathways Concept

(higher cortical levels)
Auditory Image

Ve .A( AC
Loew MGE im‘ﬁf
® - Percept (image)

':',?\. "'m’ (primary cortex)

LL * LL
SOC 4| SOC

N N

Sound Signal
(retina, cochlea)

Vision Audition

Fig. 1. Figure showing a comparison of the auditory and visual pathways from receptor to primary cortex (left) and how this results in trans-
forming an incoming ‘signal’ into a ‘percept’. Higher cortical levels (not shown), in turn, convert a ‘percept’ into a ‘concept’. The pathway
comparison part of the figure is modified from one created by Roy Patterson. LGN — lateral geniculate nucleus; VC — (primary) visual cortex;
CN — cochlear nucleus; SOC — superior olivary complex; LL — lateral lemniscus; IC — inferior colliculus; MGB — medial geniculate body; AC
— (primary) auditory cortex.

to visual stimuli. The areas show both a parallel and for our work, which focused on the object processing
hierarchical arrangement, forming primarily two path- pathway.
ways that start in primary visual cortex, as first pro- To understand the neural basis for object processing
posed by Ungerleider and Mishkii32]. One path- in humans, we used a combined neural modeling-
way includes regions in ventral occipital, temporal and functional brain imaging strategy. We constructed
frontal cortex and appears to be concerned with ob- large-scale, biologically realistic neural models of the
jects — processing features such as form and color. object processing pathways (all the way from primary
The other major pathway starts in occipital cortex and cortex to the frontal lobe) in which we could simulate
extends dorsally into parietal cortex and thence into both neural activity and functional brain imaging data.
dorsal frontal cortex. Neurons in these areas seem toThe former was compared to experimental values ob-
be engaged in processing the location of objects in tained in nonhuman primates, when available, and the
space. latter was compared to PET or fMRI data from human
Recent investigations in primates, including hu- subjects. The models incorporated specific hypothe-
mans, have given rise to the hypothesis, proposed byses about how we think objects are processed at the
Kaas et al.[33], Rauscheckef34] and otherq35], different cortical levels. We hope in the near future to
that, like the visual system, the auditory areas in the expand our model to deal with speech, and to be able
cerebral cortex contain at least two primary process- to incorporate and simulate EEG/MEG data.
ing pathways — a ventral stream running from primary ~ We developed two models — one for visual ob-
auditory cortex anteriorly along the superior temporal ject processing[27,36] and one for auditory ob-
gyrus that is associated with processing the features ofject processing37]. Both models perform a delayed
auditory objects, and a dorsal stream that goes into the match-to-sample (DMS) task, in which a stimulus is
parietal lobe that is concerned with the spatial location presented briefly, there is a delay period during which
of the auditory input. Unlike the visual system, this the stimulus is kept in short-term memory, a second
notion is more controversial and lacks strong experi- stimulus is presented, and the model decides if the
mental support. Nonetheless, it was the starting point second stimulus is the same as the first. For the vi-
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sual model, the stimuli consisted of simple geometric an appropriate time course. For simulating fMRI, these
shapes (e.g., squares, tees), whereas for the auditorywalues are convolved with a function representing the
model, the stimuli consisted of simple tonal patterns hemodynamic delafB6].

(e.g., combinations of frequency sweeps).
The visual model[27] incorporates four major

brain regions representing the ventral object process-

ing stream32]: (1) primary sensory cortex (V1/V2);
(2) secondary sensory cortex (V4); (3) a perceptual in-
tegration region (inferior temporal (IT) cortex); and
(4) prefrontal cortex (PFC), which plays a central
role in short-term working memory. Every region con-
sists of multiple excitatory-inhibitory units (modified
Wilson—Cowan units) each of which represents a cor-
tical column. Both feedforward and feedback con-
nections link neighboring regions. There are different
scales of spatial integration in the first 3 stages, with
the primary sensory region having the smallest spa-
tial receptive field and IT the largest. This is based on

There is also a biasing (or attention) signal that
is used to tell the models which task to perform: the
DMS task, or a sensory control task that requires
only sensory processing but no retention in short-term
memory. This biasing variable modulates a specific
subset of prefrontal units via diffuse synaptic inputs,
the functional strength of which controls whether the
stimuli are to be retained in short-term memory or
not [40]. Activity in each brain area, therefore, is
some combination of feedforward activity determined
in part by the presence of an input stimulus, feed-
back activity determined in part by the strength of the
modulatory bias signal, and local activity within each
region. Details about the parameters used in the two
models, and a thorough discussion of all the assump-

the experimental observation that the spatial receptive tions employed, are given in Tagamets and Horwitz
field of a neuron increases as one goes from primary [27,40]and in Husain et a[37].

visual cortex to higher-level are§38]. Model para-

In a typical simulation, following presentation of

meters were chosen so that the excitatory elementsthe initial stimulus, significant neural activity occurs

have simulated neuronal activities resembling those
found in electrophysiological recordings from mon-
keys performing similar tasks (e.§39]).

The model for auditory object processing was con-

in all brain regions of the model. During the delay in-
terval, the period when the stimulus must be kept in
short-term memaory, activity in two prefrontal popula-
tions is relatively high, but low-level activity continues

structed in a manner analogous to the visual model in all other neural populations. When the second stim-
(see Husain et a[37] for details and parameter val- ulus occurs during the response portion of the task,
ues). The modules we included were primary sen- neural activity again increases in all areas, and a sub-
sory cortex (Ai), secondary sensory cortex (Aii), a population in PFC responds only if the second stim-
perceptual integration region (superior temporal cor- ulus matches the first. There also is a control task,
tex/sulcus, ST), and a prefrontal module (PFC) essen-where “noise” inputs are used as inputs to the mod-
tially identical to that used in the visual model. As with  els, but no representations have to be maintained in
the visual model, there were feedforward and feedback short-term memory. Both the visual and auditory sim-
connections between modules (and also specific lat- ulations demonstrate that these neural models can per-
eral connections within some of the modules; this is form the DMS task and that the simulated electrical ac-
different from that used in the visual model). Because tivities in each region are similar to those observed in
auditory stimuli are perceived over time, rather than nonhuman mammalian electrophysiological studies.
space, the neurons in the auditory model were posited  The simulated functional neuroimaging data for the
to have temporal receptive fields that become larger asvisual model were compared to PET regional cerebral

one goes from Ai to Aii to ST.
A functional neuroimaging study is simulated by

presenting stimuli to an area of the model correspond-

ing to the lateral geniculate nucleus (LGN) for the

blood flow (rCBF) values for a short-term memory
task for faces (the original data came from Haxby et
al. [41]). The control tasks consisted of passive view-
ing of scrambled shapes for the model and a nonsense

visual case or the medial geniculate nucleus (MGN) pattern for the experiment. When the simulated rCBF
for the auditory case. The PET/fMRI response is sim- values (obtained as the temporal integration of the
ulated by temporally and spatially integrating the ab- synaptic activity in each region over the 10 trials of the
solute value of the synaptic activity in each region over PET DMS task, which corresponds to a time interval
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Model vs. Experiment:
% Signal Change (Tonal Contours-Tones)
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Fig. 2. Experimental and simulated fMRI values in the different brain regions for the auditory model. Shown are percent signal change compar-
ing the DMS tasks for tonal contours to that for pure tones. Experimental data correspond to the two solid bars on the left, and simulated data
correspond to the two hatched bars on the right. The high and mid attention parameters in the model refer to the levels of attention during the
tone task. See Husain et {87].

of about 1 minute) of the two conditions were com- not match the experimental value. A likely reason for
pared[27], the differences had values similar to those this is that we included in our model only one type of
found in the experimental PET study of short-term neuron found in primary auditory cortex (selective for
memory for face$41]. Specially, we found in V1/V2  frequency sweeps), but there are many neuronal types
a 3.1% change in simulated rCBF vs. a 2.7% change in selective for other features in the auditory input (e.g.,
the experimental data. In V4 the corresponding num- loudness, on and off properties of the input) in the
bers were 5.2% (simulation) vs. 8.1% (experiment); brain that we were not modeling. Moreover, there was
in IT they were 2.5% (simulation) vs. 4.2% (experi- a large amount of scanner noise during the experiment
ment). Finally, in PFC we found a 3.5% change in the that would have had some effect on the experimental
simulated data and a 4.1% change in the experimentaldata that was not accounted for during the simulation.
values. The second point is that for one choice of the atten-
For the auditory simulation, identical stimuli (tonal tion parameter, we were able to get close quantitative
contours, each consisting of two frequency sweeps, agreement between simulated and experimental data
separated by a constant tone; each tonal contour wasin all the right hemisphere regions (except Ai).
350 ms in duration and the delay period in the DMS The results of both sets of simulations demon-
task was 1000 ms long) were used for both modeling strate that the neurobiologically realistic models we
and experimen{37]. Fig. 2 shows the percent sig- have constructed can generate both regional electrical
nal changes (comparing the fMRI activity for tonal activities that match experimental data from electro-
contours to that for pure tones) in each brain region physiological studies in honhuman primates, and, at
for both the simulated and the experimental data. We the same time, PET or fMRI data in multiple, inter-
chose experimental values in regions from both the connected brain regions that generally are in close
left and right hemisphere to compare to the simulated quantitative correspondence with experimental val-
data, since we had no a priori reason to restrict our- ues. This agreement between simulation and exper-
selves to either the right or the left. We also included imental data therefore supports the hypotheses that
modeling data from two separate simulations that dif- were used to construct the models, in particular dif-
fered from one another in the choice of the value of ferent frontal neuronal populations interact during a
the attention bias parameter used during the DMS task DMS task, and the crucial role of top-down process-
for tones. Two main points emerge frdig. 2 First, ing (via feedback connections) play in implementing
our simulated results in primary auditory cortex did correct performance. For the auditory model, where
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there is much less experimental information available of these experimental approaches will be discussed in
concerning the neurophysiological and neuroanatom- other papers in this issue.
ical properties of the neuronal populations involved Finally, | would like to conclude with a general
with auditory processing, we had to make a number comment. As | stated at the beginning, the problems
of assumptions concerning the response properties ofneuroscience faces for the future are really problems
model neurons. One important assumption we made, that many sciences, but especially biology, also face.
for which there was limited experimental support (e.g., As has been noted by many others, one of the key
[42]), was that the temporal receptive field of neu- problems is converting what is known about local in-
rons in the auditory object pathway increased as one teractions at one level into an understanding of how a
progressed from primary to secondary to higher-level more global system behaves. Perhaps the simplest ex-
cortex. The generally good agreement between experi-ample is that although we may know the sequence of
mental and simulated data, therefore, offers additional amino acids that comprise a specific protein, this in-
support for this assumption, and indicates that exper- formation does not, as yet, enable one to know how
imental studies in nonhuman animals testing this no- this sequence folds up to produce a molecule with a
tion are worth performing. specific structure and function. Scientists are getting
better and better at determining the nature of the lo-
cal interactions. In the neurosciences, we can record
4. Concluding remarks from single neurons, we can investigate with great de-
tail the properties of individual receptor molecules,
The type of modeling that was presented in the pre- and so forth. A significant problem is to determine
vious section demonstrates that quantitative biological how all these local interactions become orchestrated
data can be used to test hypotheses concerning the reinto specific global behaviors. Our approach has been
lation between biological processes that cross different to investigate this problem using detailed and some-
spatial and temporal scales. However, the models thatwhat biologically realistic simulations. | believe that
we illustrated represent only the first steps in the di- it is through these computational and simulation ap-
rection that neuroscience will need to travel in order proaches that progress will be made in relating local
to provide integrated accounts across the many lev- to global behavior.
els of investigation. As this type of modeling becomes
more widely utilized, there are other types of data can
that one can attempt to include. Currently, in our lab- Acknowledgements
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