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Abstract

We perform a computational study using a new approach to the analysis of protein sequences. The contextual alignmen
model, proposed recently by Gambin et al. (2002), is based on the assumption that, while constructing an alignment, the score
of a substitution of one redile by another depends on the surding residues. The contextudibament scores calculated in
this model were used to hierarchical clustering of severaeprdamilies from the database of Clusters of Orthologous Groups
(COG). The clustering has been also constructed based on the standard approach. The comparative analysis shows that t
contextual model results in more consistent clustering trees. The difference, although small, is with no exception in favour of
the contextual model. The consistency of the family of trees is measured by several consensus and agreement methods, as w
as by the inter-tree distance approabbicite thisarticle: A. Gambin, P.P. Slonimski, C. R. Biologies 328 (2005).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Classification hiérarchique fondée sur alignement contextuel des protéines : une nouvelle maniere d’aborder la
phylogénie.Nous avons tilisé dans notre étudeén nouveau modeéle d’alignement des sémpas protéiques, le modéle contex-
tuel proposé par Gambin et al. (2002). Il postule que, lors dernatecuction d’alignements, kubstitution d’un résidu par un
autre dépend de la nature des résidus@aljts. Plusieurs famillesqiéiques de la base de données COG ont été examinées
selon ce nouveau procédé. Il en résulte une classification hiérarchique des taxa microbiens. Les arbres phylogénétiques ain
obtenus ont été comparés a ceux dérivés de procédés standards. Nous montrons que le modele contextuel conduit a des hiér
chies qui sont plus cohérentes entresebieplus conformes a la phylogénia différence, bien que e, est systématique : le
modéle contextuel, sans exception, améliore la cohérence entre les arbres phylogémétinueter cet article: A. Gambin,
P.P. Slonimski, C. R. Biologies 328 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction A number of authors (e.d5,8]) have proposed dif-
ferent methods to investigate the consistency of the set
One of the fundamental problems in biological of trees. Most of them aim at the construction of one
classification is the question how to interpret the phy- tree (so-callecdupertre@, which represents the set of
logenetic information contained in a collection of dif- source trees. Because existing supertree methods suf-
ferent phylogenetic trees that classify the same set of fer from serious limitations (see, e.d9]), we have
taxa. One reason for the uncertainty about the true decided to work with several different gene trees.

phylogenetic tree is that different choices for molecu- In order to estimate the consistency of a set of trees,
lar sequences often point to different trees, cadjede we have tested some mathematical properties, like
treesor protein family treeqsee e.g[1-9]). Finding pairwise distances between trees or common homeo-

the best way of combining the information contained morphic subgraphs. The results obtained are analysed
in numerous different gene trees for the same set of for both contextual and non-contextual trees. All com-
species remains an open problem in contemporary bi- putational experiments, justified in some cases by a
ology. theoretical analysis, show more consistent results for
It is textbook knowledge that a range of methods contextual trees, which is in agreement with our con-
has been proposed to construct trees from genetic sejecture.
quences. At one end of the spectrum lie fagamet- This paper is organised as follows. At the beginning
ric models, such as the maximume-likelihood method. we present briefly the main ideas behind the contextual
Many researchers believe that as more data becomealignment model, then we describe the methods used
available, the mutation rates will be known with bet- in our analysis. The results of several computational
ter accuracy and these models will be better justi- experiments are analysed in Secti®rand followed
fied. At the other end of the spectrum of tree build- by conclusions and further research.
ing methods lie theon-parametricapproaches, such
as the parsimony. The distance-based methods lie in1.1. The model of contextual sequences alignment
between these two extremes. In this approach, the mu-
tation model is parametric (with very few parameters It is well known that the role an amino acid plays
considered) and the tree-building procedure is non- at a site in a protein depends on its environment. The
parametric. Distance-based methods are very popular,evidence of this context-dependency contrasts with
because the problem of computing the best tree for two widely-used sequence comparison models, which as-
other mentioned methods (maximum-likelihood and sume the independence of the evolution for differ-
parsimony) is computationally difficult. ent sites. Recently, some research was done in the
We have decided to enrich the parameter-space offield of non-simplified models of DNA sequence evo-
distance-based methods by applying the new approachlution [10,11] The authors consider a probabilistic
to the protein-sequence alignment, which takes into model, in which a molecular sequence undergoes ran-
account the context-dependence of the amino acid sub-dom changes due to substitutions, whose probability
stitution pattern. Several trees are reconstructed foris context-dependent. This leads to a Markov chain
protein families based on contextual similarity data. model of quite complicated structure.
This set of trees is compared with the one obtained by  The contextual alignment model defined [ih2]
standard methods. Our main goal was to verify the fol- can be viewed as an algorithmic counterpart of these
lowing conjecture: works, which is also suitable to analyse the protein se-
guences. It extends the classical alignment model, with
The contextual model should yield a more consis- the intention to bring it a step closer to the biological
tent set of trees reality without sacrificing its algorithmic properties.
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The set of operations is the same as that of the clas-D +— H. In the second scenario, the order of these
sical non-contextual alignment model, but the score two substitutions is inverted? — H is followed by
function of a substitution changes. In our model, the C ~ G. The summarized score for the left path is
score of a substitutiodepends on the surrounding let-  —2.1, while for the right path it is—3.2. This dif-
ters in the sequencéoo. The score for insertions and  ference is caused by different contexts for the con-
deletions is inherited from the classical model. As it sidered substitutions (e.g., the substitut®omr> G is

is easy to see, in the contextual-alignment model, the performed in the context—D on the left path, while
score of a set of operations depends on the chronol-for the right path the context for this substitutiorvis

ogy of operations. On the other hand, the operations g je. the left context is changed fromto H).
performed at distant fragments of the sequence are in-

dependent, in the sense that neither of them changes

the context of the other. Particularly, it is sufficient to _ - T~

have two identical and adjacent columns in the align- -7 0 209 N
ment; they constitute a ‘wall’ separating two indepen- , ~ . N

dent regions. Operations in independent regions can/
be performed in any order. Therefore, there are typi- "
cally many orders that give the maximal score. Thus,
the algorithms find not only an optimal set of opera-
tions, but also reconstruct a precise characterisation of
the set of all possible orders (we call them admissi-
ble orders), in which the operations may be performed

to yield the maximal score. More detailed study of
the structure of optimal alignments and the description 2. Methods
of efficient algorithms constructing them are included

in[12,13]

2.1. The dataset
1.2. Contextual substitutions tables

We decided to use the database of Clusters of Or-
thologous Groups of proteirj46,17], COG in short.
It consists currently of 3307 COGs, including 74 059
proteins from 43 genomes of bacteria, archaea and the
yeastSaccharomyces cerevisigeOG database repre-
sents an attempt to a phylogenetic classification of the
duced by[15]. The entries in the matrices are log-odds proteins encgded in complete genomes. Each COG_ in-
of the observed and expected mutation rates betweenC!Udes proteins that are thought to be orthologous, i.e.
given pairs of amino acids in a given context. For read- connected through vertical evolutionary descent.
ers interested in this topithe matrices parameterised Two groups of COGs are considered. The first one
by different clustering constants can be found at; consists of 12 gene families of different tRNA syn-

http://mww.mimuw.edu.pl/~aniag/ALIGN/TABLES thetases. They are functionally related in contrast to
the second group investigated here which is func-

1.3. Example tionally more diverse (8 COGSs). It includes DNA
polymerases as well as ribosomal proteins and CDP-
Consider the following example, that explains how diglyceride synthetases.
the relative order of two substitutions applied to the ~ These two sets are selected from the list of 85
same sequence affects the score, if the contextual sub-COGs, in which all organisms are represented (i.e. each
stitution table from{14] is used. On the left path, the COG contains at least onegtein from each genome).
substitutionC — G is followed by the substitution  Our dataset is listed ifable 1

The contextual alignment algorithm assumes, as an
important part of its input data, a contextual scoring
table, providing the score for every possible substitu-
tion in every possible context. If14], the procedure
for constructing the family of contextual matrices has
been proposed. It is based on the methodology intro-
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Table 1

Two groups of COGs considered

Group | Group Il

No. COG name No. COG name

0013 Alanyl-tRNA synthetase 0013 Alanyl-tRNA synthetase

0442 Prolyl-tRNA synthetase 0185 Ribosomal protein S19

0016 Phenylalanyl-tRNA synthetase 0201 Preprotein translocase subunit
0072 Phenylalanyl-tRNA synthetage 0202 DNA-directed RNA polymerase
0162 Tyrosyl-tRNA synthetase 0361 Translation initiation factor
0018 Arginyl-tRNA synthetase 0575 CDP-diglyceride synthetase
0124 Histidyl-tRNA synthetse 0592 DNA polymerase Bl subunit
0143 Methionyl-tRNA synthete 0636 FOF1-type ATP synthetase
0495 Leucyl-tRNA synthetase

0525 Valyl-tRNA synthetase

0172 Seryl-tRNA

0441 Threonyl-tRNA synthetase

2.2. Pairwise alignments inside COGs the dataset). In our commtton, we assume a typical

i ) . distribution of amino acidf21], which has been veri-

In the first phase of the experiment, the protein se- fieq (o be very close to the distribution of amino acids
quences from each COG have been pairwise locally jnsige the COG database. This method gives us the
aligned using the standard Smith—Waterman algorithm g\ g|utionary distances that are not directly related to
and the contextual alignment procedure fiid2]. The 6 genetic divergence. IHee, we treat the trees built
statistical significance of the obtained alignments have ¢4 ihese distance data as cladograms taking into ac-

been computed using the method frfd8], whichhas .40t the topologies of branching but not the lengths
been also adapted to the contextual setting. of the branches.

2.3. Hierarchical clustering A second transformation between scores and dis-
tances is proposed if22]. Assuming thats (i, w) is

Several methods to derive the pairwise evolution- the local similarity scag between the sequenaeand
ary distance (sometimes called difference score) from w, then their distance is defined via:
alignment scores are proposed (see, ¢19]). Be-
ing aware of the drawbacks of all these approachesd(u,v) =d (v, u)

(see[20] for a detailed discussion) we decided to use
two independent methods.

The first one is based on the notion of statistical In the non-contextual case(u,v) is given by the
significance considered foo¢al pairwise alignments ~ Smith—Waterman algorithm and, in the contextual set-
in [18]. Roughly speaking, for a given pair of se- ting, s(x, v) is computed by the contextual procedure
guences, this value corresponds to the probability that from [12]. One may observe that the measure defined
two random sequences of the same length and aminoin such a way may fail to satisfy the triangle inequal-
acids composition have local similarity score higher ity. However, as it was noticed if22], such failures
then our pair. The statistical significance for two se- occur with frequency below 10, and hence presum-
quencesu and v with lengthn and m having local ably hardly affect our results.
similarity scores(u, v) = S is given by the formula: Inside the 20 orthologous gene families considered
in our analysis, majority contains only one gene per
species. In a few cases the family contains more than
wherep andy are two parameters, which have to be one gene (paralogous genes) per taxon. Only one of
estimated with respect to assumed alignment model the paralogs is retained, while the more distant one
(i.e. the alignment algorithm, amino acids substitu- is excluded from our analysis (e.g., APE0809 is ex-
tion matrix, gap penalties, amino acid composition of cluded, while APE0117 is retained in the COG0441).

=s(u,u)+s,v) —su,v) —s(v,u)

Significances) ~ 1 — exp(—ymnp®)
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In all cases, the paralogs coding in yeast for mito- Having all mentioned limitation in mind, we have
chondrial t-RNA synthetases have been eliminated. decided to examine also the whole family of species
All trees are reconstructed by a Neighbour-Joining al- trees, not only a single super- or consensus tree.
gorithm implemented in PHYLIP packad@3]. To estimate the consistency of the set of trees, we
have calculated all pairwise distances between trees.
These are compared for both contextual and non-
contextual trees. All computational experiments (para-
We have analysed the groups of trees constructed meterised by different tree metrics) yield better results
from contextual and non-contextual data. Our main for contextual trees than for non-contextual ones, in
goal has been to examine whether the use of contex-agreement with our conjecture.
tual model of sequence alignment has an influence on  The single tree derived from the set of trees has
the phylogenetic clustering. been also considered in two settings: Adams consen-
Adopting the widely-accepted assumption that the sus and maximum agreement subtree. The outcomes
vertical descents dominates horizontal gene transfer of experiments are supported by probabilistic analy-
(see, e.g.[24] for a recent discussion) we can formu- sis, which justifies the significance of the superiority
late the following conjecture: of the contextual approach.
In all the computational experiments mentioned
Set of trees reconstructed in contextual model above, we do not test any biological hypothesis, but
should be more consistent (i.e. the trees should only some mathematical properties (like common
share more common structure) topologies or pairwise distances) for the set of trees.
In contrast to this approach, we start the presentation
There exist several methods to investigate the consis-of our results with a short example, which deals with
tency of the set of trees. Most of them aim at the con- the evolution of proteobacteria.
struction of one tree (so-calledipertreeor consensus
tree), which captures all non-conflicting information  3.1. A biological example
contained in the set of trees.
Supertree and consensus tree methods suffer how- In order to illustrate the rationale used to com-
ever from inherent mathematical limitations (§ep. pare various types of alignments and the derived
More precisely, one can prove the non-existence of Phenograms, an example of application to bacter-

the method that possesses simultaneously the desirabléal phylogeny may be of interest. We have analysed
properties, like: a set of trees (phenograms) constructed for sev-

eral COGs in the contextual and non-contextual set-
« the method is independent of the order of the input ting. We have been interested in the evolution of
trees; two groups of bacteriax proteobacteria (CauCe
e the renaming of all the species in the input trees Caulobacter crescentysMesLo = Mesorhizobium
can be reversed by the appropriate renaming of all loti, RicPr= Rickettsia prowazeRiiand g,y pro-

3. Results

species in the output tree; teobacteria (Haela- Haemophilus influenza®asMu
o if the set of input trees is compatible, the output = Pasteurella multocidaEcoli = Escherichia coli
tree displays all of them. K12, VibCh= Vibrio cholerag PseAe= Pseudomonas

aeruginosa XylFa = Xylella fastidiosa NeiMa =

The existing methods to combine trees are rather Neisseria meningitidisMC58, NeiMb = Neisseria
heuristic. The widely-used method is to re-code trees meningitidis Z2491) together with the Buchnera
by characters and apply some standard tree reconstruc{Buchn) species. It is generally believed that both
tion algorithm like maximum parsimony or Neighbour- groups are well clustered and most importantly Buch-
Joining[2,5]. The verification of already constructed nera should be monophyletic with tifey proteobac-
supertree is often based on some ‘biological feeling’ teria family (sed25] for a recent discussion). To de-
(especially in the case of bacterial phylogeny, when no fine a measure of evolutionary closeness, we consider
different molecular data are available). the subtree rooted at the most recent common ancestor
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Table 2
The evolution of proteobacteria
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B, y proteobacteria

COG family COG multiple non-contextual pairwise contextual pairwise
alignment alignment alignment

0072: Phenylalanyl-tRNA synthetage 14 26 0

0016: Phenylalanyl-tRNA synthetase 13 17 0

0592: DNA polymerase I subunit 2 11 0

0636: FOF1-type ATP synthetase 0 0 0

) 29 54 0

« proteobacteria

0072: Phenylalanyl-tRNA synthetage 0 33 0

0016: Phenylalanyl-tRNA synthetase 0 0 0

0592: DNA polymerase I subunit 9 23 25

0636: FOF1-type ATP synthetase 24 0 0

) 33 56 25

(MRCA) of the considered family (MRCA subtree).

egories: those model, in which the distance between

The MRCA subtree contains as leaves all members of trees can by computed efficiently (i.e. in the polyno-
our family and, in the ideal case, nothing more. Now, mial time) and the second group of models for which
to distinguish between the quality of trees that describe the approximation approach is necessary (because
the evolution of proteobacteria, we count the number computing the distance in such a model is NP-hard).

of leaves that have to be pruned from MRCA subtree,

For our analysis, we have chosen several methods

because they do not belong to the considered family. to measure the degree of dissimilarity for a set of trees.
The smaller is the number of leaves to be pruned, the These methods are:

better is the fit between hypothesis and results.

Table 2summarizes our results. The entries corre-
spond to the numbers of leaves that have to be pruned.
In the first column, the number of COG families is
given, then in the consecutive columns: the results ob-
tained for the non-contextual tree based on multiple
alignment (as presented at COG web pages), the re-
sults for tree based on non-contextual pairwise align-
ment data and the results for tree based on contex-
tual pairwise alignment data. In all protein families,
but one, the contextual data give monophyletic results
(0 leaves pruned), while in non-contextual and and
in multiple alignment, the majority (%) of families
is inconsistent with the monophyletic origin of pro-
teobacteria. In conclusion, the evolution of these pro-
tein families, as judged by the contextual approach, is
more consistent with the rRNA phylogenetic tf@é].

3.2. Pairwise distances inside a set of trees
Several distance models for evolutionary trees have

been proposed in the literature (see, €4j). From
the computational point of view they fall into two cat-

o the partition metrictreats trees as a set of clus-
ters, it measures the amount of different clusters
between trees. It is easy to compute, but its reso-
lution is rather poor (two trees differing solely in
the position of one taxon can be maximally differ-
ent);

o theNearest-Neighbour Interchange distar{BeNI)
is defined in terms of transforming one tree into
another. It counts the minimum number of op-
erations (called nearest neighbor interchanges)
required for such a transformation. The main dis-
advantage of this approach is that no exact, ef-
ficient algorithm for NNI distance exists. In our
experimental study we use several approximations
proposed in the COMPONENT packa@s];

o theMaximum Agreement Subtré@dAST) of two
or more trees is an identical subtree of maximal
size that can be obtained from all considered trees
by pruning leaves with the same label. There ex-
ists an efficient algorithm finding MAST for two
trees[7] and for more trees of bounded maximal
degree. We can consider the distance between two
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trees as the number of leaves removed to obtain 3.2.4. Distances in a set of random trees

MAST. The results from above cde compared with sim-
- _ ulations, which have been done for a set of randomly
3.2.1. The partition distance generated trees of the same cardinality and with the

TheTables 3—resent the outcome of computing  same number of leaves. The outcomeJable 6are
all pairwise partition distances for all trees inside each obtained as an average from 300 simulations. It can be
considered set. The results for cladograms (i.e. treesseen that NNI and partition metrics discriminate bet-
built from significances of scores) are in agreement ter cognate trees from random ones, while the MAST

with the same experiment performed on trees with metric is less informative. In Sectich4, a more re-
Linial's distance transformation (values in parenthe- solving application of MAST is described.

ses).
In both cases, the contextual models yield to more Table 6

consistent set of trees. For example, the average over 8 COGs 12 COGs
all pairwise distances are smaller. The differences are Partiion NNI _ MAST Partiion NNI _ MAST
not very big, but, more importantly, contextual data . 758 132 306 757 1355 309
give always better results. st.dev. 06 77 09 06 81 105
Table 3

8 COGs 12 t-RNA synthetases 3.3. Consensus methods

context non-context antext non-context
min 24(24) 2228 2432 3434) To express the degree of agreement between clado-
max 46(50) 46 (56) 56(58  62(62) grams, it may be sometimes useful to combine the
ave. 34(39) 35 (44) 44 (45) 50 (48) phylogenetic information from two or more trees into
st. dev. 67 68 66 6© one ‘consensus’ tree. Such a tree is a summary of

how well the original trees agree. A number of differ-
ent types of consensus trees has been proposed; each
3.2.2. The NNI distance is calculated differently to answer different kinds of
SeeTable 4 questions. Each summarizes common or average rela-
tionships among the original set of trees.

Table 4 Unfortunately, consensus methods are of limited
8 COGs 12 t-RNA synthetases value: large disagreemeamong trees results in com-
context ~ non-context ~ antext  non-context  pletely unresolved consensus tree. In our study, we

min 17(18) 18(26) 15 (24) 28(27) decided to compare Adams consensus tf&esalcu-

max 46(55) 49 (66) 82(82 83(88) lated for both contextual and non-contextual groups of

ave. 30(36) 32(44) 49 (51) 55 (56) trees.

st. dev. 412 13 11d3 11d3 Adams consensus tree is characterized by the no-

tion of nesting For A and B being the subsets of the
) set of leaves of some phylogenetic tree, we say that
3.2.3. MAST distance nests inB if the most recent common ancestorbfs
SeeTable 5 a proper descendant of the most recent common ances-
tor of B. For a family of tree$7y, 1>, ..., Ty}, sharing

Table 5 the same set of leaves, Adams consensudtyeis de-
8COGs 12 -RNA synthetases fined as a unique phylogenetic tree on the same set of
context non-context  antext non-context leaves that satisfies the foIIowing:

min 10(13) 14 (14 17 (14 18 (14

max 212(%3) 28 (§8> 22 (§9> 22 (g? (Al) let A and B be subsets of the set of leavesAlf

:Xedev. 454)) 354)2) 354)2) 353)) nests inB in the treeT; forall i € {1,2, ..., k},

thenA nestsinB in T y4;
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Fig. 1. Contextual (left) vs non-contextug@ight) Adams consensus for 8 COGs cladograms.

(A2) let C and D be clusters of" 4, such thatC nests the tree (the root level is counted as level 0). For ex-
in D in T 4, thenC nests inD in eachT; for all ample, for Adams’ consensus trees of 8 COGs build
ie{l,2,...k}. from contextual and non-contextual dafd. 1), the

level-density vectors are the following:
Adams’ consensus tree is particularly useful for
identifying common tree structure, when one or more poc=(24.8,13 12 oNC =(3,6,14,7,2,7)
taxa have very different positions in the set of trees.

In Fig. 1, we present as an example Adams’ consen- evelt e e

sus trees for two sets of 8 COGs (contextual vs non- 2 esee ececcee

contextual) based on statistical significafit®]. No- 3 eeesceces tecessccscsssse
tice that the phylogeny of, y proteobacteria is more .

consistent in the contextual alignment tree than in the
non-contextual one. Similar consensus trees are alSO 5 ceoooooccccs oo
constructed for groups of trees based on Linial’s dis-
tances.

We propose a new approach to measure the qual- The level-density vectors can be represented as a di-
ity of consensus trees. The idea of consensus tree isagram similar toFerrers’ diagram[27], which is the
to capture as much common structural information of pictorial representation of numerical partition of an
considered trees as possible. Hence better (more in-integern. In contrast to Ferrers’ diagram, our vector
formative) trees should differ significantly from the corresponds to ordered pidion of the set of leaves.

‘bush’ or null tree (star tree). A star tree (completely unresolved) withleaves has
Consider the following characteristic of a rooted the level-density vectofn, 0,0, ...). More resolved
tree withn leaves: the integer vector, io, ..., i) IS trees correspond to vectors with more non-empty lev-
called thelevel density vectoif Z’j‘.:lij =n andi; els, where those levels, which are close to root, have

is equal to the number of leaves on thih level of smaller cardinality.
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Fig. 2. MAST for contextual (leftand non-contextual (right) clado- ~ Fig- 3. MAST for contextual (l¢j and non-contextual (right)
grams. phenograms.

) . . 3.4. MAST for the set of trees
Consider the measukrg associated with the level-

density vectop = (i1, iz, . .., i): The algorithm described ifi7], implemented in
1 PAUP phylogeny software packaf9], computes the
w(p) =) ij- 57 MAST of a set of leaf-labelled trees. The comparison
ij of these trees obtained for the contextual and the non-
wstar— @(p) contextual model shows significant differences. Let us
V(p) = . consider two pairs of trees being MASTSs for the set of
star — @Whin . .
. . 8 cladogramsKig. 2) and phenograms, i.e. trees based
where wstar = max, w(p) = 5 is the weighted level- o | injal's distance Fig. 3. The contextual MAST

density vector sum for a star tree withleaves and  tree has more leaves than its non-contextual counter-
wpin = 1 states for this sum for the completely re- 4t (13 leaves vs 9 leaves in the case of cladograms,
solved binary tree. This measure satisfies several use-3q 10 vs 7 in the case of phenograms). The proba-
ful properties (for general discussion of tree informa- pjjistic analysis below shows that these differences are
tion measures, s¢28]): indeed significant, when copared with the expected
size of MAST for the set of given numbers of trees.
e it is not sensitive to the tree balance, i.e. all Moreover, the contextual approach results in con-
completely resolved trees are equally informative sjstent evolutionary classification gfproteobacteria
(¥ =1), contrary to all measures whose calcula- (Neisserias) and mycoplasmas, which are absent in the

tion is based on summing the size of clusters; right-hand tree.
e it takes into account the size and the height of the
split; 3.5. The significance of the size of MAST

e it is monotonous, i.e. while considering Adams
consensus for several source trees, the measure of |n this section, we give an estimation of the ex-
consensus tree cannot exceed the maximum overpected size of MAST for a given number of random
the source trees. trees. We consider the uniform model, in which each
labelled-rooted tree with leaves is assigned an equal
In the case of our example of 8 COGs trees, the probability: P,(T) = ﬁn) whereN(1,n) =-3-5-
measure for Adams’ consensus trealigoc) = 0.83 -+ (2n—5)-(2n—3)(2n —3)!! is the number of rooted
for the contextual case and (onc) = 0.72 for the trees withn labelled leaves. Denote by:
non-contextual data. We conclude tiWatcan be used
as an efficiently computabkdternative for the tree in- Nk, D)=k -D2k+1)...(2A -3
formation measures proposed#8]. (I — k multipliers) for 1<k <1 < n.



20 A. Gambin, P.P. Slonimski / C. R. Biologies 328 (2005) 11-22

Table 7
The expected size of MAST for random trees

# of trees

— 3 4 5 6 7 8 9 10 11 12
# of leaves
10 391 306 301 252 216 205 201 200 200 200
20 504 401 309 301 300 252 217 205 202 201
30 568 412 354 304 300 300 262 221 207 202
40 618 457 400 312 301 300 300 250 217 205
50 695 502 402 330 302 300 300 299 233 211
100 848 6.01 462 4.00 334 302 300 300 300 291
150 1002 6.26 501 405 400 312 301 300 300 300
200 1094 7.02 510 420 400 338 303 300 300 300

The number of pairs ofi-leaf trees having agree-  This simple bound yields surprisingly tight estimation,
ment subtree (common homomorphic subtree) of size especially for a bigger number of trees — the values
at least (i.e. with k leaves) is given by the formula: calculated from Eq(1) are summarized ifiable 7

The expected size of a MAST for two random trees

Lo(k) = <n> N(2,k) - N(k,n)? was experimentally estimated[80]. The authors also
k cite there some values obtained from the analytical es-
For a fixed subset of leaves, there ar&/ (2, k) leaf- timations, which are not given. In contrast to them,

labelled trees. Any such a tree can by extended to analytical bound derived here work for several trees
then-leaf tree inN (k, n) ways. Notice that the above and are very close to the values obtained from simula-
number is overestimated, as some pairs of trees aretions.

counted several times. This equation can be easily The analysis above readily confirms the signifi-

generalized for the set of trees of cardinality greater cance of our results for contextual trees compared with

than 2: non-contextual ones. The difference of 4 leaves in the
" case of MAST for 8 cladograms appears really large,
Ly(k)= <k>N(2, k) - N(k,n)" when we look at the expected size of a MAST for 8

random trees which is less than 3.
Now, the probability that the-tuple of random trees
has an agreement subtree with at ldalgtaves can be

estimated as follows: 4. Conclusions and further developments
o, < Lr®)_ | _ o
SN @ ) It is clear that the experimental analysis described
n\ N(2,n) - N(k,n) 1 in this work is just a beginnin'g and cannot be treated
= (k) N 1) as a definitive answer. lmus improvements and an-
’ other experiments can be envisaged. Particularly, more
B (n> N(k,n)r =1 COGs can be considered, different distances studied,
N N(2,n)—1 supertree approaches proposefbinor [8] can be ex-
(Z) amined.

= N2 k1 It would be also very interesting to check whether
T _ the Gap Alignment approach, described e.g[3],
The expected size of the maximum agreement subtreecgn pe applied in the contextual setting. In this ap-

for the r-tuple of trees is calculated by the fOIlOWing proach, phy|ogenies are reconstructed based on|y on

formula: the presence and evolution of gap-containing regions
(n) in the sequences. The analysis of gap-trees derived
Z Pr(k) < Z N kI 1) from contextual alignments seems to be an interesting

extension of our work.
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However, in view of the results presented in this
work, we conclude that the concept of contextual ap-
proach, whichimproves albeit modestly but never-

theless systematically the consistency of evolutionary

changes in protein sequences, should be fruitful in
phylogenetic studies
Some possible extensions of our analysis are:

4.1. Duplication distance

Widely studied approach to explain the discrepan-

cies among differents gene trees is based on the notion

of reconciliation[32]. In this formulation, one con-
siders appropriatéree-mapping which recovers all
duplication events. More ambitious models take into
account the phenomena bbrizontal transfer The

problem is in general NP-hard for several gene trees,
however promising approximate approaches are under

study. It would be interesting to build and then to com-
pare the reconciledpecies treesesulting from our
families of gene trees.

4.2. Contextual multiple alignment

In [33], the relaxation of the contextual model was
proposed, which gives the psibility to consider the
multiple alignments. The effective progressive multi-
ple alignment algorithm has been developed. Prelim-
inary results obtained for the BaLIBASE benchmark

alignments database are very promising. We plan to

continue our analysis for families of trees build from
contextual multiple alignment data (by parsimony and
maximume-likelihood methods).
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