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Abstract

In this work we study a structured fishing model, basically displaying the two stages of the ages of a fish populatio
are in our case juvenile, and adults. We associate to this model the maximization of the total discounted net revenues
the exploitation of the stock. The exploitation strategy of the optimal control problem is then developed and presentedTo cite
this article: M. Jerry, N. Raïssi, C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Stratégie optimale d’un problème de pêche basé sur un modèle structuré.Ce travail consiste en l’étude d’un modè
structuré mettant en évidence les différents stades d’âge du stock, en l’occurrence juvénile et adulte. Nous asso
modèle la maximisation du total escompté du revenu net généré par l’exploitation du stock. La stratégie d’exploit
problème de contrôle optimal est recherché.Pour citer cet article : M. Jerry, N. Raïssi, C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The models used for resources assessment r
take into account the total life cycle of an exploit
marine population. Often, they only consider the

* Corresponding author.
E-mail addresses: jemounir@yahoo.fr(M. Jerry),

n.raissi@mailcity.com(N. Raïssi).
1631-0691/$ – see front matter 2004 Académie des sciences. Publis
doi:10.1016/j.crvi.2004.10.016
dividuals susceptible to exploitation, which constitu
the so-called stock. The exploited stock does not c
tain in general larvas and old fish, because larvas
alevins are too small or absent in the potential fi
ing zones, and the old fish eventually leave the fish
zones, or become inaccessible to the fleet. But we
tice that the fishers do not exclude the fishing of
juvenile, and that it is developing in an alarming w
and without control even if there are strict measu
hed by Elsevier SAS. All rights reserved.
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that forbid this fishing, therefore to solve this pro
lem, there must take in consideration this fishing w
taking in account the juvenile stage in the system
describes the stock evolution.

In building a model of a resource it is necessary
define variables which adequately describe the sta
the resource at any time. Such variables are called
variables. For renewable resources they often desc
a ‘standing stock’, frequently the number of indivi
uals in a population or the ‘biomass’ of the popu
tion. If the age structure, sex ratio, or other populat
characteristics are important, the model will requ
more than one state variable. In the literature, m
els representing the evolution of a stock exploited,
divided in two groups: global models[1–8] and struc-
tured models[9–13]; the first one presents the stock
a unique variable, whereas, the second distinguis
between several stages (classes of ages, of size.
the stock and associates with each one of them a
namical variable.

So, the global models give a general vision of
stock evolution. But, the responsible authorities of
fishing management may be interested in the impac
certain technical measures like for instance, the red
tion of the mesh’s fishing nets. The structured mod
are able to respond to this type of investigations. T
permit a qualitative description of the system sin
they take into account both features: the fish size
the time mechanism of reproduction of the exploi
stock.

The objective of this work is to find an optim
strategy of the fishing problem based on a structu
model. The case of a dynamics following from a glob
model is a classic one, and the research of an o
mal exploitation policy has been the object of seve
articles (see, for instance, Clark[1], Clark et al.[2],
Jerry and Raïsi[14,15], Raïssi[16]). Section2 is de-
voted to the formulation of the fishing problem.
Section3, we apply the maximum principle to the r
sulting fishing problem. In Section4 we present the
optimal strategy exploitation.

2. Presentation of the fishing model

Our objective consists on the study of a structu
model containing a stage of juvenile. In some pre
ous studies, the recruiting stage is formulated eithe
f

a constant or as noise. The restrictive feature of
approach is that the stock – recruitment relations
does not appear. On the other hand, there exist s
– recruitment relationships in literature, for examp
the model of Deriso[17], generalized by Schnute[18],
Model depositories[19], etc. In this work we are in
spired by the models used by Ricker[11,12], Beverton
and Holt [9,10], and Touzeau[13] because they ar
synthetic and mathematically tractable. Even with
data on the previous stages of the recruitment, th
equations remain a useful tool for the assessmen
the stocks[20].

More precisely, our dynamic model is a continuo
time model with two states: the juvenile and the ad
where every stage is described by the evolution o
biomassX0 andX1, respectively.

(2.1)


Ẋ0 = −αX0 − m0X0 + F1X1 − q0E0X0

X0(0) = X0
0

Ẋ1 = αX0 − m1X1 − q1E1X1

X1(0) = X0
1

whereEi andqi denote, respectively, the fishing e
fort and the catchability coefficient for every stagei.
E0 andE1 are independent, because we consider
we have two fishing fleets which belong to the sa
decision maker, on the other hand each fleet fishing
ther juvenile or adults.

Remark 2.1. X0 = 0 or X1 = 0 corresponds to th
extinction of the species, because if we haveX0 = 0,
according to the first equation of the system(2.1),
we will have Ẋ0 = F1X1 = 0, but F1 is a non-null
constant, thenX1 = 0, in the other case, if we hav
X1 = 0, according to the second equation of the s
tem (2.1), we will have Ẋ1 = αX0 = 0, but α is a
non-null constant, thenX0 = 0.

Each stagei of the stock suffers a mortality rate
due to fishing and natural disaster. The natural m
tality incorporates diseases, perturbations gener
by the environment and by other species outside
stock, in other words, all factors except the hum
exploitation and the interactions within the stock. W
assume that this mortality is linear (constant ratemi ).
The ageing is also supposed to be linear. On the o
hand, the passage rateα from the juvenile class to th
adult stage is supposed to be constant with respe
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time and stage. This means that the time of reside
is equal to1

α
.

We assume that the laying (eggs) is continuous w
respect to time, this assumption constituting a sim
fication in the model. The species egg laying perio
may take place several times per year, even cont
ously. The number of viable eggs (in the unit of tim
introduced in the juvenile stage is given byF1X1,
whereF1 is the mean number of eggs deposited
fertile adult in the unit of time, andX1 is the number
of adults.

Let us, first note that, according to their definiti
(mortality rate, fishing effort...), all parameters in t
model are nonnegative. For a correct representatio
a structured population in the model, we must ta
into account the recruitment from one class to anot
which can be represented by a strictly positive coe
cient of passage.

Now assume that the price,pi , of the harvested re
source is a fixed constant; furthermore assume tha
cost,ci , of a unit of fishing effort is also constant. The
the sole owner’s objective is the maximization of t
total discounted net revenues derived from explo
tion of the resource. We suppose that there exists
one decision-maker of the fishing, who can fish b
the juvenile and the adults. Ifδ > 0 is a constant de
noting the (continuous) rate of discount, this object
may be expressed as maximizing

max
E0,E1

∞∫
0

exp(−δt)
{(

p0q0X0(t) − c0
)
E0(t)

(2.2)+ (
p1q1X1(t) − c1

)
E1(t)

}
dt

actually such that(2.1) is also satisfied, and the co
trolsE0, E1 are constrained:

(2.3)
0� E0(t) � Emax

0 , 0� E1(t) � Emax
1 ∀t � 0

In this model, the fishing of the juvenile and la
vas are not excluded, since we have suppose tha
constantsp0, q0, andc0 are positive. We suppose tha

(2.4)
Emax

0 � Emax
1 , p0 � p1, q0 � q1, c0 � c1

It is true that we maximize also the net revenu
derived by the exploitation of juvenile(2.2) but the
constraints imposed by the problem(2.4) do not en-
courage this fishing so this revenues is not very
nificant compared to the revenues generated by
exploitation of adults. With the above formulation, t
fishing problem is viewed as an optimal control pro
lem. Our goal consists on the determination of an o
mal fishing effort,(Ê0, Ê1), subject to(2.3) and (2.4)
such that if (X̂0, X̂1) is the corresponding solutio
of the state system, then(Ê0, Ê1, X̂0, X̂1) maximizes
the total discounted net revenues generated by the
ploitation of the stock over all admissible proces
(E0,E1,X0,X1) satisfying(2.1), (2.3) and (2.4).

3. Application of the maximum principle

The data of the model introduced in the pre
ous section satisfies the required standing hypoth
for the application of the maximum principle[21,22].
First we introduce the Hamiltonian:

H(t,E0,E1,X0,X1,R,S)

= R(−αX0 − m0X0 + F1X1 − q0E0X0)

+ S(αX0 − m1X1 − q1E1X1)

+ exp(−δt)
[
(p0q0X0 − c0)E0

(3.1)+ (p1q1X1 − c1)E1
]

whereR andS are additional variables called the a
joint variables. If(Ê0, Ê1) is an optimal control and
(X̂0, X̂1) is the corresponding response, the maxim
principle asserts the existence of adjoint variablesR(t)

andS(t) such that the following equations are sat
fied, for all t :

(3.2)


−Ṙ(t) = R(t)(−α − m0 − q0Ê0)

+ αS(t) + exp(−δt)p0q0Ê0

−Ṡ(t) = R(t)F1 − S(t)(m1 + q1Ê1)

+ exp(−δt)p1q1Ê1

If we replace R by �R exp(−δt), and S by
�S exp(−δt), the associate system(3.2)becomes:

(3.3)


−�̇R(t) = −�R(t)(α + δ + m0 + q0Ê0)

+ α�S(t) + p0q0Ê0

−�̇S(t) = �R(t)F1 − �S(t)(m1 + δ + q1Ê1)

+ p1q1Ê1
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The Hamiltonian become

(3.4)

H
(
t, Ê0, Ê1, X̂0, X̂1, �R(t),�S(t)

)

max
(E0,E1)



= exp(−δt)
[�R(t)(−αX0 − m0X0

+ F1X1 − q0E0X0)

+ �S(t)(αX0 − m1X1 − q1E1X1)

+ (
p0q0X0(t) − c0

)
E0(t)

+ (
p1q1X1(t) − c1

)
E1(t)

]


p.p.

The Pontryagin’s maximum principle provides
necessary optimality condition of(E0,E1). For all t ,
(Ê0, Ê1) must maximize the Hamiltonian. The linea
ity of the Hamiltonian with respect to the contro
leads to a ‘bang–bang’ optimal control: a control th
takes on these extreme values is called a bang–
control

(3.5)



if p0 − c0

q0X0
− �R(t) > 0 thenÊ0 = Emax

0

if p0 − c0

q0X0
− �R(t) < 0 thenÊ0 = 0

if p1 − c1

q1X1
− �S(t) > 0 thenÊ1 = Emax

1

if p1 − c1

q1X1
− �S(t) < 0 thenÊ1 = 0

However, note that when the switching functi
�R(t) − p0 + c0

q0X0
or �S(t) − p1 + c1

q1X1
vanishes, the

Hamiltonian becomes independent of(E0,E1), so the
maximum principle does not specify the value of t
optimal control. The most important case (called
singular case) arises when�R(t)−p0 + c0

q0X0
or �S(t)−

p1 + c1
q1X1

vanishes identically over some time interv
of positive length. Establishing the existence of this
terval will permit us to identify the following system
by deriving these two equations�R(t) − p0 + c0

q0X0
= 0

and�S(t) − p1 + c1
q1X1

= 0:

(3.6)



p0(α + δ + m0) − c0

q0X0

(
δ + F1X1

X0

)
− α

(
p1 − c1

q1X1

)
= 0

δ

(
p1 − c1

q1X1

)
+ m1p1 − αc1X0

q1X
2
1

− F1

(
p0 − c0

q0X0

)
= 0
The system(3.6) can admit some solutions, wit
respect to the parameter values of the problem.
study will take place in the case where the system(3.6)
does not admit any solutions, but with parameter v
ues coming from the literature[13].

The object of the next section is to describe and
prove the optimal strategy of the problem.

4. The optimal strategy

By using the results of the previous section, we
ready to describe definitively the optimal exploitati
policy. Now we study the system(3.6) given in the
previous section. Let us the following function deno
by Φ0(X0,X1), the first equation of system(3.6):

Φ0(X0,X1)

= 1

X1

[
p0X1(α + δ + m0) − c0X1

q0X0

(
δ + F1X1

X0

)
(4.1)− αX1

(
p1 − c1

q1X1

)]
= 0

Eq. (4.1)admits two real roots, the first one is po
itive, and the second is negative, we are intereste
the first one:

�X1(X0) = q0X
2
0

2c0F1

(
p0(α + δ + m0) − δc0

q0X0
− αp1

+
[(

p0(α + δ + m0) − δc0

q0X0
− αp1

)2

(4.2)+ 4αc1c0F1

q1q0X
2
0

]1/2
)

Fig. 1. The graph of the function�X1(X0) for the following val-
ues:α = 0.8, m0 = 0.5, m1 = 0.2, F1 = 0.5, q0 = 0.001,q1 = 0.8,
δ = 0.2, c0 = 0.08,c1 = 0.2, p0 = 0.2, p1 = 1.2.
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The graph of the function�X1(X0) is given by
Fig. 1.

Consider now the second equation of system(3.6):

Φ1(X0,X1)

= 1

X0

[
δX0

(
p1 − c1

q1X1

)
+ m1p1X0

(4.3)− αc1X
2
0

q1X
2
1

− F1X0

(
p0 − c0

q0X0

)]
= 0

Eq.(4.3)admits two real roots, the first one is po
tive, and the second is negative, likewise we are in
ested by the first root:

�X0(X1) = q1X
2
1

2αc1

(
δ

(
p1 − c1

q1X1

)
+ m1p1 − F1p0

+
[(

δ

(
p1 − c1

q1X1

)
+ m1p1 − F1p0

)2

(4.4)+ 4αc1c0F1

q0q1X
2
1

]1/2
)

The graph of the function�X0(X1) is given by
Fig. 2.

These parameters are from[13], even if they not
correspond at any real stock. Their value depe
of the units reserved for the variables of the mod
for example,mi depends of the unit of time (yea
month...),F1 of the number of the stock (in thousan
millions...).

Fig. 2. The graph of the function�X0(X1) for the following val-
ues:α = 0.8, m0 = 0.5, m1 = 0.2, F1 = 0.5, q0 = 0.001,q1 = 0.8,
δ = 0.2, c0 = 0.08,c1 = 0.2, p0 = 0.2, p1 = 1.2.
The preceding analysis of the two equations w
permit us to prove the two following lemmas:

Lemma 4.1.Consider (X0,X1), if X1 > �X1(X0), then
the optimal strategy is Ê1 = Emax

1 . Otherwise, if X1 <
�X1(X0), we have Ê1 = 0.

Lemma 4.2.Consider (X0,X1), if X0 > �X0(X1), then
the optimal strategy is Ê0 = Emax

0 . Otherwise, if X0 <
�X0(X1), we have Ê0 = 0.

Taking into account the previous lemmas, we c
now describe the optimal strategy that we must foll
for any (X0,X1) ∈ R

+ × R
+. This optimal strategy

is given and illustrate by the following diagram a
Fig. 3, respectively:

(4.5)


if X0 > �X0(X1) thenÊ0 = Emax

0

if X0 < �X0(X1) thenÊ0 = 0

if X1 > �X1(X0) thenÊ1 = Emax
1

if X1 < �X1(X0) thenÊ1 = 0

We remark that the two curves�X0(X1) and�X1(X0)

do not intersect. if we are above the curveX̄0(X1),
the juvenile biomass is weak and the adult b
mass is large. The optimal control consists of tak
(Ê0, Ê1) = (0,Emax

1 ) in order to increase the juveni
biomass as fast as possible until the trajectory rea
the area delimited by the two curves and to take as
timal control (Ê0, Ê1) = (Emax

0 ,Emax
1 ). On the other

hand, if we are under the curve�X1(X0), the adult

Fig. 3. Determination of optimal strategy.
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The optimal control consists of taking(Ê0, Ê1) =
(Emax

0 ,0) in order to increase the adult biomass as
as possible until the trajectory reaches the area de
ited by the two curves and to take as optimal con
(Ê0, Ê1) = (Emax

0 ,Emax
1 ).

It is easy to show that the optimal strategy descri
above is a bang–bang strategy, and it is very simpl
apply because, according to the position of(X0,X1)

towards two curves(�X0(X1), �X1(X0)), on the other
hand if we are on one of the two curves, the cor
sponding optimal strategy is any value of(E0,E1)

according to the principle of the maximum especia
Eq.(3.4). We deduct the feasible optimal policy to o
fishing problem.

5. Conclusion

In the previous results[1,9,10,13], the aim was the
search of equilibrium points for a structured model a
the study of the stability (saddle point, stable and
stable node, stable and unstable focus, center...)
in this work, a structured model is associated with
maximization of a total discounted net revenues
rived from exploitation of the resource, and the m
objective is to prove the existence of an optimal st
egy for the fishing problem. By using the tools of t
control theory, in particular, the Pontryagin’s ma
mum principle, we are found the optimal strategy
the fishing problem.

One drawback of the model is that it does not ta
into consideration any intraspecific competition b
tween species, the competition between the juve
and the predation of the adults on the small; It is als
structured model only of two states, therefore it wo
be necessary to see what happens for a model o
mensionN > 2, besides we work with constant par
meters during the time, but it does not prevent that
results of this work are interesting since they con
tute a basis of reflection and they are a valuable d
for new works.
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