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Abstract

This paper investigates impacts of the creation of Marine Protected Areas (MPAs), in both economic and biolog
spectives. The economic indicator is defined as the sum of discounted benefits derived from exploitation of the resou
fishery sector, assumed to be optimally managed. The biological indicator is taken as the stock density of the reso
basic fishery model (C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, se
John Wiley and Sons, New York, 1990) will serve as a convenient benchmark in comparing results with those that are
from a model of two patchy populations (cf. R. Hannesson, Marine reserves: what would they accomplish, Mar. Reso
13 (1998) 159). In the latter, a crucial characteristic is the migration coefficient with describes biological linkages b
protected and unprotected areas. A set of situations where both economic and biological criteria are enhanced, after in
a MPA, is presented. These results are obtained with the help of numerical simulations.To cite this article: D. Ami et al., C. R.
Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Des réserves maritimes peuvent-elles être bénéfiques à la fois sur les plans économique et biologique ?Cet article
étudie les impacts de la création de zones de réserves maritimes dans des perspectives aussi bien biologiques qu’éc
L’indicateur économique est défini comme la somme actualisée des revenus de l’exploitation de la resource, dans un
pêche supposé géré de façon optimale. L’indicateur biologique est la densité du stock de la resource. Le modèle cla
Clark (Mathematical Bioecomics: The Optimal Management of Renewable Resources, second ed., John Wiley and S
York, 1990) sert de « benchmark » dans la comparaison des résultats avec ceux dérivés d’un modèle d’une populatio
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). Dans ce
e protégée
stallation
en deux zones (cf. R. Hannesson, Marine reserves: what would thet accomplish, Mar. Resour. Econ. 13 (1998) 159
dernier, une hypothèse cruciale repose sur le coefficient de migration qui décrit les échanges biologiques entre la zon
et celle qui ne l’est pas. Un ensemble de situations où les critères économique et biologique sont favorisés, après l’in
d’une réserve, est proposé. Ces résultats sont obtenus à l’aide de simulations numériques.Pour citer cet article : D. Ami et al.,
C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Recently one could observe an upsurge of con
butions concerning impacts of Marine Protected
eas (MPAs). This growing interest for MPAs can
explained first by the various benefits expected fr
the creation of MPAs. These benefits can be broa
classified under three kinds: ecosystem preserva
fisheries management and development of the no
tractive recreational activities (Boncoeur et al.[2]).
Secondly, MPAs are often presented as a new
to control over-exploitation of the marine resourc
which is a serious worldwide problem. Third, anoth
motivation is that many MPAs have already been pr
ticed all over the world. Lauck et al.[10] assert tha
MPAs can be envisaged as a kind of insurance aga
scientific uncertainty or stocks assessments or ef
tiveness of regulation errors.

Similar to Arnason[1], our paper is concerned wit
the study of theoretical conditions under which MP
may be also economically beneficial. In biological p
spective, MPAs generally increase abundance and
erage size of exploited species within their boundar
There is an evidence that benefits may be exporte
surrounding regions in some cases. We have restri
our attention to impacts on the fishing sector un
the assumption that fishery is optimally managed
fishery managers (whether individuals or committee
In such a perfect world, we show that creation o
well designed MPA can improve biological situatio
within MPA boundaries, as well as economic bene
from the fishing activity outside its boundaries.

Following Hannesson[7], we use here a mode
where a given fishing ground is split into two su
areas. One of them is set aside as a MPA. It is assu
that fish stock within the boundaries of MPA and sto
fish into the surrounding area are linked by migrat
patterns of the resource. This framework is a varian
the spatial model developed by Sanchirico and W
[13]. This setting appears to be powerful and lea
open many possibilities with regard to what kind
migration may take place between stocks. It might
used for modeling a wide-ranging scale of problem
For instance, discussing the existence and the stab
of an optimal harvesting policy (Dubey et al.[6]), or
determining the optimal size of a MPA in the stoch
tic case (Conrad[5]).

Obviously, existence of economic benefits from
fishing activity outside MPA boundaries is continge
on the nature of biological linkages between are
It will be assumed here that biological linkages a
mainly dependent on adequate design of the M
By design we mean essentially here location and s
These are characteristics of major importance to
praise a migration coefficient that gives us some
formation on the fish mobility (cf. Houde[9]). In the
present paper, it is then assumed that the knowle
of the migration coefficient allows one to identify an
then choose the locations that have the highest po
tial for the implementation of a MPA. Therefore, th
migration coefficient can be considered as a decis
variable of fishery managers.

More precisely, the basic harvesting model, a
can be found, for instance, in Clark[4], is used as a
benchmark. Though our study appears also as an
mal harvesting problem, we work, as Clark did, in t
calculus of variation framework. Indeed the inter
solutions of the optimal control problem, the only on
we are interested in, are straightforwardly obtained
this setting.

A MPA consideration is added to the basic mod
leading to a model of two patchy populations that
lows us to explore the possible effects of MPA. T
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biological and economics impacts, both within and
yond the borders of the MPA, are highlighted.

Optimal steady states, expressed in terms of fi
ing effort and stock density, are determined in both
basic and the patchy models. For the latter one, the
timal migration coefficient, i.e., the value where pote
tial effect of MPA implementation should be highe
is obtained. Optimal benefits, with or without MPA
are compared. Conditions under which a MPA c
ation will theoretically enhance both biological (i.
the stock density) and economic (i.e., the present v
of the exploitation) situations are obtained. Unfor
nately, it is likely uneasy to reach in practice the o
timal value of the migration coefficient. Some sim
lations are therefore used to explore the sensitivity
our results with respect to the migration coefficient
is shown numerically that the domain of the param
ter for which the presence of a MPA is theoretica
beneficial is reasonably large.

The paper is organized as follows. In Section2 the
basic fishery model is presented. In Section3 the MPA
component is added to the model. The implications
economics benefits and for the biomass are then
plored. In Section4 a set of results of simulations
shown. The last section summarizes the major con
sions and suggest some additional lines of resea
for which is should be taken into account addition
arguments in favor of MPA implementations.

2. The basic fishery model

Consider a fish stock distributed over a given a
that we represent by its densityX (defined as the ratio
of the stock over the carrying capacity of the area)
accordance with classical modeling, the growth of
biomass density is given by:

(1)Ẋ = F(X) − h(t) = F(X) − qE(t)X(t)

whereF(·) is the natural density growth function an
h(t) the capture rate.E(t) is the fishing effort at timet
andq stands for the catchability coefficient. The de
sity growth functionF(·) is defined from[0,1] to R

+.
It is assumed to be regular, strictly concave and s
thatF(0) = F(1) = 0.

The standard economic theory claims that fish
managers maximise the profits from harvesting, wh
amounts to deal with the following optimization pro
lem (P):

max
E(·)

+∞∫
t=0

e−δt
(
PqX(t) − c

)
E(t)dt

(2)s.t.:Ẋ = F(X) − qE(t)X, X(0) = X0

(3)0� E(t) � Emax, 0� X(t) � 1

whereP is the value (or price) of the carrying capac
andc is the cost per unit of effort, both assumed to
constant.δ > 0 is the instantaneous discount rate.

According to(2), for all trajectories s.t.X(t) �= 0
for any t � 0, we obtain a calculus of variations pro
lem over an infinite horizon(4), equivalent to(P):

(4)

max
X(·)

+∞∫
t=0

e−δt

(
P − c

qX(t)

)(
F

(
X(t)

) − Ẋ(t)
)
dt

whereX(·) belongs to some space of paths (piecew
continuously differentiable functions s.t. the improp
integral converges and constraints(2), (3) are satis-
fied). If an interior solution exists, it must satisfy th
classical Euler necessary condition, which takes h
the following expression.

(5)

(
PqX(t)

c
− 1

)(
δ − F ′(X(t)

)) − F(X(t))

X(t)
= 0

It is well known that in this “singular case”, i.e., whe
(5) determines an unique stationary pathX∗, the opti-
mal solutions are the most-rapid approach paths toX∗
[4,8].

2.1. Optimality conditions

For the study of the solutions of(5), we introduce a
functionR(·), that will be also useful in the next se
tions:

(6)R(X) :=
(

Pq

c
X − 1

)(
δ − F ′(X)

) − F(X)

X

If there exists a solutionX∗ ∈ ]0,1] of R(X) = 0,
then we observe that the corresponding fishing
fort E∗ = F(X∗)

qX∗ , satisfies the constraint(3) for a
large enough boundEmax. Moreover when the densit
growth function obeys the logistic law (i.e.F(X) =
rX(1 − X)), the existence of a unique singular so
tion for the problem(P) is proved as soon asPq > c

(cf. Appendix B).
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2.2. Optimal fishing effort and fishery profit

When an optimal stationary solutionX∗ exists, the
associated optimal fishing effortE∗ satisfies

(7)E∗ = (
δ − F ′(X∗)

) (PqX∗ − c)

cq

with the profit

J ∗ = (PqX∗ − c)E∗

δ

If PqX∗ � c, E∗ is feasible (i.e. nonnegative, becau
F ′(X∗) < δ, see the expression(6)), and the fishery
profit is nonnegative.

If PqX∗ < c, E∗ is negative. The profit associate
to any feasible value of stationaryE is nonpositive.
The optimal solution consists in no fishing.

3. Marine protected areas and optimality

Let us consider that we have an optimally mana
fishery and examine the impacts of the introduct
of a MPA in such a situation. We claim that under
efficient fisheries management system, a MPA, pr
erly defined and implemented, may enhance both e
nomic benefits and fish stocks.

The model used here is structurally very similar
Hannesson’s model[7]. It deals with sub-population
distributed in two patches interacting through mig
tion. This is a variant of the spatial model develop
by Sanchirico and Wilen[12].

It is assumed that the migration depends only
the biomass densities in each area (i.e., the rati
stock over carrying capacity). The simplest migrat
model is based on diffusion, which depends mer
upon the difference between the respective dens
of patches. Therefore migration occurs if a dispa
arises between the respective biomass densities in
and outside the MPA.

Following Conrad[5], Hannesson[7], it is pre-
sumed that the carrying capacity is increasing w
the patch size. Nevertheless, we assume here tha
carrying capacity of the MPA is always very sm
compared to the overall carrying capacity, which
equivalent to claim that the carrying capacity of t
unprotected area is (almost) not modified by the e
tence of a MPA. Consequently, we consider here
the valueP of the carrying capacity in the harvestin
area is not modified by the creation of a MPA.

Suppose also that this spatial consideration allo
us to distinguish the population behavior betwe
two dynamics, as follows. The growth of the su
population density into the MPA is governed by t
dynamics:

(8)Ẋ1 = F1(X1) + λ(X2 − X1)

while the growth of the sub-population density into t
fishing area is governed by the dynamics:

(9)Ẋ2 = F2(X2) − λ(X2 − X1) − qE2X2

We assume that the growth functionsFi(·) (i = 1,2)
fulfill the same assumptions thanF(·) in the basic
model.

First, we examine existence and stability of equil
ria of the coupled dynamics(8,9), whenλ andE2 are
given positive numbers. This dynamical system adm
at most one equilibrium(Xe

1,X
e
2) different from(0,0),

which is necessarily asymptotically stable (seePropo-
sition 1in Appendix A). Moreover, in the logistic case
we can derive a necessary and sufficient condition
the existence of such an equilibrium (seeCorollary 2
in Appendix A).

Secondly, let us pay attention to the migration c
efficient λ. There are many possibilities with rega
to what kind of migration may take place betwe
stocks inside and outside a MPA. The relationship
shall focus on here could allow mutual in- and o
migration. Forλ > 0, this is the classical migration b
diffusion: the flow is oriented from the highest dens
towards the lowest.

Particular cases whenλ < 0 can be interpreted a
“sink-source” systems in which flows from patch
patch are constrained by biological effects, like stre
that can reverse the migration due to differential
densities. We shall explain further why we get int
ested only in cases for whichλ > 0. It is clear that the
possible values of this parameter are also strongly
lated to biological and spatial parameters, such as
fish mobility and the size of the protected area. R
estimation of these values would require deeper
ological and experimental studies on concrete ca
Such studies would also certainly reveal in which
tent a decision maker can really influence the value
this parameter, for instance, choosing the size and
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location of the protected area. However, one can c
sider that fishery managers can decide which patch
be close and when. Thus, it can be considered that
ery managers can decide, in some extent, of the v
of λ, and possibly change it with time. Neverthele
our objective in this theoretical work is mainly to sho
that there exists a set of values for this parameter
which a protected area is beneficial for both the b
logical and economical view points. The mathemati
technique we use for finding such “good” values is
consider first the parameterλ as if it was a real contro
variable, i.e. a function of timeλ(·). Then, the optima
steady state solution of the associated problem g
us the “best” stationary valueλ∗ for this parameter
The simulations we have launched for different valu
about this optimal one show that the beneficial sit
tion is quite robust for a reasonably large set of val
of λ.

In this setting, one has to deal with the followin
optimal control problem(PMPA) with the two con-
trols E2(·) andλ(·). The objective is to maximize th
present value of the fishery obtained from the explo
tion of the resource, that takes place only in the unp
tected area.

max
E2(·),λ(·)

+∞∫
t=0

e−δt
(
PqX2(t) − c

)
E2(t)dt

s.t.:Ẋ1 = F1(X1) + λ(t)(X2 − X1)

Ẋ2 = F2(X2) − λ(t)(X2 − X1) − qE2(t)X2

0� E2(t) � Emax, 0� Xi(t) � 1 (i = 1,2)

X1(0),X2(0) given

For the time being no positivity constraint on the co
trol variableλ(·) is stated. As before, for all trajecto
ries s.t.X2(t) �= 0 for anyt � 0, the problem(PMPA)

is equivalent to a calculus of variations problem:

max
X1(·),X2(·)

+∞∫
t=0

e−δt

(
P − c

qX2(t)

)

(10)

× [
F1

(
X1(t)

) + F2
(
X2(t)

) − Ẋ1(t) − Ẋ2(t)
]
dt
3.1. Optimality conditions

The Euler first order optimality condition gives th
following equations:

Ẋ1 = X2

(
Pq

c
X2 − 1

)(
F ′

2(X2) − δ
)

+ F1(X1) + F2(X2)

Ẋ2 = X2

(
Pq

c
X2 − 1

)(
δ − F ′

1(X1)
)

We first study candidate optimal steady state
lutions (X∗

1,X∗
2). If F1(X

∗
1) �= 0, then the following

equations are satisfied.

(11)δ − F ′
1

(
X∗

1

) = 0

X∗
2

(
Pq

c
X∗

2 − 1

)(
F ′

2

(
X∗

2

) − δ
)

(12)+ F1
(
X∗

1

) + F2
(
X∗

2

) = 0

Given the regularity assumptions onF1, for any δ ∈
]0,F ′

1(0)], there exists at least one solutionX∗
1 of

(11). We notice also that the expressionX∗
2(

Pq
c

X∗
2 −

1)(F ′
2(X

∗
2) − δ) is necessarily non-null. Therefor

Eq.(12)can be re-written as

R
(
X∗

2

) = H
(
X∗

2

) := F1(X
∗
1)

X∗
2

where R(·) has been defined in(6). Thus X∗
2 can

be graphically interpreted as the intersection of
graphs of the two functionsR(·) andH(·) (cf. Fig. 3).
In the logistic case, for anyδ ∈]0, r1[, there exists a
unique solution(X∗

1,X∗
2) (cf. Appendix B).

Remark. Up to now, there has been no reason
claim that one of theX∗

i was necessarily greater tha
the other. Nevertheless we observe in(8) that optimal
steady state solutions withλ∗ > 0 correspond exactl
to cases such thatX∗

1 > X∗
2. These are the situation

of interest, where the protected area acts as a na
hatchery, as underlying by fishery scientists[3]. There-
fore, we shall impose in the following that feasib
paths fulfillλ(·) > 0. In the particular case of the logi
tic growth model, the conditionλ∗ > 0 is equivalent to
the following one (cf.Appendix B).

(13)R
(
X∗

1

)
>

F1(X
∗
1)

X∗
1
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3.2. Optimal fishing effort and fishery benefit

At optimal steady state, the optimal fishing effo
can be derived, combining(8), (9) and (12):

(14)E∗
2 = (

δ − F ′
2(X

∗
2)

) (PqX∗
2 − c)

cq

while the associated profit is

(15)J ∗
MPA = 1

qδc

(
qPX∗

2 − c
)2(

δ − F ′
2(X

∗
2)

)
With the same argumentation than in Section2.2, the
optimal solution is feasible (i.e.E∗

2 � 0) exactly when
PqX∗

2 � c, and the profitJ ∗
MPA is then necessaril

nonnegative. One deduce also thatδ − F ′(X2) > 0.
Recalling(11), one hasδ = F ′

1(X
∗
1) and consequentl

X∗
2 fulfills the property

F ′
1

(
X∗

1

)
> F ′

2

(
X∗

2

)
WhenPqX∗

2 < c, no harvesting is the best solution.

4. Comparison between the two situations

Our goal here is to establish conditions under wh
a MPA could enhance both economic and the b
logical situations. We have turned to numerical co
putation because it seems quite difficult to obtain
complete analytical comparison. In the sequel we s
consider the case where growth functionsFi(·) obey
the logistic law:

Fi(Xi) = riXi(1− Xi) (i = 1,2)

For simplicity, we introduce the dimensionless pr
P̃ = Pq/c.

We present here some of our numerical res
that seem to be particularly relevant for our purpo
For this, we have fixedr2 = 0.2 andδ = 0.2 and let
r1 = αr2 for different values ofα > 1. Expressions(6)
and (11)become

R(X2) = 0.4P̃ (X2)
2 − 0.2X2 − 0.2

X∗
1 = (α − 1)/(2α)

The condition (13) guaranteeing that the optim
steady states are feasible (i.e., such thatλ∗ > 0) pro-
vides the following minimal value for the param
ter P̃ .

P̃min = α(α2 + 4α − 1)
(α − 1)2
4.1. Sensitivity analysis with respect toα andP̃

For different values ofα andP̃ , we have computed
and compared the optimal solutions(X∗,E∗) without
MPA and(X∗

1,X∗
2,E∗

2) with an optimal MPA. For in-
stance, takingα = 2, we have foundX∗

1 � 0.250 and
P̃min � 22. The results obtained for different values
the parameter̃P > P̃min are presented inTable 1.

Table 1

P̃ X∗ qE∗ qE∗X∗ X∗
2 qE∗

2 qE∗
2X∗

2 λ∗

24 0.155 0.169 0.0262 0.241 0.462 0.111 8.6
30 0.137 0.172 0.0236 0.221 0.496 0.110 2.6
36 0.125 0.175 0.0219 0.205 0.524 0.107 1.7
42 0.115 0.177 0.0204 0.193 0.550 0.106 1.3
48 0.107 0.178 0.0190 0.183 0.572 0.105 1.1

As expected, we notice that managing a protec
area with a higher growth rate (i.e.r1 > r2) can al-
low higher captures at optimal steady states:qE∗

2X∗
2 >

qE∗X∗.

4.2. Sensitivity analysis with respect toλ

In practice, it might be difficult to control with ac
curacy the fish migration between the two areas, an
impose the precise optimal valueλ∗. So, we study (nu
merically) the sensitivity of the equilibrium(Xe

1,X
e
2)

of the system(8), (9) with respect to variations of th
coefficientλ about the best valueλ∗, while the harvest-
ing effort E2 is set to its optimal valueE∗

2 (computed
and reported inTable 1).

The equilibrium (Xe
1,X

e
2) is computed (numeri

cally) as the (unique) solution of a system of equati
{g2(g1(X1)) = X1,X2 = g1(X1)}, where the func-
tionsgi(·) are made explicit inAppendix A(cf. (A.2)).
For instance, forα = 2, we found:

λ 7 8.6 (optimal) 10

P̃ = 24 Xe
1 0.253 0.250 0.249

Xe
2 0.245 0.241 0.240

λ 1 1.1 (optimal) 2

P̃ = 48 Xe
1 0.272 0.250 0.169

Xe
2 0.193 0.183 0.139

We notice that the effects of a variation of the m
gration coefficient on the steady states densities is
very significant. Consequently, the gain in managin
protected area with a migration coefficient aboutλ∗ is
quite robust.
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4.3. Improvement of the fishery value

Now we compare the present value of the fish
with and without a protected area. More precisely,
consider optimal stationary situations, when the de
sion to create a reserve or to close the existing on
taken. Therefore the present value of the fishery
to take into account the transit period when the b
mass densities have to reach the new steady state
assume that fishery managers have means to pre
migration outside the MPA when this one has be
created (this amounts at takingλ = 0 in our model).
We compare then three possible scenarios.

Scenario 1.There is no protected area and the value
the stock density is at its optimal valueX∗. Harvesting
optimally consists in remaining at the steady stateX∗
with the harvesting effortE∗. The associated profit i
J ∗ = c

δ
(P̃X∗ − 1)E∗.

Scenario 2.There is no protected area and the va
of the stock density is at its optimal valueX∗. The de-
cision to create an “optimal” protected area has b
taken at time 0. So, one hasX1(0) = X2(0) = X∗. We
consider then the harvesting strategy that drives
densities(X1,X2) as fast as possible to the optim
values(X∗

1,X∗
2), as explicited below.

Consider first the durationsTi (i = 1,2) defined as
the times for the solutions of the differential equatio
Ẋi = riXi(1− Xi) to reachX∗

i from X∗:

Ti = 1

ri
log

(
X∗

i (1− X∗)
X∗(1− X∗

i )

)

Then, two cases are possible, depending on the va
of T1 andT2:

WhenT1 � T2, the strategy is the following.

(i) Create a protected area at date 0 and prevent
migration outside the area.

(ii) Stop the harvest at dateT1 − T2.

WhenT1 � T2, the strategy is the following.

(i) Stop the harvest at date 0.
(ii) Create a protected area at dater1(T2 − T1)/(r1 −

r ) and prevent fish migration outside the area.
2
e
t

In both cases, the system reaches(X∗
1,X∗

2) exactly at
time T = max(T1, T2). Then, allowing fish migration
with a coefficientλ∗ and harvesting at a levelE∗

2 leave
the system at this steady state. The present valu
dateT of the benefits isJ ∗

MRAP = c
δ
(P̃X∗

2 − 1)E∗
2.

Then, the present value of the benefits at the dat
harvest closure is, in both case:

Jopen= e−δT2J ∗
MRAP

Scenario 3.The protected area has been created w
a migration coefficientλ∗ and the stock densities a
at their optimal valuesX∗

1, X∗
2. A decision to close

the protected area amounts to manage the harve
stockX2 as an independent one. Then, the optimal
lution is known to reach as fast a possible the va
X∗ < X∗

2 for the stock density, keeping maximal ha
vesting effortEmax (cf. [4]), and then to stay at th
steady stateX∗ with an harvesting effortE∗. The as-
sociated present value of the fishery is

Jclose=
T∫

t=0

e−δt c
(
P̃ X̃2(t) − 1

)
Emaxdt + e−δT J ∗

whereX̃2(·) is solution of

˙̃X2 = r2X̃2(1− X̃2) − qEmaxX̃2, X̃2(0) = X∗
2

which can be easily integrated.T is the first time such
thatX̃2(T ) = X∗, that can be determined analytical

T = log(X∗
2(qEmax− r2 + r2X

∗))
qEmax− r2

− log(X∗(qEmax− r2 + r2X
∗
2))

qEmax− r2

Notice that the maximum harvesting effortEmax needs
to be larger thanr2/q to ensure that the equilibrium
X∗ is reachable. For the simulation, we have cho
Emax= 1/q. For instance, forα = 2, we obtain:

P̃ J ∗(c/q) J ∗
MRAP(c/q) Jopen(c/q) Jclose(c/q)

24 2.3 11 6.4 3.9
30 2.7 14 7.8 4.7
36 3.1 17 9.4 5.4
42 3.4 20 11 6.1
48 3.7 22 12 6.8

We check that, in any case, managing a protec
area at the steady state(X∗

1,X∗
2) with (E∗

2, λ∗) im-
proves the present value of the fishery.
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5. Conclusion

In this work, impacts of MPA creation have been
vestigated, on both economic and biological persp
tives. Our attention has been focused on the obten
of theoretical conditions leading to economic bene
on the sole fishing sector. More precisely, it has b
assumed that the fishery sector is optimally mana
by fishery managers (whether individuals or comm
tees). Their optimal behavior consists then in ma
mizing the present value of the fishery, defined as
sum of the discounted net revenues derived from
exploitation of the resource. With the help of a tw
patches model, we have found that MPAs should
installed so that the amount of spillover is maximize
Of course, scientific guides are required to advice fi
ery managers about the design, location and conc
implementation of MPAs.

In further works, it would be useful to examine co
ditions under which our results are robust under ot
management rules. Open access regime should b
alyzed first. In the open access case, MPA may act
management tool amongst other complementary m
agement tools.

Secondly, it is well known that there exist oth
potential benefits that can be advocated in favor
MPA implementation. It should be actually taken in
account of consumer or scientific benefits relative
MPA creation. Considering them together with t
fishery profits should allow to define a social val
of MPAs. The objective of fishery managers sho
be then to maximize this social value. In the ca
where the amount of the resource spillover is not s
ficient, MPA may lead to loss for the fishery sect
If managers concerns are the only fishery sector b
efits, MPA implementation must be given up. If t
objective of fishery managers takes into account o
ers potential benefits, the social value of a MPA m
still be positive. This work was obviously beyond t
purpose of this paper, and would require to ass
both economic and social implications of MPAs. Be
efits and costs to extractive users (fishermen) but
benefits and costs to nonextractive users, as we
management benefits and costs should be estim
(Sanchirico et al.[11]). Moreover social value asses
ment of the MPA would require to take into accou
equity issues, which may arise because MPAs af
-

.

generally different users groups in a disproportion
way.

Appendix A

We study the equilibria of the coupled dynamics

(A.1)
Ẋ1 = F1(X1) + λ(X2 − X1)

Ẋ2 = F2(X2) + λ(X1 − X2) − qE2X2

whereλ, E2 are constant positive numbers.

Proposition 1.When the functionsFi(·) (i = 1,2) ful-
fill the following properties:

(P1) Fi(0) = Fi(1) = 0,
(P2) Fi(·) is strictly concave,

then the system(A.1) admits at most one equilibrium
(Xe

1,X
e
2) different from(0,0), which is necessarily as

ymptotically stable.

Proof. Consider the two functions on[0,1]

(A.2)
g1(X1) = X1 − F1(X1)

λ

g2(X2) = X2 − F2(X2) − qE2X2

λ

Then any equilibrium point(Xe
1,X

e
2) of (A.1) is such

thatg1(X
e
1) = Xe

2 andg2(X
e
2) = Xe

1. It belongs to the
intersection of the graph of the functiong1 and the
symmetric of the graph of the functiong2 with respect
to the first diagonal.

From the properties (P1) and (P2), we deduce
these functions fulfill the following properties:gi(0) =
0 (i = 1,2), g1(1) = 1, g2(1) = 1+ qE2/λ andgi are
(strictly) convex (i = 1,2). Moreover we observe als
the following properties.

(P3) the graph ofg1 is below the line segmen
(0,0)–(1,1) (seeFig. 1).

(P4) the symmetric of the graph ofg2 w.r.t. the first
diagonal is above the line segment(0,0)–(1 +
qE2/λ,1) (seeFig. 1).

Let (Xe
1,X

e
2) and(Xe′

1 ,Xe′
2 ) be two non-null equilib-

ria. They both belong to the graph of the functi
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Fig. 1. Graphs of the functionsg1 andg2.

X1 �→ g1(X1), so necessarilyXe
1 �= Xe′

1 . We can as-

sume, without any loss of generality, thatXe′
1 > Xe

1.

Consider the line segmentL : (0,0)–(Xe′
1 ,Xe′

2 ). By
convexity of g1 and g2, we have the following geo
metric properties:

– the graph ofg1 is belowL,
– the symmetric of the graph ofg2 is aboveL.

Then(Xe
1,X

e
2), which belongs also to the intersectio

of the graph ofg1 and the symmetric of the graph
g2, is at the same time below and aboveL, thus a con-
tradiction. So, we deduce that there exists at most
equilibrium different than(0,0). From the properties
(P3)–(P4), we also deduce that any equilibrium po
belongs to the domain

D :=
{
(X1,X2) ∈ (0,1]2

∣∣∣ X1

1+ qE2/λ
� X2 � X1

}
The convexity ofg1, g2 also implies the property:

Xi �= 0 ⇒ gi(Xi) − Xig
′
i (Xi) < gi(0) = 0

(derivative exists a.e. from the concavity assumpti
from which we deduce:

Xi > 0, gi(Xi) > 0 ⇒ g′
i (Xi) > 0

Then,g2 is invertible at pointsX2 such that(g2(X2),

X2) ∈ D. By the inverse function theorem, we ha
(g−1

2 )′ = (g′
2)

−1 and the restriction ofg−1
2 on the

subset{X1 | X1 = g2(X2) with (X1,X2) ∈ D} is a
(strictly) concave function. Finally,Xe

1 is a zero of the
convex functionh1 :X1 �→ g1(X1) − g−1

2 (X1).
Notice thath1(0) = 0. SoXe

1, if it exists, must sat-
isfy h′

1(X
e
1) > 0, which amounts to require

g′
1

(
Xe

1

)
>

(
g−1

2

)′(
Xe

1

) = 1/g′
2

(
Xe

2

)

Fig. 2. Existence and uniqueness of(Xe
1,Xe

2).

Thus, we have the necessary conditions

(A.3)
g′

1

(
Xe

1

)
> 0, g′

2

(
Xe

2

)
> 0

g′
1

(
Xe

1

)
g′

2

(
Xe

2

)
> 1

The dynamics(A.1) can be re-written as follows

(A.4)
Ẋ1 = λ

(
X2 − g1(X1)

)
Ẋ2 = λ

(
X1 − g2(X2)

)
Finally, conditions(A.3) imply that the Jacobian ma
trix J of the system(A.4) at (Xe

1,X
e
2) fulfills the fol-

lowing properties.

tr(J ) = −λ
(
g′

1(X
e
1) + g′

2(X
e
2)

)
< 0

det(J ) = λ2(g′
1(X

e
1)g

′
2(X

e
2) − 1

)
> 0

from which we deduce the asymptotic stability of t
dynamics(A.1) about(Xe

1,X
e
2). �

Corollary 2. WhenFi(Xi) = riXi(1−Xi) there exists
a unique equilibrium(Xe

1,X
e
2) in (0,1]2 if and only if

qE2 < (λ(r1 + r2) − r1r2)/(λ − r1).

Proof. We have h1(0) = 0 and h1(1) = g1(1) −
g−1

2 (1) = 1 − g−1
2 (1) > 0 so there existXe

1 ∈ (0,1)

such thath1(X
e
1) = 0 if and only if h′

1(0) < 0, which
amounts to requireg′

1(0) < (g−1
2 )′(0) or equivalently

qE2 < (λ(r1 + r2) − r1r2)/(λ − r1). (SeeFig. 2.) �

Appendix B

When F(·) is the logistic law, the functionR(·)
defined in(6) is a convex second order polynom
function. AsR(0) = −δ < 0, the convexity provides
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Fig. 3. Graphs ofR(·) andH(·).

the existence of a uniqueX∗ > 0 such thatR(X∗) = 0.
WhenPq > c, one hasR(1) > 0 which then ensure
thatX∗ belongs to[0,1].

Furthermore, by the mean value theorem, there
ists an uniqueX∗

2 > X∗ such thatR(X∗
2) = H(X∗

2). To
ensure thatX∗

2 is feasible (i.e.X∗
2 < X∗

1) a necessary
condition is to haveR(X∗

1) > H(X∗
1) (cf. Fig. 3).
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