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Abstract

A major challenge confronting neuroscientists is associated with the multiple spatial and temporal scales of inve
of neural structure and function. I shall discuss the use of computational neural modeling as one method to bridge
the different spatial and temporal levels. This approach will be illustrated using large-scale, neurobiologically realistic
models of auditory and visual pattern recognition that relate neuronal dynamics to fMRI data. It will be demonstrated
models are capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values
in agreement with empirically observed data.To cite this article: B. Horwitz, C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un défi majeur à relever en neurosciences est celui des différences de résolution spatiale et temporelle existan
différentes techniques d’investigation du fonctionnement neuronal. Je discuterai ici l’intérêt de la modélisation neuron
putationnelle, méthode visant à pallier certaines de ces différences. Cette approche sera illustrée par des modèles
de neurones à large échelle, neurobiologiquement réalistes. Ces réseaux modélisent les patrons de reconnaissanc
visuelle dans le cerveau humain et permettent de relier la dynamique du fonctionnement neuronal aux données a
imagerie par résonance magnétique fonctionnelle (IRMf). Il sera démontré que les modèles utilisés sont capables
compte à la fois des caractéristiques IRMf et électrophysiologiques de l’activité neuronale, en accord avec les donné
vées empiriquement.Pour citer cet article : B. Horwitz, C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction: The problem of multiple spatial
and temporal scales

The papers in this issue ofComptes rendus Bi-
ologies provide overviews of many new approach
directed toward understanding the central nervous
tem and its disorders. As a brief examination of
table of contents makes clear, these approaches
tend from the molecular to the systems level. Th
are based on the extraordinary achievements in sci
and technology in the last half century, which ha
been characterized by the development of powe
techniques for the acquisition, storage, and analys
massive quantities of data. Perhaps nothing exem
fies this better than the mapping of the human geno
with its 3× 109 base pairs arranged into about 30 0
genes[1–3]. We have witnessed similar achieveme
in neuroscience, especially in the last 20 years or
with the proliferation of brain imaging devices, wi
the development of sophisticated electrophysiolog
hardware and software, and with utilization of pow
ful genetic, molecular and biochemical methods.

One thing that the papers in this issue make c
is that in neuroscience, as in almost all areas of
ology, we now have the ability to acquire vast qua
tities of data at multiple spatial and temporal sca
of investigation. The spatial scales range all the w
from the brain as a whole to subcellular and mole
lar dimensions, and the temporal dimensions go fr
days, months, years to submillisecond intervals.
cause there is no one method that transcends al
different levels, it is difficult for investigators to in
terpret their data in terms of a single, unified acco
relating specific behaviors to their underlying neu
mechanisms. Therefore, in order for neuroscienc
advance, it will be essential for us to develop syste
atic ways to bridge these levels – to integrate neu
scientific information across them so as to gene
coherent and unified accounts of the phenomena
are being investigated.

Neurodegenerative diseases provide apt exam
to illustrate some of these issues. Consider Parkins
disease (PD), which has been extensively studied
for which we now know a great deal (see Samii
al. [4] for a recent review). It has long been reco
nized that the essential neuropathological basis for
disease is the degeneration of dopaminergic neu
in the substantia nigra pars compacta that projec
-

the striatum. The resulting loss of this dopaminer
striatal innervation leads to a movement disorder ch
acterized by tremor, bradykinesia and rigidity. Som
times patients present with other non-motor sym
toms, which can include cognitive deficiencies[5].
The motor symptoms often are alleviated by drugs
replace the lost dopamine[6], although this therapeu
tic approach may fail as the disease process contin
Treatment for advanced Parkinson’s disease inclu
pallidotomy[7], and deep brain stimulation of eith
the globus pallidus or the sub-thalamic nucleus[8].
Because deep brain stimulation has proved to be m
effective, it has essentially replaced unilateral palli
tomy [4]. The cause of the neurodegeneration of
nigral neurons that is the basis of Parkinson’s dise
is unknown, but has been attributed to a numbe
factors, including aging, environmental exposure a
genetic susceptibility. In their review, Samii et al.[4]
point out that studies of genetic markers associa
with familial parkinsonism suggest that the comm
final pathway leading to neurodegeneration invol
the ubiquitin–proteasome system.

As can be seen is this brief and simplified d
scription of Parkinson’s disease, scientific investi
tion concerned with understanding the neuroscien
aspects of the disease – the basis of the disease, th
lular and molecular mechanisms that lead to neuro
generation, the ways in which the loss of nigral ne
rons result in movement abnormalities, how dopam
replacement therapy first brings relief, but ultimate
leads to dyskinesias and refractory motor fluctuati
(on-off phenomena), and how deep-brain stimulat
(or pallidotomy) may alleviate tremor and dyskin
sia – must address problems at multiple levels –
genetic and molecular, the synaptic and neuronal,
neural circuit and the neural system. Results obta
at one level (e.g., dopamine replacement therapy
viates the motor symptoms of PD) must be integra
with other results (e.g., the development of motor fl
tuations after long-term use of dopamine replacem
therapy).

In the past, most neuroscientists were content w
qualitative arguments for bridging the various leve
However, several facts suggest that quantitative te
niques will be necessary for integrating our und
standing of neural systems across many of the le
of analysis. First, many of the methods now used g
erate rich and complex data sets, and this very c
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plexity will often require computational methods
manage and manipulate such data. Second, these
have features that differ from one another, mak
them difficult, if not impossible, to relate directly t
one another. Finally, neural systems do not act in
lation, but rather are part of complex networks w
both feedforward and feedback interactions. Such
tems tend to possess nonlinear properties that only
be dealt with in the context of mathematical analys
Thus, one important feature of the neuroscience
the future will be the increasing use of computatio
neuroscientific methods in conjunction with the ri
and detailed data sets that will flow from experimen
laboratories.

In the remainder of this article I want to expa
upon these general remarks with some specific ex
ples, illustrating some of the work that my colleagu
and I have performed that attempt to develop me
ods that bridge different levels of analysis, and to
these methods to understand the neural basis of ce
aspects of human cognition. Of course, nobody and
single method can bridge all the different levels sim
taneously. Rather, different efforts are being made
different groups to cross a few levels. In our case,
are interested in relating neuronal activity to functio
neuroimaging data to specific behavior. Although t
approach is just getting under way, and our initial
sults are modest and tentative, I think these exam
represent interesting illustrations of how neuroscie
will likely proceed in the near future.

2. Investigating the neural basis of human
cognition

Cognitive neuroscientists have used a numbe
different methods to understand the neural basis
human cognitive function[9]. For a long time, mos
knowledge concerning the neurobiological correla
of human cognition was derived from neuropsych
logical investigation of brain damaged patients,
electrical stimulation and recording of individua
undergoing neurosurgery, or by examining beh
ior in conjunction with genetic analysis or follow
ing psychopharmacological intervention. This info
mation was further enhanced and clarified by
analysis in nonhuman primates and other mamm
of their neuroanatomical connections, neuroche
cal architecture, performance changes produced
a
focal brain lesions, and electrophysiological mic
electrode recordings acquired during specific beh
ioral tasks. More recently, techniques like transcra
magnetic stimulation, which can produce ‘virtual’ l
sions, have become valuable tools for studying
brain basis of cognition. Of course, these meth
still constitute a significant component of cogniti
neuroscience. However, human functional neuroim
ing methods [positron emission tomography (PE
functional magnetic resonance imaging (fMRI), ele
tro(magneto)encephalography (EEG/MEG)], dev
oped primarily within the last twenty-five years, ha
produced an extraordinary wealth of new data t
have added considerable information about the fu
tional neuroanatomy of specific cognitive functio
(and dysfunctions).

Several features make functional brain imag
data so extraordinary: (1) they, of course, permit o
to directly have a measure of brain functional activ
that can be related to brain structure and to behav
(2) they can be acquired non-invasively from heal
normal subjects, as well as from patients with br
disorders; (3) because these data are obtained sim
neously from much of the brain, they are quite uniq
for investigating not just what a single brain area do
but also how brain regions work together during
performance of individual cognitive tasks. This lat
point is significant because the more traditional me
ods used to understand the neural basis of human
nition investigate one ‘object’ at a time (e.g., the id
brain damaged patient has a single localized brain
sion; single unit recordings from primates are obtain
from individual neurons in one brain region). The p
tential to assess how brain regions interact to imp
ment specific cognitive functions has necessitated
development of network analysis methods. Thus,
are now witnessing what may be conceived as a c
ceptual revolution in cognitive neuroscience, in th
one prevailing paradigm – that of each cognitive fu
tion corresponding to an encapsulated functional (
possibly neuroanatomical) module[10] – is giving
way to a new paradigm which views cognitive fun
tions being mediated by distributed interacting neu
elements[11–14].

However, all the different neuroscience method
whether neuroimaging or non-neuroimaging base
produce data possessing differing spatial and tem
ral features, as well as other distinctive properties.
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example, the temporal resolution of fMRI is on t
order of seconds, whereas that for MEG is in the m
lisecond range. In essence, one can say that the
produced by each method are incommensurate
one another; that is, there is no easy way to make
that the interpretations produced by one method l
to conclusions that are consistent with those produ
by the others.

For the remainder of this paper, the functional br
imaging data I will focus on come from PET an
fMRI, which are methods that measure changes
hemodynamic and metabolic activity in the brain (s
[15] for a brief overview of these methods). The idea
that, because neural activity requires energy, regio
increases in neural activity lead to regional chan
in oxidative metabolism, which are met by increa
ing the local cerebral blood flow. The different bra
imaging methods aid in locating the neural popu
tions engaged by particular cognitive operations
producing maps of changes in one or another of
indicators of metabolism. The exact relationship
tween neural activity and altered metabolism is
well understood, but it is a topic of active resear
[16–18], and is discussed in the article by Nikos L
gothetis in this issue[19].

To understand the neural basis for cognitive fu
tion in humans, we have used a combined ne
modeling-functional brain imaging strategy. There
two kinds of modeling that we employ[20]. The first
seeks to identify the brain regions that comprise
functional network mediating a specific cognitive ta
and to determine the functional strength of the conn
tions between these brain regions[21–25].

The second modeling method, which is the on
will discuss in greater detail in this article, involve
the construction of large-scale, biologically realis
neural models of the cognitive task of interest
which we can simulate both neural activity, and fun
tional brain imaging data[26–28]. This is the mod-
eling method that enables us to bridge different s
tiotemporal scales. The simulated neural activity
compared to experimental values obtained in non
man primates, when available, and the simulated fu
tional brain imaging data are compared to PET
fMRI data from human subjects. The model inc
porates specific hypotheses about how we think
cognitive processes are mediated by different ne
components. Note that we try to phrase our assu
tions in neural terms, not cognitive terms. The g
will be to have the cognitive behaviors appear as em
gent phenomena.

3. Visual and auditory object perception

To illustrate the large-scale neural modeling a
proach presented in the previous section, I will disc
my laboratory’s research investigating the neural s
strates of object perception. My group is interested
both visual objects and auditory objects (for a use
discussion of the nature of visual and auditory o
jects, see[29]). Although many nonhuman primate
show great interest in visual objects, humans app
to be unique among primates in that they have a w
developed interest in several types of auditory obje
Like visual objects (such as tables, chairs, people),
ditory objects can be thought of as perceptual enti
susceptible to figure-ground separation[29]. Besides
definable environmental sounds, humans are par
larly interested in words and musical patterns, and t
the number of auditory objects human beings have
ability to distinguish is in the hundreds of thousan
Conversely, the corresponding number for nonhum
primates is likely to be several orders of magnitu
smaller; such objects likely consist of some spec
specific sounds as well as some important environm
sounds (e.g., sounds associated with a predator[30]).
Understanding the neural basis for how such audi
objects are processed is a major challenge.

Our starting point for thinking about this proble
was to examine the similarities between auditory a
visual object processing. Both start as signals at the
ceptor surface (retina for vision, cochlea for auditio
Following Roy Patterson’s notion[31], a great deal o
lower brain level processing occurs, resulting in
construction of what Patterson terms an auditory
visual) image – and what I will somewhat loosely c
a percept – at the level of primary auditory (or visu
cortex. However, neural processing does not stop t
– rather, higher cortical areas engage in integrating
percept with other aspects of the world, at least in
mates; that is, the percept is transformed into a con
(Fig. 1). Understanding the processing of auditory o
jects at the higher levels is critical for understand
speech perception.

It has been well known for over 20 years that th
are multiple areas in the primate brain that resp
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to visual stimuli. The areas show both a parallel a
hierarchical arrangement, forming primarily two pa
ways that start in primary visual cortex, as first p
posed by Ungerleider and Mishkin[32]. One path-
way includes regions in ventral occipital, temporal a
frontal cortex and appears to be concerned with
jects – processing features such as form and co
The other major pathway starts in occipital cortex a
extends dorsally into parietal cortex and thence i
dorsal frontal cortex. Neurons in these areas seem
be engaged in processing the location of objects
space.

Recent investigations in primates, including h
mans, have given rise to the hypothesis, propose
Kaas et al.[33], Rauschecker[34] and others[35],
that, like the visual system, the auditory areas in
cerebral cortex contain at least two primary proce
ing pathways – a ventral stream running from prim
auditory cortex anteriorly along the superior tempo
gyrus that is associated with processing the feature
auditory objects, and a dorsal stream that goes into
parietal lobe that is concerned with the spatial locat
of the auditory input. Unlike the visual system, th
notion is more controversial and lacks strong exp
mental support. Nonetheless, it was the starting p
for our work, which focused on the object process
pathway.

To understand the neural basis for object proces
in humans, we used a combined neural modeli
functional brain imaging strategy. We construct
large-scale, biologically realistic neural models of t
object processing pathways (all the way from prim
cortex to the frontal lobe) in which we could simula
both neural activity and functional brain imaging da
The former was compared to experimental values
tained in nonhuman primates, when available, and
latter was compared to PET or fMRI data from hum
subjects. The models incorporated specific hypo
ses about how we think objects are processed a
different cortical levels. We hope in the near future
expand our model to deal with speech, and to be
to incorporate and simulate EEG/MEG data.

We developed two models – one for visual o
ject processing[27,36] and one for auditory ob
ject processing[37]. Both models perform a delaye
match-to-sample (DMS) task, in which a stimulus
presented briefly, there is a delay period during wh
the stimulus is kept in short-term memory, a seco
stimulus is presented, and the model decides if
second stimulus is the same as the first. For the
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sual model, the stimuli consisted of simple geome
shapes (e.g., squares, tees), whereas for the aud
model, the stimuli consisted of simple tonal patte
(e.g., combinations of frequency sweeps).

The visual model[27] incorporates four majo
brain regions representing the ventral object proc
ing stream[32]: (1) primary sensory cortex (V1/V2)
(2) secondary sensory cortex (V4); (3) a perceptua
tegration region (inferior temporal (IT) cortex); an
(4) prefrontal cortex (PFC), which plays a cent
role in short-term working memory. Every region co
sists of multiple excitatory-inhibitory units (modifie
Wilson–Cowan units) each of which represents a c
tical column. Both feedforward and feedback co
nections link neighboring regions. There are differ
scales of spatial integration in the first 3 stages, w
the primary sensory region having the smallest s
tial receptive field and IT the largest. This is based
the experimental observation that the spatial recep
field of a neuron increases as one goes from prim
visual cortex to higher-level areas[38]. Model para-
meters were chosen so that the excitatory elem
have simulated neuronal activities resembling th
found in electrophysiological recordings from mo
keys performing similar tasks (e.g.,[39]).

The model for auditory object processing was c
structed in a manner analogous to the visual mo
(see Husain et al.[37] for details and parameter va
ues). The modules we included were primary s
sory cortex (Ai), secondary sensory cortex (Aii),
perceptual integration region (superior temporal c
tex/sulcus, ST), and a prefrontal module (PFC) ess
tially identical to that used in the visual model. As wi
the visual model, there were feedforward and feedb
connections between modules (and also specific
eral connections within some of the modules; this
different from that used in the visual model). Becau
auditory stimuli are perceived over time, rather th
space, the neurons in the auditory model were pos
to have temporal receptive fields that become large
one goes from Ai to Aii to ST.

A functional neuroimaging study is simulated
presenting stimuli to an area of the model correspo
ing to the lateral geniculate nucleus (LGN) for t
visual case or the medial geniculate nucleus (MG
for the auditory case. The PET/fMRI response is s
ulated by temporally and spatially integrating the a
solute value of the synaptic activity in each region o
y
an appropriate time course. For simulating fMRI, the
values are convolved with a function representing
hemodynamic delay[36].

There is also a biasing (or attention) signal t
is used to tell the models which task to perform:
DMS task, or a sensory control task that requi
only sensory processing but no retention in short-te
memory. This biasing variable modulates a spec
subset of prefrontal units via diffuse synaptic inpu
the functional strength of which controls whether t
stimuli are to be retained in short-term memory
not [40]. Activity in each brain area, therefore,
some combination of feedforward activity determin
in part by the presence of an input stimulus, fe
back activity determined in part by the strength of
modulatory bias signal, and local activity within ea
region. Details about the parameters used in the
models, and a thorough discussion of all the assu
tions employed, are given in Tagamets and Horw
[27,40]and in Husain et al.[37].

In a typical simulation, following presentation o
the initial stimulus, significant neural activity occu
in all brain regions of the model. During the delay i
terval, the period when the stimulus must be kep
short-term memory, activity in two prefrontal popul
tions is relatively high, but low-level activity continue
in all other neural populations. When the second st
ulus occurs during the response portion of the ta
neural activity again increases in all areas, and a
population in PFC responds only if the second st
ulus matches the first. There also is a control ta
where “noise” inputs are used as inputs to the m
els, but no representations have to be maintaine
short-term memory. Both the visual and auditory si
ulations demonstrate that these neural models can
form the DMS task and that the simulated electrical
tivities in each region are similar to those observed
nonhuman mammalian electrophysiological studie

The simulated functional neuroimaging data for
visual model were compared to PET regional cere
blood flow (rCBF) values for a short-term memo
task for faces (the original data came from Haxby
al. [41]). The control tasks consisted of passive vie
ing of scrambled shapes for the model and a nons
pattern for the experiment. When the simulated rC
values (obtained as the temporal integration of
synaptic activity in each region over the 10 trials of t
PET DMS task, which corresponds to a time inter
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Fig. 2. Experimental and simulated fMRI values in the different brain regions for the auditory model. Shown are percent signal chang
ing the DMS tasks for tonal contours to that for pure tones. Experimental data correspond to the two solid bars on the left, and simu
correspond to the two hatched bars on the right. The high and mid attention parameters in the model refer to the levels of attention
tone task. See Husain et al.[37].
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of about 1 minute) of the two conditions were co
pared[27], the differences had values similar to tho
found in the experimental PET study of short-te
memory for faces[41]. Specially, we found in V1/V2
a 3.1% change in simulated rCBF vs. a 2.7% chang
the experimental data. In V4 the corresponding nu
bers were 5.2% (simulation) vs. 8.1% (experimen
in IT they were 2.5% (simulation) vs. 4.2% (expe
ment). Finally, in PFC we found a 3.5% change in
simulated data and a 4.1% change in the experime
values.

For the auditory simulation, identical stimuli (ton
contours, each consisting of two frequency swee
separated by a constant tone; each tonal contour
350 ms in duration and the delay period in the DM
task was 1000 ms long) were used for both mode
and experiment[37]. Fig. 2 shows the percent sig
nal changes (comparing the fMRI activity for ton
contours to that for pure tones) in each brain reg
for both the simulated and the experimental data.
chose experimental values in regions from both
left and right hemisphere to compare to the simula
data, since we had no a priori reason to restrict o
selves to either the right or the left. We also includ
modeling data from two separate simulations that
fered from one another in the choice of the value
the attention bias parameter used during the DMS
for tones. Two main points emerge fromFig. 2. First,
our simulated results in primary auditory cortex d
not match the experimental value. A likely reason
this is that we included in our model only one type
neuron found in primary auditory cortex (selective
frequency sweeps), but there are many neuronal t
selective for other features in the auditory input (e
loudness, on and off properties of the input) in t
brain that we were not modeling. Moreover, there w
a large amount of scanner noise during the experim
that would have had some effect on the experime
data that was not accounted for during the simulat
The second point is that for one choice of the att
tion parameter, we were able to get close quantita
agreement between simulated and experimental
in all the right hemisphere regions (except Ai).

The results of both sets of simulations demo
strate that the neurobiologically realistic models
have constructed can generate both regional elect
activities that match experimental data from elect
physiological studies in nonhuman primates, and
the same time, PET or fMRI data in multiple, inte
connected brain regions that generally are in cl
quantitative correspondence with experimental v
ues. This agreement between simulation and ex
imental data therefore supports the hypotheses
were used to construct the models, in particular
ferent frontal neuronal populations interact during
DMS task, and the crucial role of top-down proce
ing (via feedback connections) play in implementi
correct performance. For the auditory model, wh
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there is much less experimental information availa
concerning the neurophysiological and neuroanat
ical properties of the neuronal populations involv
with auditory processing, we had to make a num
of assumptions concerning the response propertie
model neurons. One important assumption we ma
for which there was limited experimental support (e
[42]), was that the temporal receptive field of ne
rons in the auditory object pathway increased as
progressed from primary to secondary to higher-le
cortex. The generally good agreement between exp
mental and simulated data, therefore, offers additio
support for this assumption, and indicates that ex
imental studies in nonhuman animals testing this
tion are worth performing.

4. Concluding remarks

The type of modeling that was presented in the p
vious section demonstrates that quantitative biolog
data can be used to test hypotheses concerning th
lation between biological processes that cross diffe
spatial and temporal scales. However, the models
we illustrated represent only the first steps in the
rection that neuroscience will need to travel in ord
to provide integrated accounts across the many
els of investigation. As this type of modeling becom
more widely utilized, there are other types of data c
that one can attempt to include. Currently, in our la
oratory we are trying to incorporate EEG/MEG da
into this framework, since we think these types of d
will be essential for providing the temporal inform
tion associated with cognitive tasks that only hum
can perform, such as those associated with langu
function. We also think that this approach will be ve
powerful for studying developmental and degenera
disorders. However, these types of studies are lik
to require a better understanding of the role of neu
plasticity, which will need to be incorporated expli
itly into our modeling framework. Finally, the neuron
we currently use are relatively simple ones, so it w
be imperative to incorporate neurons with more co
plex, nonlinear properties, including different types
receptors. When this occurs, PET studies using a
riety of radiotracers and ligands to examine recep
properties will become key sources of data, and w
allow one to investigate pharmacologic effects. Ma
-

of these experimental approaches will be discusse
other papers in this issue.

Finally, I would like to conclude with a genera
comment. As I stated at the beginning, the proble
neuroscience faces for the future are really proble
that many sciences, but especially biology, also fa
As has been noted by many others, one of the
problems is converting what is known about local
teractions at one level into an understanding of ho
more global system behaves. Perhaps the simples
ample is that although we may know the sequenc
amino acids that comprise a specific protein, this
formation does not, as yet, enable one to know h
this sequence folds up to produce a molecule wit
specific structure and function. Scientists are get
better and better at determining the nature of the
cal interactions. In the neurosciences, we can rec
from single neurons, we can investigate with great
tail the properties of individual receptor molecule
and so forth. A significant problem is to determi
how all these local interactions become orchestra
into specific global behaviors. Our approach has b
to investigate this problem using detailed and som
what biologically realistic simulations. I believe th
it is through these computational and simulation
proaches that progress will be made in relating lo
to global behavior.
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