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Abstract

This paper investigates impacts of the creation of Marine Protected Areas (MPAs), in both economic and biological per-
spectives. The economic indicator is defined as the sum of discounted benefits derived from exploitation of the resource in the
fishery sector, assumed to be optimally managed. The biological indicator is taken as the stock density of the resource. The
basic fishery model (C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, second ed.,
John Wiley and Sons, New York, 1990) will serve as a convenient benchmark in comparing results with those that are derived
from a model of two patchy populations (cf. R. Hannesson, Marine reserves: what would they accomplish, Mar. Resour. Econ.
13 (1998) 159). In the latter, a crucial characteristic is the migration coefficient with describes biological linkages between
protected and unprotected areas. A set of situations where both economic and biological criteria are enhanced, after introducing
a MPA, is presented. These results are obtained with the help of numerical simul@tiaite.thisarticle: D. Ami et al., C. R.

Biologies 328 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Des réserves maritimes peuvent-elles étre bénéfiques a la fois sur les plans économique et biologiqUet?article
étudie les impacts de la création de zones de réserves maritimes dans des perspectives aussi bien biologiques qu’économique
L'indicateur économique est défini comme la somme actualisée des revenus de I'exploitation de la resource, dans un secteur de
péche supposé géré de fagon optimale. Lindicateur biologique est la densité du stock de la resource. Le modéle classique de
Clark (Mathematical Bioecomics: The Optimal Management of Renewable Resources, second ed., John Wiley and Sons, New
York, 1990) sert de «benchmark » dans la comparaison des résultats avec ceux dérivés d’un modele d’'une population répartie
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en deux zones (cf. R. Hannesson, Marine reserves: what would thet accomplish, Mar. Resour. Econ. 13 (1998) 159). Dans ce
dernier, une hypothése cruciale repose sur le coefficient de migration qui décrit les échanges biologiques entre la zone protégé
et celle qui ne I'est pas. Un ensemble de situations ou les criteres économique et biologique sont favorisés, aprés l'installation
d’'une réserve, est proposé. Ces résultats sont obtenus a 'aide de simulations nunféoiqueter cet article: D. Ami et al.,

C. R. Biologies 328 (2005).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction patterns of the resource. This framework is a variant of
the spatial model developed by Sanchirico and Wilen
Recently one could observe an upsurge of contri- [13]. This setting appears to be powerful and leaves
butions concerning impacts of Marine Protected Ar- open many possibilities with regard to what kind of
eas (MPAs). This growing interest for MPAs can be migration may take place between stocks. It might be
explained first by the various benefits expected from ysed for modeling a wide-ranging scale of problems.
the creation of MPAs. These benefits can be broadly For instance, discussing the existence and the stability
classified under three kinds: ecosystem preservation, of an optimal harvesting policy (Dubey et §]), or
fisheries management and development of the nonex-getermining the optimal size of a MPA in the stochas-
tractive recreational activities (Boncoeur et H]). tic case (Conragb)).
Secondly, MPAs are often presented as a new tool  opyiously, existence of economic benefits from the

to control over-exploitation of the marine resource, fishing activity outside MPA boundaries is contingent
which is a serious worldwide problem. Third, another o, the nature of biological linkages between areas.
motivation is that many MPAs have already been prac- ¢ il pe assumed here that biological linkages are

K/Iﬁg all ovtt)ar the'world(.j LaucII: e(; alflp] assert that' tmainly dependent on adequate design of the MPA.
. st_?an € e?v_ls?ge a;s ak Ind o msurartme ag?fms By design we mean essentially here location and size.
sclentilic uncertainty of SIoCks assessments or €l€C” 1hase are characteristics of major importance to ap-

tiveness of regulation errors. . . - . )
Similar to Arasorf1], our paper is concerned with praise a migration coefficient that gives us some in-
’ bap formation on the fish mobility (cf. Houdg®]). In the

the study of theoretical conditions under which MPAs present paper, it is then assumed that the knowledge

may be also economically beneficial. In biological per- o . : .
spective, MPAs generally increase abundance and av—O]c the migration coeffl_czlent allows one to |Qentn‘y and
erage size of exploited species within their boundaries. t,h?r; Ch?]OS,e thle Iocat|ops th?t have thehhlgr}est p%ten-
There is an evidence that benefits may be exported totial for the implementation of a MPA. Therefore, the

surrounding regions in some cases. We have restrictedMigration coefficient can be considered as a decision
our attention to impacts on the fishing sector under Variable of fishery managers. _ .
the assumption that fishery is optimally managed by ~ More precisely, the basic harvesting model, as it
fishery managers (whether individuals or committees). ¢an be found, for instance, in Claf#], is used as a
In such a perfect world, we show that creation of a Penchmark. Though our study appears also as an opti-
well designed MPA can improve biological situations mMal harvesting problem, we work, as Clark did, in the
within MPA boundaries, as well as economic benefits calculus of variation framework. Indeed the interior
from the fishing activity outside its boundaries. solutions of the optimal control problem, the only ones
Following Hannessorj7], we use here a model Wwe are interested in, are straightforwardly obtained in
where a given fishing ground is split into two sub- this setting.
areas. One of them is set aside as a MPA. Itis assumed A MPA consideration is added to the basic model,
that fish stock within the boundaries of MPA and stock leading to a model of two patchy populations that al-
fish into the surrounding area are linked by migration lows us to explore the possible effects of MPA. The
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biological and economics impacts, both within and be- amounts to deal with the following optimization prob-
yond the borders of the MPA, are highlighted. lem (P):
Optimal steady states, expressed in terms of fish- 400
ing effort and stock density, are determined in both the / —5 (PuX (1) — O\ E
basic and the patchy models. For the latter one, the op- rg?_)x © ( 9X(®) c) (D d

timal migration coefficient, i.e., the value where poten- 1=0
tial effect of MPA implementation should be highest, s.t.X =F(X) —gE®)X, X(0)=Xo (2
is obtained. Optimal benefits, with or without MPA,  0< E(t) < Emax, 0< X (1)< 1 (3)

are compared. Conditions under which a MPA cre-
ation will theoretically enhance both biological (i.e.
the stock density) and economic (i.e., the present value
of the exploitation) situations are obtained. Unfortu-
nately, it is likely uneasy to reach in practice the op-
timal value of the migration coefficient. Some simu-
lations are therefore used to explore the sensitivity of
our results with respect to the migration coefficient. It 00

is shown numerically that the domain of the parame- max/ e“”(P I )(F(X(t)) — X(1))dr

ter for which the presence of a MPA is theoretically ** 7/ qX(t) @

beneficial is reasonably large. ) _
whereX () belongs to some space of paths (piecewise

The paper is organized as follows. In Sectibthe . . . ) !
basic fishery model is presented. In SecBdhe MPA continuously differentiable functions s.t. the improper
! integral converges and constrair{®), (3) are satis-

component is added to the model. The implications for LS . X ; )
fied). If an interior solution exists, it must satisfy the

economics benefits and for the biomass are then ex- lassical Eul diti hich takes h
plored. In Sectior} a set of results of simulations is classical Euler necessary condition, which takes here
the following expression.

shown. The last section summarizes the major conclu-
sions and suggest some additional lines of research, ( PgX (1) (6- F'(X(0))) - F(X(1) ®)
for which is should be taken into account additional c X(@)
arguments in favor of MPA implementations. It is well known that in this “singular case”, i.e., when
(5) determines an unique stationary path, the opti-

mal solutions are the most-rapid approach pathsto
2. The basic fishery model [4,8].

whereP is the value (or price) of the carrying capacity

andc is the cost per unit of effort, both assumed to be

constants > 0 is the instantaneous discount rate.
According to(2), for all trajectories s.tX(z) #0

for anyz > 0, we obtain a calculus of variations prob-

lem over an infinite horizo¥), equivalent ta’P):

Consider a fish stock distributed over a given area 2.1. Optimality conditions
that we represent by its densiy(defined as the ratio
of the stock over the carrying capacity of the area). In ~ For the study of the solutions ¢), we introduce a
accordance with classical modeling, the growth of the function R(-), that will be also useful in the next sec-

biomass density is given by: tions:

. Pq F(X)

X =F(X)—h(t) = F(X) — qE(®)X (1) (1) R(X):= <7X—1>(8—F’(X)) - (6)
where F (-) is the natural density growth function and If there exists a solutiolX* €10, 1] of R(X) =0,
k() the capture rateE (¢) is the fishing effort at time then we observe that the corresponding fishing ef-
andq stands for the catchability coefficient. The den- fort E* = £&0  satisfies the constrair@) for a
sity growth functionF (-) is defined fron{0, 1] to R T, large enoug{ﬁ bounfinax. Moreover when the density

It is assumed to be regular, strictly concave and such growth function obeys the logistic law (i.&:(X) =
that F(0)= F(1) =0. rX (1 - X)), the existence of a unique singular solu-

The standard economic theory claims that fishery tion for the problemP) is proved as soon aBg > ¢
managers maximise the profits from harvesting, which (cf. Appendix B.
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2.2. Optimal fishing effort and fishery profit the valueP of the carrying capacity in the harvesting
area is not modified by the creation of a MPA.
When an optimal stationary solutioti* exists, the Suppose also that this spatial consideration allows
associated optimal fishing effoRt* satisfies us to distinguish the population behavior between
(PgX* — ) two dynamics, as follows. The growth of the sub-
E*=(8-F(X*))—— ) population density into the MPA is governed by the
cq dynamics:
with the profit .
(PgX*— OB X1=F1(X1) + M(X2 — X1) (8)
= s while the growth of the sub-population density into the

If PgX* > c, E*isfeasible (i.e. nonnegative, because fishing area is governed by the dynamics:

F'(X*) < 8, see the expressiaff)), and the fishery
profit is nonnegative.
If PgX* <c, E* is negative. The profit associated We assume that the growth functiofs(-) (i = 1, 2)
to any feasible value of stationa# is nonpositive. fulfill the same assumptions thaFi(-) in the basic
The optimal solution consists in no fishing. model.
First, we examine existence and stability of equilib-
ria of the coupled dynamios, 9), whenx andE» are
3. Marine protected areas and optimality given positive numbers. This dynamical system admits
atmost one equilibriunaX{, X?) different from(0, 0),
Let us consider that we have an optimally managed which is necessarily asymptotically stable (&epo-
fishery and examine the impacts of the introduction sition 1in Appendix A). Moreover, in the logistic case,
of a MPA in such a situation. We claim that under an we can derive a necessary and sufficient condition for
efficient fisheries management system, a MPA, prop- the existence of such an equilibrium (s€erollary 2
erly defined and implemented, may enhance both eco-in Appendix A).
nomic benefits and fish stocks. Secondly, let us pay attention to the migration co-
The model used here is structurally very similar to efficient A. There are many possibilities with regard
Hannesson’s mod¢¥]. It deals with sub-populations to what kind of migration may take place between
distributed in two patches interacting through migra- stocks inside and outside a MPA. The relationship we
tion. This is a variant of the spatial model developed shall focus on here could allow mutual in- and out-
by Sanchirico and WilefiL2]. migration. Fors > 0, this is the classical migration by
It is assumed that the migration depends only on diffusion: the flow is oriented from the highest density
the biomass densities in each area (i.e., the ratio of towards the lowest.
stock over carrying capacity). The simplest migration Particular cases wheh < 0 can be interpreted as
model is based on diffusion, which depends merely “sink-source” systems in which flows from patch to
upon the difference between the respective densitiespatch are constrained by biological effects, like stream
of patches. Therefore migration occurs if a disparity that can reverse the migration due to differential of
arises between the respective biomass densities insidedensities. We shall explain further why we get inter-
and outside the MPA. ested only in cases for which> 0. It is clear that the
Following Conrad[5], Hannessor{7], it is pre- possible values of this parameter are also strongly re-
sumed that the carrying capacity is increasing with lated to biological and spatial parameters, such as the
the patch size. Nevertheless, we assume here that thdish mobility and the size of the protected area. Real
carrying capacity of the MPA is always very small estimation of these values would require deeper bi-
compared to the overall carrying capacity, which is ological and experimental studies on concrete cases.
equivalent to claim that the carrying capacity of the Such studies would also certainly reveal in which ex-
unprotected area is (almost) not modified by the exis- tent a decision maker can really influence the value of
tence of a MPA. Consequently, we consider here that this parameter, for instance, choosing the size and the

X2 = F2(X2) — M(X2 — X1) — ¢E2X>2 9)
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location of the protected area. However, one can con-
sider that fishery managers can decide which patch can
be close and when. Thus, it can be considered that fish-
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3.1. Optimality conditions

The Euler first order optimality condition gives the

ery managers can decide, in some extent, of the valuefollowing equations:

of A, and possibly change it with time. Nevertheless,
our objective in this theoretical work is mainly to show

that there exists a set of values for this parameter, for

which a protected area is beneficial for both the bio-
logical and economical view points. The mathematical
technique we use for finding such “good” values is to
consider first the parametgras if it was a real control
variable, i.e. a function of tim&(-). Then, the optimal

steady state solution of the associated problem gives

us the “best” stationary valug* for this parameter.
The simulations we have launched for different values
about this optimal one show that the beneficial situa-
tion is quite robust for a reasonably large set of values
of A.

In this setting, one has to deal with the following
optimal control problem(Pypa) with the two con-
trols E2(-) andA(-). The objective is to maximize the
present value of the fishery obtained from the exploita-
tion of the resource, that takes place only in the unpro-
tected area.

+00

/ e " (PgXa(t) — c)Ex(r) dt
t=0

st X1 = F1(X1) + A1) (X2 — X1)
—qE(t)X>

0<X;i(H<1 (=12

max
E2(),A()

X = F2(X2) — A(t)(X2 — X1)

0< Ex1)

< Emax.

X1(0), X2(0) given

For the time being no positivity constraint on the con-
trol variable)(-) is stated. As before, for all trajecto-
ries s.t.X2(¢) # 0 for anyz > 0, the problem(Pumpa)

is equivalent to a calculus of variations problem:

+00

max /e“”(P— ¢ )

X1().X2() . qXa(1)
1=

x [F1(X1(0) + F2(X2()) — X1(1) — X2(1)] ot

(10)

P
X, = x2<—qxz - )(Fé(Xz) —9)

+ F1(X1) + F2(X2)
. P
Xp= X2<qu2 - 1) (5 — Fj(X1))

We first study candidate optimal steady state so-
lutions (X7, X3). If F1(X7) # 0, then the following
equations are satisfied.

8§ — F1(X1)=0 (11)
Xz(ﬂxz 1)(F2,(X§) —9)
+ F1(X1) + F2(X3) =0 (12)

Given the regularity assumptions df, for anyé €
10, F;(0)], there exists at least one solutiofy of
(11). We notice also that the expressirxg(%x 5=
1)(Fy(X3) — 68) is necessarily non-null. Therefore,
Eqg.(12) can be re-written as

R(X3) = H(X3) = 2

where R(-) has been defined if6). Thus X5 can

be graphically interpreted as the intersection of the
graphs of the two functionB(-) and H (-) (cf. Fig. 3).

In the logistic case, for any €10, r1[, there exists a
unique solution X7, X3) (cf. Appendix B).

Remark. Up to now, there has been no reason to
claim that one of theX was necessarily greater than
the other. Nevertheless we observé8hthat optimal
steady state solutions witt¥ > 0 correspond exactly
to cases such that] > X7. These are the situations
of interest, where the protected area acts as a natural
hatchery, as underlying by fishery scient|8s There-
fore, we shall impose in the following that feasible
paths fulfillA(-) > 0. In the particular case of the logis-
tic growth model, the conditioh* > 0 is equivalent to
the following one (cfAppendix B.

F1(X])
X7

R(X7) > (13)
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3.2. Optimal fishing effort and fishery benefit

At optimal steady state, the optimal fishing effort
can be derived, combinin@), (9) and (12)

(PgX3—c)

E3 = (5 — F)(X3)) (14)
while the associated profit is
Impa = E(‘IPXZ —¢)"(8 - F3(X3)) (19)

With the same argumentation than in Sect®8 the
optimal solution is feasible (i.€£5 > 0) exactly when
PgX3 > ¢, and the profit/ii,, is then necessarily
nonnegative. One deduce also thhat F’(X2) > O.
Recalling(11), one has = F;(X7) and consequently
X35 fulfills the property

F(X3) > F3(X3)
WhenPg X3 < c, no harvesting is the best solution.

4. Comparison between the two situations

Our goal here is to establish conditions under which
a MPA could enhance both economic and the bio-
logical situations. We have turned to numerical com-
putation because it seems quite difficult to obtain a
complete analytical comparison. In the sequel we shall
consider the case where growth functiafg-) obey
the logistic law:

Fi(X)=riXi(l-X;) (=12
For simplicity, we introduce the dimensionless price
P =Pgqg/c.

We present here some of our numerical results
that seem to be particularly relevant for our purpose.
For this, we have fixedo = 0.2 ands = 0.2 and let

r1 = ary for different values ofx > 1. Expression$6)
and (11)become

R(X2) = 0.4P(X2)%> —0.2X2 — 0.2
X} = (@ — 1)/(20)

The condition (13) guaranteeing that the optimal
steady states are feasible (i.e., such #fiat- 0) pro-
vides the following minimal value for the parame-
ter P.

D. Ami et al./C. R. Biologies 328 (2005) 357-366

4.1. Sensitivity analysis with respectaand P

For different values of and P, we have computed
and compared the optimal solutio@s™*, E*) without
MPA and (X7, X3, E3) with an optimal MPA. For in-
stance, takingt = 2, we have foundy} ~ 0.250 and
Pnmin =~ 22. The results obtained for different values of
the parameteP > Pnin are presented ifiable 1

Table 1

P X*  qE* qE*X* Xj  qEj} qE3X5 A
24 0155 0169 Q0262 0241 Q462 0111 86
30 0137 Q172 Q0236 0221 Q496 Q110 26
36 0125 Q175 Q0219 0205 0524 Q107 17
42 0115 Q177 Q0204 0193 0550 Q106 13
48 0107 Q178 Q0190 0183 Q572 Q105 11

As expected, we notice that managing a protected
area with a higher growth rate (i.e; > rp) can al-
low higher captures at optimal steady statefs; X5 >
qgE*X*.

4.2. Sensitivity analysis with respectito

In practice, it might be difficult to control with ac-
curacy the fish migration between the two areas, and to
impose the precise optimal valaé. So, we study (nu-
merically) the sensitivity of the equilibriuraX{, X5)
of the systen{(8), (9) with respect to variations of the
coefficientr about the best valug®, while the harvest-
ing effort E> is set to its optimal valu&? (computed
and reported iMable ).

The equilibrium (X%, X%) is computed (numeri-
cally) as the (unique) solution of a system of equations
{g2(g1(X1)) = X1, X2 = g1(X1)}, where the func-
tionsg; () are made explicit il\ppendix A(cf. (A.2)).

For instance, fox = 2, we found:

A 7 8.6 (optimal) 10
P=24 x¢ 0.253 0250 0249
X4 0.245 0241 0240
A 1 1.1 (optimal) 2
P=48 X 0.272 0250 0169
X5 0.193 Q183 Q0139

We notice that the effects of a variation of the mi-
gration coefficient on the steady states densities is not
very significant. Consequently, the gain in managing a
protected area with a migration coefficient abatiis
quite robust.
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4.3. Improvement of the fishery value In both cases, the system reacl&g, X5) exactly at

time T = max(Ty, T2). Then, allowing fish migration

Now we compare the present value of the fishery with a coefficient.* and harvesting ata |eVﬂ; leave

with and without a protected area. More precisely, we the system at this steady state. The present value at
consider optimal stationary situations, when the deci- date 7" of the benefits is/ggp = 5(PX5 — DE3.
sion to create a reserve or to close the existing one is Then, the present value of the benefits at the date of
taken. Therefore the present value of the fishery has harvest closure is, in both case:
to take into account the transit period when the bio- Jopen=€T2 Jic 0
mass densities have to reach the new steady state. We
assume that fishery managers have means to prevenScenario 3.The protected area has been created with
migration outside the MPA when this one has been a migration coefficient.* and the stock densities are
created (this amounts at taking= 0 in our model).  at their optimal valuest?, X3. A decision to close
We compare then three possible scenarios. the protected area amounts to manage the harvested

stock X» as an independent one. Then, the optimal so-
Scenario 1.There is no protected area and the value of lution is known to reach as fast a possible the value
the stock density is at its optimal val&& . Harvesting X* < X3 for the stock density, keeping maximal har-
optimally consists in remaining at the steady stéte ~ vesting effort Emax (cf. [4]), and then to stay at the
with the harvesting efforE*. The associated profitis ~ steady stat&* with an harvesting effort*. The as-
J* = %(ﬁx* —1)E*. sociated present value of the fishery is

T
Scenario 2.There_ is_ no protec?ed area and the value j, .. — / e—Stc(ﬁf(’z(,) — 1) Emaxdt + €797 %
of the stock density is at its optimal valdg&'. The de-
cision to create an “optimal” protected area has been -~ )
taken at time 0. So, one hag (0) = X»(0) = X*. We whereX>(-) is solution of
consider then the harvesting strategy that drives the Xo=r2X2(1— X2) — g EmaxX2, X2(0) = X3
densities(X1, X2) as fast as possible to the optimal
values(X7], X3), as explicited below.
Consider first the durationg (i = 1, 2) defined as

the times for the solutions of the differential equations . _ l09(X3(q Emax— r2 + r2X™))

=0

which can be easily integratefl.is the first time such
that X»(T) = X*, that can be determined analytically.

X; =riX;(1- X;) to reachX? from X*: qEmax—r2
l0g(X* (g Emax — r2 + r2X%
) 1| X1 X% _ 9(X*(gq Emax )
. — —|o - -
T g X*(1—X7¥) q7max 12

Notice that the maximum harvesting effd@f,ax needs
Then, two cases are possible, depending on the valuedo be larger tham,/q to ensure that the equilibrium
of T1 andTx: X* is reachable. For the simulation, we have chosen

_ _ Emax= 1/g. For instance, forx = 2, we obtain:
WhenTy > T», the strategy is the following.

J*(c/q) Imrap€/@) Joper(c/q) Jeloselc/q)

B
(i) Create a protected area at date 0 and prevent fish2 1

o : 23 11 64 39
migration outside the area. 30 27 14 78 47
(ii) Stop the harvest at dat® — T». 36 a1 17 a4 54
42 34 20 11 61
WhenT; < T, the strategy is the following. 8 3 22 12 68
(i) Stop the harvest at date 0. We check that, in any case, managing a protected
(i) Create a protected area at dat€7> — T1)/(r1 — area at the steady sta{&;, X3) with (E3, A*) im-

r2) and prevent fish migration outside the area. proves the present value of the fishery.
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5. Conclusion generally different users groups in a disproportionate
way.

In this work, impacts of MPA creation have been in-
vestigated, on both economic and biological perspec-
tives. Our attention has been focused on the obtention
of theoretical conditions leading to economic benefits
on the sole fishing sector. More precisely, it has been
assumed that the fishery sector is optimally managed x, — £, (x;) + (X2 — X1)
by fishery managers (whether individuals or commit- (A1)
tees). Their optimal behavior consists then in maxi- Xo = Fo(X2) + AM(X1— X2) —qE2X>
mizing the present value of the fishery, defined as the
sum of the discounted net revenues derived from the
exploitation of the resource. With the help of a two
patches model, we have found that MPAs should be
installed so that the amount of spillover is maximized.
Of course, scientific guides are required to advice fish-
ery managers about the design, location and concrete
implementation of MPAs.

_ _In furtherwork_s, it would be useful to examine con- then the systerfA.1) admits at most one equilibrium
ditions under which our results are ro_bust under other (X¢, x$) different from(0, 0), which is necessarily as-
management rules. Open access regime should be aNymptotically stable.
alyzed first. In the open access case, MPA may act as a
management tool amongst other complementary man-p .ot consider the two functions a0, 1]
agement tools.

Secondly, it is well known that there exist other . (y.\_ y, F1(X1)

Appendix A

We study the equilibria of the coupled dynamics

wherei, E; are constant positive numbers.

Proposition 1.When the functions; (-) (¢ = 1, 2) ful-
fill the following properties

(P1) F;(0) = F;(1) =0,
(P2) F;(-) is strictly concave,

potential benefits that can be advocated in favor of A (A.2)
MPA implementation. It should be actually taken into (X2) = Xo— F2(X2) —qE2X>
account of consumer or scientific benefits relative to 522 = 2 A

MPA creation. Considering them together with the Then any equilibrium poin¢x¢, X3) of (A.1) is such
fishery profits should allow to define a social value thatg1(X$) = X% andga(X$) = X¢. It belongs to the
of MPAs. The objective of fishery managers should intersection of the graph of the functiqn and the
be then to maximize this social value. In the case symmetric of the graph of the functian with respect
where the amount of the resource spillover is not suf- to the first diagonal.

ficient, MPA may lead to loss for th.e fishery sector. From the properties (P1) and (P2), we deduce that
If managers concerns are the only fishery sector ben- these functions fulfill the following propertieg; (0) =
efits, MPA implementation must be given up. If the 0 (i =1,2), g1(1) =1, g2(1) = 1+ g E2/A andyg; are
objective of fishery managers takes into account oth- (strictly) convex ( = 1, 2). Moreover we observe also
ers potential benefits, the social value of a MPA may the following properties.

still be positive. This work was obviously beyond the

purpose of this paper, and would require to assess(P3) the graph ofg; is below the line segment

both economic and social implications of MPAs. Ben- (0,0—(1, 1) (seeFig. D).

efits and costs to extractive users (fishermen) but also (P4) the symmetric of the graph g w.r.t. the first
benefits and costs to nonextractive users, as well as diagonal is above the line segmeift 0)—(1 +
management benefits and costs should be estimated. qE2/X, 1) (seeFig. 1).

(Sanchirico et al[11]). Moreover social value assess-
ment of the MPA would require to take into account Let (X§, X%) and (X5, X3 ) be two non-null equilib-
equity issues, which may arise because MPAs affect ria. They both belong to the graph of the function
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X, X1 X,

g2

21

0 1 X;

Fig. 1. Graphs of the functiong andgo.

) . 4 . .
X1 g1(X1), SO necessarily(i £ Xi _We can as- Fig. 2. Existence and unlqueness(m‘i, X3).
sume, without any loss of generality, thxﬁ/ > X{.
Consider the line segment: (0, 0)—(Xe/,X§'). By
convexity of g1 and g2, we have the following geo- 1(x$)>0 5(x5) >0

. . 81\41 » 82142
metric properties: (A.3)
g1(X1)82(X5) > 1

The dynamicgA.1) can be re-written as follows

Thus, we have the necessary conditions

— the graph ok is below L,
— the symmetric of the graph gb is abovecl.
X1=A(X2—g1(X

Then(X{, X5), which belongs also to the intersection _1 ( 2= s l)) (A.4)
of the graph ofg; and the symmetric of the graph of Xy = A(X1 — gz(Xz))
g2, is at the same time below and aba¥gthus a con-
tradiction. So, we deduce that there exists at most one
equilibrium different than(0, 0). From the properties
(P3)—(P4), we also deduce that any equilibrium point

belongs to the domain tr(J) = —1(g1(X5) + g5(X5)) <O

Finally, conditions(A.3) imply that the Jacobian ma-
trix J of the systen{A.4) at (X{, X5) fulfills the fol-
lowing properties.

X — 2ol (XYY ol (XE) —
D:= {(Xl, Xa) € 017 | < Xp < Xl} det ) =4 (e (XDez(Xp) ~ 1) > 0
+qE2/2 from which we deduce the asymptotic stability of the
The convexity ofg1, g2 also implies the property: dynamics(A.1) about(X{, X5). O
Xi#0 =  gX)—Xigi(Xi) <g(0)=0 Corollary 2. WhenF; (X;) = r; X; (1— X;) there exists
1 HH 1 e e\ 2 1 1

(derivative exists a.e. from the concavity assumption) & Unique equilibriumtxs, X?) in (0, 1) if and only if
from which we deduce: qE2 < (M(r1+r2) —r1r2)/ (A —r1).
X;>0, g(X)>0 = g(X))>0 Proof. We have 71(0) = 0 and 41(1) = g1(1) —

o _ _ g, 1(1) =1 — g,*(1) > 0 so there exisk$ € (0,1)
Then, g2 is invertible at pointsX, such that(g2(X>), such thata1(X$) = 0 if and only if #}(0) < 0, which

X2) € D. By the inverse function theorem, we have
(gz_l)’ = (g/z)_l and the restriction Ofgz_l on the
subset{X; | X1 = g2(X2) with (X1, X2) € D} is a
(strictly) concave function. Finallys{ is a zero of the

amounts to requirg; (0) < (ggl)’(O) or equivalently
qE2 < (AM(r1+r2) —rir2)/(A — r1). (SeeFig. 2) O

convex functiomy : X1 > g1(X1) — g5 1(X1). Appendix B
Notice that;(0) = 0. SoX{, if it exists, must sat-
isfy 1% (X{) > 0, which amounts to require When F(-) is the logistic law, the functionR(-)

o Ny L ioe defined in(6) is a convex second order polynomial
81(X1) = (82 ) (Xl) = 1/82(X2) function. As R(0) = —§ < 0, the convexity provides
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Fig. 3. Graphs ofR(-) and H (-).

the existence of a uniqué* > 0 such thaiR (X*) = 0.
When Pg > ¢, one hask(1) > 0 which then ensures
that X* belongs tqo, 1].

Furthermore, by the mean value theorem, there ex-
ists an uniqueX; > X* such thatR(X3) = H(X3). To
ensure tha; is feasible (i.e X5 < X7) a necessary
condition is to haveR (X7) > H (X7) (cf. Fig. 3).
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