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Abstract

In this work we study a structured fishing model, basically displaying the two stages of the ages of a fish population, which
are in our case juvenile, and adults. We associate to this model the maximization of the total discounted net revenues derived by
the exploitation of the stock. The exploitation strategy of the optimal control problem is then developed and préseitted.
thisarticle: M. Jerry, N. Raissi, C. R. Biologies 328 (2005).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumeé

Stratégie optimale d’un probléeme de péche basé sur un modeéle structur€e travail consiste en I'étude d’un modéle
structuré mettant en évidence les différents stades d’adge du stock, en I'occurrence juvénile et adulte. Nous associons a ce
modéle la maximisation du total escompté du revenu net généré par I'exploitation du stock. La stratégie d’exploitation du

probléme de contrble optimal est recherdPgur citer cet article: M. Jerry, N. Raissi, C. R. Biologies 328 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction dividuals susceptible to exploitation, which constitute
the so-called stock. The exploited stock does not con-
The models used for resources assessment rarelytain in general larvas and old fish, because larvas and
take into account the total life cycle of an exploited alevins are too small or absent in the potential fish-
marine population. Often, they only consider the in- ing zones, and the old fish eventually leave the fishing
zones, or become inaccessible to the fleet. But we no-
T : tice that the fishers do not exclude the fishing of the
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that forbid this fishing, therefore to solve this prob- a constant or as noise. The restrictive feature of this
lem, there must take in consideration this fishing with approach is that the stock — recruitment relationship
taking in account the juvenile stage in the system that does not appear. On the other hand, there exist stock
describes the stock evolution. — recruitment relationships in literature, for example,
In building a model of a resource it is necessary to the model of Deris¢l7], generalized by Schnuf8],
define variables which adequately describe the state of Model depositorie$19], etc. In this work we are in-
the resource at any time. Such variables are called statespired by the models used by Rick#&d,12], Beverton
variables. For renewable resources they often describeand Holt[9,10], and Touzeayl3] because they are
a ‘standing stock’, frequently the number of individ- synthetic and mathematically tractable. Even without
uals in a population or the ‘biomass’ of the popula- data on the previous stages of the recruitment, these
tion. If the age structure, sex ratio, or other population equations remain a useful tool for the assessment of
characteristics are important, the model will require the stockg20].
more than one state variable. In the literature, mod-  More precisely, our dynamic model is a continuous
els representing the evolution of a stock exploited, are time model with two states: the juvenile and the adult,
divided in two groups: global mode]$—8] and struc- where every stage is described by the evolution of its
tured model$9-13}; the first one presents the stock as biomassXg and X1, respectively.
a unigue variable, whereas, the second distinguishes
between several stages (classes of ages, of size...) of| Xo= —O‘XO - m0X0 + F1X1—qoEo0Xo

the stock and associates with each one of them a dy- Xo(0) = 2.1)
namical variable. X1=aXo— Wlle —g1E1X1 '
So, the global models give a general vision of the X1(0) =

stock evolution. But, the responsible authorities of the

fishing management may be interested in the impact of Where E; andg; denote, respectively, the fishing ef-

certain technical measures like for instance, the reduc- fort and the catchability coefficient for every stage

tion of the mesh’s fishing nets. The structured models Eo andE1 are independent, because we consider that

are able to respond to this type of investigations. They We have two fishing fleets which belong to the same

permit a qualitative description of the system since decision maker, on the other hand each fleet fishing ei-

they take into account both features: the fish size and ther juvenile or adults.

the time mechanism of reproduction of the exploited

stock. Remark 2.1. Xo = 0 or X3 = 0 corresponds to the
The objective of this work is to find an optimal extinction of the species, because if we haige= 0

strategy of the fishing problem based on a structured according to the first equation of the syste(ml)

model. The case of a dynamics following from a global We will have Xo = F1X1 = 0, but F1 is a non-null

model is a classic one, and the research of an opti- constant, thenX; = 0, in the other case, if we have

mal exploitation policy has been the object of several X1 =0, according to the second equation of the sys-

articles (see, for instance, Clafk], Clark et al.[2], tem (2.1), we will have X; = aXo =0, bute is a

Jerry and Raisj14,15], Raissi[16]). Section2 is de- non-null constant, theXo = 0.

voted to the formulation of the fishing problem. In

Section3, we apply the maximum principle to the re- Each stage of the stock suffers a mortality rate,
sulting fishing problem. In Sectios we present the  due to fishing and natural disaster. The natural mor-
optimal strategy exploitation. tality incorporates diseases, perturbations generated

by the environment and by other species outside the
stock, in other words, all factors except the human
2. Presentation of the fishing model exploitation and the interactions within the stock. We
assume that this mortality is linear (constant rat.
Our objective consists on the study of a structured The ageing is also supposed to be linear. On the other
model containing a stage of juvenile. In some previ- hand, the passage ratgrom the juvenile class to the
ous studies, the recruiting stage is formulated either asadult stage is supposed to be constant with respect to
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time and stage. This means that the time of residence constraints imposed by the problgi@4) do not en-

is equal toal. courage this fishing so this revenues is not very sig-
We assume that the laying (eggs) is continuous with nificant compared to the revenues generated by the

respect to time, this assumption constituting a simpli- exploitation of adults. With the above formulation, the

fication in the model. The species egg laying periods fishing problem is viewed as an optimal control prob-

may take place several times per year, even continu-lem. Our goal consists on the determination of an opti-

ously. The number of viable eggs (in the unit of time) mal fishing effort (Eo, E1), subject to(2.3) and (2.4)

introduced in the juvenile stage is given Wy X4, such that if (Xo, X1) is the corresponding solution

where F; is the mean number of eggs deposited by of the state system, theiko, E1, Xo, X1) maximizes

fertile adult in the unit of time, an&1 is the number  the total discounted net revenues generated by the ex-

of adults. ploitation of the stock over all admissible processes
Let us, first note that, according to their definition (Eo, E1, X0, X1) satisfying(2.1), (2.3) and (2.4)

(mortality rate, fishing effort...), all parameters in the

model are nonnegative. For a correct representation of

a structured population in the model, we must take 3. Application of the maximum principle

into account the recruitment from one class to another,

which can be represented by a strictly positive coeffi- ~ The data of the model introduced in the previ-

cient of passage. ous section satisfies the required standing hypotheses
Now assume that the pricg;, of the harvested re-  for the application of the maximum princip|21,22]

source is a fixed constant; furthermore assume that theFirst we introduce the Hamiltonian:

cost,c;, of a unit of fishing effort is also constant. Then

the sole owner’s objective is the maximization of the H(t, Eo, E1, X0, X1, R, S)

tptal discounted net revenues derived from e_proita— = R(—aXo— moXo+ F1X1 — goEoXo)

tion of the resource. We suppose that there exists only

one decision-maker of the fishing, who can fish both + S(@Xo—m1X1 — q1E1X1)

the juvenile and the adults. & > O is a constant de- + exp(—8t)[(poq0Xo —co)Eo

noting the (continuous) rate of discount, this objective + (p1g1X1— c1) El] 3.1)

may be expressed as maximizing
whereR and S are additional variables called the ad-

< joint variables. If(Eo, El) is an optimal control and

]EnaEX/ exp(—81){(pogoXo(t) — co) Eo(t) (Xo, X1) is the corresponding response, the maximum
o principle asserts the existence of adjoint variatiés
X1(5) — eV E1()) dt 292 and S(¢) such that the following equations are satis-
+ (p1g1X1(1) — c1) E1(t)} (2.2) fied. for all -

actually such tha€2.1) is also satisfied, and the con-

trols Eo, E1 are constrained: —R(#) = R({®)(—a —mo — qoE0)

+aS@E) + EXIX—(St)poquo
0< Eo(t) <EF®,  O0<E1()<E Vi>0 —$(t) = R(t)F1 — S(t)(m1+ g1E1)
(2.3) + eXFX—5t)p1q;|_§1
In this model, the fishing of the juvenile and lar-

vas are not excluded, since we have suppose that thez
constantgo, go, andcg are positive. We suppose that:

(3.2)

If we replace R by Rexp(—dr), and S by
5 exp(—§t), the associate systef®.2) becomes:

—R(t) = —R(t)(e + 8 + mo + goEo)

Ef*< EP™ po<kp1, qo<q1, co<Kc1 - ~
+aS(t) + pogoEo

(2.4) N N !
It is true that we maximize also the net revenues | —S5()=R(OF1—S@)(m1+0+q1E1)
derived by the exploitation of juvenilé.2) but the + p191E1

(3.3)
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The Hamiltonian become

H(t, Eo, E1, Xo, X1, R(1), S(1))
= exp(—81)[R(t)(—aXo — moXo
+ F1X1 —qoEoXo)
+ S(t)(@Xo — m1X1— q1E1X1) { P.p.
+ (pogoXo(r) — co) Eo(t)
+ (p1g1X1(1) — c1) E1(1)]

max
(Eo,E1)

(3.4)

The Pontryagin’s maximum principle provides a
necessary optimality condition ¢¥o, E1). For all ¢,
(Eo, E1) must maximize the Hamiltonian. The linear-
ity of the Hamiltonian with respect to the controls
leads to a ‘bang—bang’ optimal control: a control that

M. Jerry, N. Raissi / C. R. Biologies 328 (2005) 351356

The system(3.6) can admit some solutions, with
respect to the parameter values of the problem. Our
study will take place in the case where the sys(ar)
does not admit any solutions, but with parameter val-
ues coming from the literatuf@3].

The object of the next section is to describe and to
prove the optimal strategy of the problem.

4. The optimal strategy

By using the results of the previous section, we are
ready to describe definitively the optimal exploitation
policy. Now we study the syster{8.6) given in the
previous section. Let us the following function denote
by @¢(Xo, X1), the first equation of syste(3.6).

takes on these extreme values is called a bang—bangpq(X,, X1)

control
if po— DO _R@)>0 thenEy= EJ™
qoXo
if po— —> _R(t)<0 thenEg=0
q0Xo (3.5)
if pr— —= —S(1)>0 thenEy = EP™
q1X1
if p1— —~ _S()<0 thenEy=0
q1X1

However, note that when the switching function
R(t) —
Hamiltonian %ecomes mdependent(c&fo, E1), so the
maximum principle does not specify the value of the
optimal control. The most important case (called the
smgular case) arises Whe{t) — po
p1+ - q vanishes identically over some time interval
of positive length. Establishing the existence of this in-
terval will permit us to identify the following system
by deriving these two equatiol(r) — po +

andS(r) — p1+ -
el
pola + & + mo) — <5+
q0Xo
c1
—alp1— =0
< 611X1>
c1
8| p1— >+m
<p q1X1

co
(-2 ) <o
q0Xo

QOXo

41X1

F1X1
Xo

we1Xo (3.6)

X2

1p1—

L poxate +5 4+ moy — X1 (54
o m _
X pPoA1l 0 OXO

c1
—aX — =0
1(171 611X1>}

Eq. (4.1) admits two real roots, the first one is pos-
itive, and the second is negative, we are interested by
the first one:

X,
Xo

(4.1)

X1(Xo) =

2
q0X( Sco
pola +38+mo) — —— —ap1
2coF1 ( q0Xo

dco 2
+ || pola 4+ 6 +mg) — —— —ap1
q0Xo

AacicoFy 1Y
n 101]

(4.2)
q190X3

X1

X1 (Xo)

Xg

Fig. 1. The graph of the functio&1(Xq) for the following val-
ues:a = 0.8, mg=0.5,m1 =02, F; =0.5,¢9 =0.001,47 = 0.8,
§=0.2,c0=0.08,c1=0.2, pg=0.2, p1 =1.2.
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The graph of the functionX1(Xo) is given by
Fig. 1
Consider now the second equation of sys{8r6).

The preceding analysis of the two equations will
permit us to prove the two following lemmas:

Lemma 4.1.Consider (Xo, X1), if X1 > X1(Xo), then

(Dl(X(?L’ X1) the optimal strategy is E1 = EI"™. Otherwise, if X1 <
= —|:5Xo(p1— C_l) +m1p1Xo Yl(Xo),wehaveflzo.
Xo q1X1
_eaXf Xo(po . )} Lo (a3 -emmad.2Consider (XoXy),if Xo> Xo(Xy) then
q1X2 g0Xo . the optimal strategy is Eo = E{'®. Otherwise, if Xo <

Eq. (4.3)admits two real roots, the first one is posi- Xo(X1), wehave Eo =0.

tive, and the second is negative, likewise we are inter-

ested by the first root: Taking into account the previous lemmas, we can

now describe the optimal strategy that we must follow
for any (Xo, X1) € RT x R*. This optimal strategy
is given and illustrate by the following diagram and

2
— 1X c
Xo(X1) = Za—ci (3 <p1 - ql—)lfl) +mip1— Fipo
Fig. 3 respectively:

2
c1
+ [(5 <P1 - —) +mip1— F1po>
q1X1

if Xo> Xo(X1) thenEo= EJ™

172 if Xo < Xo(X1) thenEg=0 AE
F _ - Py .
+ 4“176;’(21} ) (4.4) if X1> X1(Xo) thenEj= EM® (4.5)
909141 if X1 < )_(1(X0) thenfl =0

The graph of the functionXo(X1) is given by
Fig. 2

These parameters are frob3], even if they not
correspond at any real stock. Their value depends
of the units reserved for the variables of the model,
for example,m; depends of the unit of time (year,
month...),F; of the number of the stock (in thousand,

We remark that the two curvegy(X1) andX1(Xo)
do not intersect. if we are above the cur¥e(X1),
the juvenile biomass is weak and the adult bio-
mass is large. The optimal control consists of taking
(Eo, E1) = (0, E™™ in order to increase the juvenile
biomass as fast as possible until the trajectory reaches
the area delimited by the two curves and to take as op-

millions...). timal control (Eo, E1) = (EJ'® EI"™®). On the other

% Ttk hand, if we are under the curvEi(Xo), the adult

X
(0. ET™)
Tplxyd
ﬁ ':Eﬁnux' ET-"GX)
E3Ted]
(Eénax’ D)
Xo

Fig. 2. The graph of the functio&o(X1) for the following val- Xc

uesia = 0.8, mg = 0.5, m1 = 0.2, F; = 0.5, gg = 0.001,4, = 0.8,

8§=0.2,c0=0.08,c1=0.2, pg=0.2, p1 = 1.2. Fig. 3. Determination of optimal strategy.
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biomass is weak and the juvenile biomass is large. [3] C.W. Clark, G. Munro, The economics of fishing and modern

The optimal control consists of takingko, £1) = capital theory: a simplified approach, J. Environ. Econ. Man-

(ES'® 0) in order to increase the adult biomass as fast . :\i/lgeéZ (;975)'\22;106-t A  exloiing a fish )

as possible until the trajectory reaches the area delim- [4 M- Graham, Modern theory of exploiting a fishery, and ap-

. ) plication to North Sea trawling, J. Cons. Int. Explor. Mer 37

ited by the two curves and to take as optimal control (1977) 3.

(Eo, E1) = (E{,"a", ETaX)- [5] R. Pearl, The Biology of Population Growth, Alfred A. Knoph,
Itis easy to show that the optimal strategy described New York, 1925.

above is a bang—bang strategy, and it is very simple to [6] J.J. Pella, P.K. Tomlinson, A generalized stock production

apply because, according to the position(&f, X1) model, Bull. Inter-American Tropical Tuna Comm. 13 (1969)

- - 421-496.
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Population, Chapman & Hall, London, 1993. First edition in

5. Conclusion 1957. . .
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mum principle, we are found the optimal strategy of cal model of a harvesting renewable resource problem, Math.
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