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Abstract

We study, from a numerical point of view, some properties of a model which describes the evolution of a population of
Gambussia affinis. Our model includes sufficiently smooth vital functions. First we select, among four numerical methods of
second order, the most appropriate in terms of adaptation to the problem. The most efficient method also reveals new properties
of the model for long times, such as the tendency to periodicity, obtained with different initial conditions. We also discuss some
advantages and deficiencies of the modlelcite this article: O. Angulo et al., C. R. Biologies 328 (2005).
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Résumé

Etude numérique de modéles de population structurés en taille : le cas Gambussia affinis. Nous étudions, d’'un point de
vue numérique, quelques propriétés d’un modele qui décrit I'évolution d’'une populatiGardaussia affinis. Notre modele
inclut des fonctions vitales suffisamment lisses. Nous sélectionnons d’abord, parmi quatre méthodes numériques du deuxiéme
ordre, celle qui est la plus appropriée en termes d’adaptation au probleme. La méthode la plus efficace révele aussi de nouvelle:
propriétés du modele aux temps longs, telles qu'une tendance a la périodicité, obtenue avec différentes conditions initiales.
Nous discutons aussi quelques avantages et déficiences du niRmtdéleiter cet article: O. Angulo et al., C. R. Biologies 328
(2005).
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1. Introduction u(x,0) =uo(x), xmin <x < Xmax (1.3)
Xmax

The purpose of this paper is to analyse, from a Is(t) = / Yo (Xu(x, 1) dx
numerical point of view, some aspects in the evo- o
lution of a population ofGambussia affinis or mos- .
quitofish as an example of a size-structured population 120, ¢=apg (1.4
model. We show how to study the dynamics of amodel The independent variables represent, respectively,
from numerical techniques. First, it is appropriate to size and time, withx in an interval[xmin, xmaxl. The
use different numerical integrators and compare the dependent variable(x, t) represents the density of in-
corresponding results. Such comparisons allow us to dividuals in the population with size at timez. We
achieve some certainty regarding different questions assume that the size of any individual evolves accord-
in the dynamics of the population. From this, we can ing to the ODE
choose the numerical method which shows the best
adaptation to the problem. With the help of the most e g(x, Ig(t), 1)
efficient scheme we study the evolution of the popu- ) ) )
lation in order to evaluate the values and deficiencies  1he so-called vital functions of the population,
of the model proposed. One of the relevant properties which determine the life history of an individual, are

discovered is that, with appropriate vital functions, the 91ven by the functiong, « and u, representing, re-
population tends to be periodic and stable. spectively, growth, fertility and mortality rates. All the

One of the ways to study the dynamics of species in fl_mctions i_n the m_odgl are nonnegativg anq depend on
biology or ecology is based on the so-called structured SiZ€ and time. This time dependence implies a possi-
models. In these models, one or more internal vari- ble seasonal behaviour of the population. Finally, in
ables of the individuals, like age, size, etc., allow us to order to consider the influence of individuals with dif-
show the effect of the physiological state of the indi- ferent size on life conditions, the vjtal_ f_unctions can
viduals on the population dynamics. At the same time, glsp depend on t.he total number of individuals. This is
these models incorporate vital functions like mortality, indicated by the integrald.4), I4(), Lo (r) and1,. (1),
fertility, etc., generally in nonlinear form (with nonlo-  Which average the density of the population by using
cal terms). The way these vital functions depend on the SPecified functionsg, v, andy,.
structural variables and density of population deter- _ Ed- (1.1)is a PDE with nonlocal terms represent-

mines the adaptation of the model to the real behaviour I"9 the balance law of the population. It describes the
of the specie&l—4]. evolution of the number of individuals with a given

In many cases, size is the individual parameter Size dué to growth and mortality. E€L.2)is a nonlo-
which has more influence on the evolution of the pop- €@l Poundary condition which represents the birth law
ulation. The ability of individuals to survive and repro-  ©f the population. Finally, the initial distribution of the
duce depends on it. This gave rise to the consideration 9€NSity is given by Eq(1.3),
of the so-called size-structured mathematical models. 't 1S also usually assumed that
The first mo.dels of this type were proposed[16] wtmax 1) =0, >0 (1.5)
and generalized the well-known age-structured mod-
els[7,8]. A general size-structured population model a condition which shows the fact that individuals in

can be described by the f0||owing equations: the population cannot reach their maximum individual
size. In some cases, this property can be deduced from
ur+ (g(x, Ig(t), u) = —p(x, 1, (1), 1)u the behaviour of the growth functign[9].
Xmin < X < Xmax, >0 (1.1) The paper is structured as follows. In Sectiynve
study the evolution of a population of mosquitofish,
& (xmin, Ig(1), t)u(xmin, 1) from the general equatior{¢.1)-(1.4) We introduce
Xmax significative hypotheses in the model, the equations
= / a(x, Io(t), u(x,)dx, >0 (1.2) and the selection of the vital functions with their bio-

logical properties. The type of these functions and the

Xmin
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initial condition is determined both from a biological evolution. Furthermore, she assumed that the model

and mathematical point of view. In the latter case, one uses the same size distribution for males and females.

of the most noticeable properties is regularity. Smooth Therefore, only the population of females is consid-

functions are initially chosen for numerical reasons of ered andu(x, #) denotes the density of females with

convergence of the methods used. This selection is dif- lengthx at timer. Finally, she only considered the in-

ferent from the one considered in REE0] and has a  fluence of the number of individuals of different size

relevant influence on the numerical results and also in in the mortality. This dependence is represented by the

a biological sense. Secti@is a numerical study ofthe  function

model. In general, the analytical resolution of models 63

like (1.1)—(1.4)is not possible; thus it is necessary to

use (nunzeSical)integrgtion to obtain information al)alout ) = / yu@u(x, ndy, 120 (1)

the behaviour of the population under consideration. 9

This study is based on two questions. First, we analyse With these hypotheses, Sulsky’s model for the mos-

the efficiency of four numerical methods for solving quitofish is specified by the equations

the problem. This allows us to choose the schemes

which, in our opinion, are the most appropriate for the “s (80, D), = —=p(x, Lu(0), t)u

model considered. Also, with the methods selected,we 9<x <63 ¢t>0 (2.2)

introduce a numerical analysis of the model for long 63

times. This previous numerical study leads us to con- 4(g ), (9, 1) :/'a()“ Hux,Hydx, t>0 (2.3)

sider a final biological discussion of the model. Here, J

we first describe the behaviour of the population in

one year. Finally, the analysis for long ptirﬁes shows (0 =uo(x), 9<x <63 (24)

new topics such as the periodicity in the evolution of The use 0f2.1)—(2.4)to describe the dynamics of

the population. This tendency to periodicity seems to a population ofGambussia affinis requires the specifi-

be a property of the model since it occurs for differ- cation of the vital functions, fertility«), growth (g)

ent initial conditions. Some other phenomena, such as and mortality (1) rates. Our proposal, based on the

overcrowding or extinction, may take place if the mor- study of Sulsky[10], assumes, as she does, depen-

tality rate, which includes the only nonlinearity in the dence of the vital functions with respect to seasons,

model, is changed. with a periodic character. The most important differ-
ence in our study is the use of smoother data, functions
with more regularity. This selection is motivated by

2. Gambussia affinis model two reasons. The first is of a numerical character: the
numerical methods we use are of order two, hence itis

The biological model which our study focuses on theoretically necessary some regularity of data in order
analyses the dynamics of a population of the so-called to make them work. We have carried out experiments

Gambussia affinis or mosquitofish. Sulskj10] analy- with less regular data and the results do not change
ses some numerical questions in the integration of a significatively although efficiency is lost. On the other
model similar to(1.1)—(1.4)by building vital func- hand, we think that the use of smoother functions is

tions from experimental data, including seasonal hy- more realistic from a biological point of view and es-
potheses. Functions used by Sulsky are, in general,tablishes new proposals in the model. Therefore, we
Cl-piecewise, with an initial condition and a mortal- have constructed2-functions which are periodic in
ity rate represented by discontinuous functions. time (with annual periodicity) and that satisfy the com-
Sulsky introduced some hypotheses in the model patibility conditions so that the solution to the problem
in order to simplify the study. First, length is used in is of aC?-type.
the model as the variable which represents individual ~ Now, we describe in detail our selection of the vi-
size. This quantity is measured in milimetres, within a tal functions. We first consider the fertility rate which
range betweermin = 9 mm andxmax = 63 mm. She we suppose in the forma(x, 1) = a(x)T,(¢). Here, we
also chose the day as a unit of measure for temporal have used field data by Krumholj1], which relates
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Fig. 1. Shape od(x) function.

the length of gravid females to the number of young
they have. In order to fit Krumholtz’s datéy;, y;),
we choose the functiom(x) as a smooth spline which
minimizes the functional

prl

Here we have used a MATLAB function called
csaps and p = 0.5. This fitting is better than the
one proposed by Sulskjd0], which does not take
into account the decrease of the function to fit the last
data (seé-ig. 1).

—a(x;)) +(1 P)/ Ol(x)

Xmin

On the other hand, it is necessary to include depen-
dence on time, because fertility is affected by seasons.

We choose the functiofy, (1) as

(B* - 580+
for0<r <30
T () = 1, for30<r<90 )
(t 120) (1+t 90+ (tlgg) )
for90<r <120
0, for120< 1t <365

with 7, (t + 36,) = T, (t),n =0, 1, .....

This function is periodic with period, = 365 days
and includes the fact that during a year there is only
a season of 120 days when the population is fertile.
The breeding season begins in May= nTp) (see
Krumholtz data[11]). The birth rate increases regu-
larly as a quintic polynomial during the first month
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until it reaches a maximum value for the next two
months. Then it decreases to zero during the follow-
ing month while no births occur during the rest of the
year. The same behaviour takes place every year.
The growth rate is also assumed in the form
g(x,1) = g(x)Ty(t). The functiong is
63 by

1— —
802< 63

This belongs to the type of growth curves proposed
by von Bertalanffy[12] and takes into account that a
newborn with a length of 9 mm takes about six weeks
to reach an adult length of 31 mm. Furthermore, the
function g is zero for the maximum length allowed
(63 mm) and it is of the type which makes th{at5)
holds.

The growth also varies with the season. The func-
tion Ty(z) is alsoTp-periodic with

glx) = ) for9<x <63

0.2+ 0.8(4y)3(1 — 1730 4 (30
for0< ¢ <30

1, for 30<r <90
Tg(t) =
0.2 — 08(1 120)3(1+l 90+ (t— 90) )
for90<r <120
0.2, for120<t <365
Ty(t+365:) = Ty(t),n =0, 1,.... Therefore, growth

has a seasonal behaviour, the maximum being reached
during the fertile months.

Now, we describe the mortality rate, which includes
the nonlinearity of the model. Bostford et §l3] es-
timate the instantaneous per capita mortality rate for
females with a length larger than 30 mm. They con-
sider the quantity

o0

N@) = / u(x,t)dx
x(1)

as the number of individuals that survive from a certain
sizex(t). They estimate the mortality rate for females
larger than 30 mm as the slope of the natural logarithm
of values of N(r). Experiments estimate a mortality
rate of 0.023 days', suggesting that the population of
adult survivors decreases as a Malthusian law.

Our proposal assumes a mortality rate of the form
wx,t,2) = u(x,z2)T, (), z = 1,(t). The function
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wu(x,z) is a regularization of the discontinuous func-
tion considered by Sulskil0]

0.1exp=5), for9<x<31

0.1exp=5) — (0.023— 0.1exp=5))
x(x — 3131 — 3(x — 32)(65— 2x))

for31<x <32

for 32 < x <63 (2.5)

nix,z)=

0.023

with C = 2000, wherel (t) = f§’12u(x, 1) dx, which
describes the number of immature fish in the popula-
tion.

Mortality also varies seasonally. The functifi(r)
is

2— (431~ 530 + (530%)
0<r<30
T () = 1, 30<r<90
24 (1E203(1 + 1720 4 17907,
90<r <120
2, 120<1r <365

We have thaff, (t + 36%) = T,,(1),n=0,1,...,and
T,, expresses the fact that a high mortality occurs dur-
ing the nonfertile seasons.

The mortality function depends on the number of
individuals by means of the quantity), described
in (2.1). The weight functiory,, represents the way to-
tal population affects the mortality of the youngest. In
our case, this dependence is exclusively due to the im-
mature fish, showing the behaviour of juveniles with
respect to predation and competition for limited re-
sources. Explicitly,

2, 9<x<30
—2(x — 3131+ 3(x — 30)(2x —59))
Yu(x) =
30<x <31
0, 31<x<63

3. Numerical approximation

As it was observed in Sectidn the analytical reso-
lution of the Gambussia problem is not possible. Thus
our study has to be carried out by using numerical in-
tegration and includes information of two types: the
first one is quantitative. We can obtain results about

391

the density of the population in a fixed time in terms of
the size under certain vital conditions. The results can
also be of a qualitative type, showing, for instance, a
certain behaviour for long times.

This section has two parts. The first one estab-
lishes a competition between four numerical schemes,
in terms of efficiency and adaptation to the biological
problem. This allows us to select the integrator which
in our opinion is the most appropriate for the case con-
sidered. Secondly, with this method, we discuss the
results in a biological sense, describing the relevant
properties of the model proposed.

The selection of the numerical method to be used
for the experiments is a question to take into account.
It is natural to consider those methods that, giving a
good approximation to the solution to problems like
(2.1)—(2.4) their computational efficiency is appropri-
ate. Therefore, before obtaining conclusions about the
population under study through numerical analysis, it
is necessary to make a selection between possible nu-
merical integrators, in terms of the various types of
efficiency. Then, the analysis of the model from nu-
merical techniques requires two stages: first, we have
to consider different numerical integrators and reject
those which give results with no biological sense or
with little computational efficiency. A second stage
consists of obtaining conclusions about the dynamics
of the model, studying its values and deficiencies by
using the best of the numerical methods employed. In
the literature, we can find some studies in this way
for different species, such as the monogonont rotifera
whose sexual phase dynamics was studigd4nl5].

Numerical integration of size-structured models is
still at a primary stage, especially in the analysis
of the convergence of numerical schemes. Roughly
speaking, there are basically two classes of numerical
schemes for the integration of size-structured prob-
lems: the standard finite difference methods (Upwind,
Lax—Wendroff, Box)[16] and those schemes based
on integration along characteristic curves, where the
PDE is transformed into a system of ODE, infinite
dimensional, using the characteristic curves. Higher
order methods are appropriate for obtaining the so-
lution faster than the others. However, the regularity
of the data in real problems is not as high as needed.
So, second order schemes maintain a good compro-
mise between the required smoothness and the effi-
ciency of the schemes. The first study was written
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by de Roo417], who introduced the escalator boxcar grid nodes grows at each time step, making the com-
train, a semidiscrete scheme for integrals (momenta) putational cost in the long-time numerical integration
of the density function. Ito et a[18] introduced a more expensive. The SGN method avoids this cost by
method for the linear problem based on the integration means of a selection strategy applied to each time step.
along the characteristic curves by using an invariant They are described and analyseda4].

grid called natural grid. They proved convergence of  We assume an initial distribution of the form

second order for initial conditions of compact support.

Schemes based on the natural grid have been proposed 0, ISx<34

by different authors, for the linear problga®,20]and 5(1+%5%)%  34<x<38

the nonlinear problerf21]. In [22], the approximation 54+ 15X—T38 + 15(X—T38)2 + 30(X—T38)3x%446
to the nonautonomous problem with a growth func- uo(x) = 38< x < 42

tion depending on size has been analysed by using a ©—38.3 ST

second order scheme based on the box method. The S(2—777)° 42<x<46

analysis of the fully nonlinear problem was initiated 0, 46< x <63 (3.1)

by Ackleh et al.[23]. They introduced an implicit fi- Note that the initial population only contains adults.
nite difference scheme of first order. The first methods This fact is congruent with the hypothesis that the ini-
of second-order were proposed by Angulo ef2d]. tial time corresponds to the beginning of the fertile
These methods are based on the integration along the,erigg of the population. It is also supposed that, if an
characteristic curves, with a dynamic construction of i iiqual which was born on the last day of the fertile

the grid to improve the efficiency. On the other hand, herigg of the last year has survived, then its length is
the diversity of the numerical methods used for the greater than 31 mm.

problem also generates works about efficiefit§,

22]. One conclusion which can be deduced from them
is that methods that integrate along the characteris-
tic curves are probably more efficient. However, as
it is revealed in[22], the choice of the numerical
method probably depends on the particular problem
to be solved. Finally, we can find an extensive revi- 63

sion in[26], focused on the physiologically-structured P(t) :/u(x,t)dx
models, which extends the study maddaa] for the

3.1.1. Efficiency study

First, we show some experiments in order to deter-
mine the adaptation of the methods to the problem. In
Fig. 2the evolution in a year of the total population

age-structured ones. 9

3.1. Numerical results ALY : : : :
—— Total Population

In our case, we have considered two difference  *°f ~- Newborns

methods of second order, the Lax-Wendroff scheme 5|

[10,22] and box method22] and two characteristics

methods, Aggregation Grid Nodes method (AGN) and 2%/

Selection Grid Nodes method (SG[@4] to study the ol

problem(2.1)—(2.4) All the schemes are briefly de-

scribed inAppendix A The Lax—Wendroff method is 151

an explicit scheme with an easy implementationona |

uniform grid. The box method is an implicit scheme on

a uniform grid. Therefore, a nonlinear system of equa-  osf .

tions at each time step has to be solved by means of an L’ ’ ‘

iterative techniqu§22]. Both AGN and SGN methods 0 50 100 150 200 250 300 350

time

are explicit and implemented in a nonuniform spatial
grid_ In the case of the AGN scheme, the number of Fig. 2. Evolution of total population and newborns with time (days).
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Fig. 3. Population density with length. The Lax-Wendroff method, Fig. 4. Population density with length. The box method; 365,
t =365,/ =864, N =5840. J =432,N =730.

and the number of newborns is plotted. The figure is values ofk andh, although these oscillations tend to
obtained with all the numerical methods employed. disappear as the discretization parameters are smaller.
Nevertheless, we shall see that the behaviour of the The results are even worse for smaller values,dafs
schemes is quite different when we focus on how they we have confirmed with different experiments.
approximate the density function. Next, we deal with the behaviour of the box
For a final time of one yeafT = 365 we present, method. In the form given if22], the scheme is truly
for each method, a figure which shows the value of the implicit and at each time step the nonlinear equations
numerical solution as a function of the length at time must be solved by some fixed-point iteration proce-
t = 365. dure. Again, the text of Morton and Mayers can be
We begin with the results obtained by the Lax— useful in finding more properties of this scheme and

Wendroff scheme. We should point out that this we should point out that the authors emphasize the
method must satisfy the Courant—Friedrichs—Levy difficulty of carrying out convergence analysis even in
(CFL) condition. A more complete discussion of this the simple cased.6, p. 110] However, the numerical
method can be found in general studies on the nu- method is second-order accurateragnds to zero as-
merical solution to partial differential equations like, suming that the time step is of the fortn=rh, with

for example, the work of Morton and May€dis5]. To r an arbitrary and positive constant fixed throughout
the best of our knowledge, the convergence of such athe analysis. The stability and convergence analysis in
scheme for the solution to size-structured population the cases of an age-structured and a nonautonomous
models has still to be carried out. Numerical experi- size-structured population model has been deifi2&d
ments in the literaturf22] suggest that the method is  26]. We should also point out that, contrary to the
of second order. The most efficient results correspond rest of the methods employed in this section, the box
to the values of = % closer to the one determined scheme does not make usg(df)in the case of size-

by the CFL condition (in this case < 1.485). Tak- structured population models. Therefore, this method
ing r =1 in Fig. 3, we show the numerical solution can be used with more general models where this con-
with N =5840,J = 864 (k = 0.0625 and: = 0.0625) dition does not appear. Our experience with the box
and a computational cost of4® CPU-time (the CPU-  method leads us to use parameter values with a re-
time will be always measured in seconds). We note lation r = % greater than the one considered for the
that some spurious oscillations appear, giving, in some Lax—Wendroff scheme. Irig. 4, we show the nu-
cases, a negative population that has no biological merical solution obtained withv = 730, J = 432
meaning and that could damage the long time inte- (k = 0.5, » = 0.125) corresponding te = 4 and a
gration. This behaviour is not acceptable for greater computational cost of .63 CPU-time. Here, we ob-
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Fig. 5. Population density with length. AGN (= 54, N = 1460)

and SGN methods/(= 216, N = 730),7 = 365. Fig. 6. Error vs. CPU-time. Lax—Wendroff methee), box method

(0), AGN schemgA), SGN method+).

serve some oscillations in the final profile. This could
provide wrong information about the solution. When tion and Selection Grid Nodes methods are the most
using r < 4, we need more CPU-time in order to appropriate for the biological example, while the Lax—
make these oscillations disappear, since an appropri-Wendroff scheme is the worst, since it needs much
ate number of nodes in the spatial grid is necessary. more CPU-time to obtain a profile of the solution with-
On the other hand, in our experiments with> 6, out oscillations.
we need more CPU-time to obtain good profiles; in From a more quantitative point of view, the results
this case some oscillations, similar to those of the are very similar. InFig. 6, we present, in a logarith-
Lax—Wendroff method with less computational cost, mic scale, an efficiency plot where we show the error
appeatr. as a function of the computational time (in seconds).
Next, we have considered the numerical integration In the case of the computation of the error, since we
of the problem with the characteristics schemes intro- do not know the exact solution to this problem, we ob-
duced in[24]. We should note that, in the case of AGN tain a numerical approximation to the total population
method, the number of nodes grows at each time level at timer = 365 with small enough discretization para-
because a new node is introduced at each time step.meters, for each numerical scheme. These values are
The SGN-scheme avoids the increasing number of very closed among them and we can consider them as
nodes by using a selection of them at each time level. the theoretical one. Thus, for another values of the pa-
These two methods are the first two second-order rametersh andk the corresponding error is obtained
schemes which solve the fully nonlinear model. The by comparing the approximation to the total popula-

convergence of the schemes was carried o[24h In tion with the considered as the theoretical one. Next,
Fig. 5 we show the results obtained with both meth- we build, for each numerical scheme, a tableau with
ods. We have usel = 1460,/ =54 (k =0.25,h = the errors corresponding to different values of the pa-
1) with r = 0.25, which implies a CPU-time of.24 rametersk and z. Now, by means of the procedure

for the first method an&v = 730, J = 216 (k = 0.5, employed in[22], we discovered the most efficient

h = 0.25) withr = 2 and 020 CPU-time for the sec-  value ofr (for each method) and, finally, we compare
ond one. The values of are presented as the most all the schemes ifig. 6. These values of have been
efficient in the exhaustive experimentation with differ- introduced previously.

ent parameters. The profiles obtained in both cases are Fig. 6 shows that the most efficient methods are
smooth and no oscillations appear. Besides, the com-the characteristics schemes, and the best one corre-
putational cost is much smaller than the one needed sponds to the SGN method. The behaviour of the AGN
for the finite difference methods. Therefore, Aggrega- method is better as less computational time is em-
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ployed. It begins to be less efficient when the number
of nodes grows with the corresponding computational
cost increment. In this last case, the difference meth-
ods are close to the efficiency of the AGN scheme.
Among the difference methods, the Lax—Wendroff

scheme is more efficient than the box method. (We re-
call that this method is implicit.) However, the distance

between them is not as large as we previously could

suppose, because the box method provides more free-

dom to choose the parameter values(dh) than the
Lax—Wendroff scheme, since this scheme must satisfy
the CFL condition.

Finally, we should note that our study is made with
C?-piecewise data functions and with compatible ini-
tial and boundary data. If we were unable to reach such
smoothness or the initial and boundary data were not
compatible, the behaviour of the difference methods
would be even worse, except for the box with= 1.

On the other hand, the characteristics methods dynam-
ics is good enough and they are shown to be as the

most efficient schemd45,25].

3.1.2. Long-time behaviour

We now study the evolution of the population of
mosquitofish. The numerical integration for long times
requires to control the spurious oscillations, in order
to avoid inappropriate results. Thus we have analysed
the integration of the biological example for a period
of ten yearg(T = 3650 by using the methods which
integrate along the characteristic curves. As we have
seen previously, they achieve a smooth solution profile
in a more efficient way.

In Fig. 7, we show the evolution over ten years of
the numerical approximation to the total population
and the number of newborns obtained with the AGN
and SGN methods. Here we have uséd= 14600,

J =54, with a CPU-time of 12 in the case of the
AGN method andV = 3650,/ = 108 and a CPU-
time of 0.5 for the SGN method. This figure shows
that the behaviour of mosquitofish population, with an
initial distribution given by(3.1), tends to be periodic.
This periodic evolution represents the influence of the
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Fig. 7. Evolution of total population and newborns for ten years.
AGN and SGN methods.

This is one of the reasons why the regularity of vital
functions is important.

Therefore, the periodic evolution of the numerical
approximation seems to be a property of the model.
The SGN method is, in this case, more efficient than
the AGN method, since the first one achieves the peri-
odic behaviour of the total population and the number
of newborns with much less computational time.

The study made in the previous subsection, which
includes an appropriate selection of the parameters
and s (that is, the parameter), is necessary. If we
employ the Lax—Wendroff method, the box scheme or
the AGN and SGN methods with smaller values-of
than those employed here, the solution to the problem
could not be obtained for long values Bf

3.2. Biological discussion of the model

In this subsection, we study the model from a bio-
logical point of view. First we explain the vital func-
tions involved in the problem and then we describe
some biological conclusions from the numerical re-
sults.

The model employed for the solution to the Gam-
bussia problem is structured: this means that the dy-

seasons on the model and we have obtained this be-namics of the population are determined by the vital

haviour with different initial conditions, even with the
one considered by SulsKit0]. In fact, we have re-
peated the same experiment with the vital functions
selected in[10] and the periodic behaviour has also
been obtained, but with greater computational effort.

functions defined in Sectiof. The fertility rate is
considered as(x, 1) = a(x)T,(z). Functiona(x) is
built using the field data (sekig. 1), where we as-
sume that the fertile females have a size longer than
31 mm and the fertility increases with the size. The
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sive) while May and August are considered transition
months between the extreme situations. Finally, the
mortality function is taken in the form ofi(x,7) =
w(x)T,(t) (seeFig. 10. Its behaviour is also seasonal
and it is supposed that the maximum mortality period
spans the months between September and April and
the minimum one corresponds to the months of June
and July. According to the studies of Bostf¢td], the
mortality rate is constant for adults and the choice for
the immature fish depends on the total immature popu-
lation. This last property implies a life of competition
among these individuals and demonstrates the influ-
ence of the dynamics of the population in the life con-
ditions of immature fish. The mathematical expression
of this fact is arbitrary but we will show numerically
the existence of a periodic state which is asymptoti-

maximum is reached at 54 mm and then it declines cally stable. This dynamics is coherent with the bio-
to zero at the maximum size. In order to take into ac- logical setting. We will also discuss later the role of
count the seasonal behaviour, this is multiplied by a the constan€ in the population dynamics.

periodic functionT, (¢) (with a period equal to 365

Another property of the vital functions is that the

days) so that the fertile period are the months be- individuals do not reach the maximum value in finite
tween May and August and the maximum fertility is time. Moreover, it is easy to show that the flgy at
reached in June and July (S€ig. 8). The growth rate
is taken ag (x, 1) = g(x)Ty(t) (seeFig. 9 whereg(x)

the maximum size is null.
The previous discussion between the four numeri-

is chosen as a von Bertalanffy growth curve, which cal methods was necessary to establish the most ap-
is a classical approach in ecology, and the parame- propriate one to deduce conclusions about the model.
ters are obtained by the field data. The functi@) The numerical study in SectioB.1 shows that for
weights the growth in order to show that this is greater this problem the most efficient scheme is the SGN
at the period of the year with more environmental fa- method. Therefore, with this integrator, here we will
cilities (June/July) and it maintains a minimum during make some remarks, in biological terms, about the
the months between September and April (both inclu- model considered in this paper.

2
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For a final time of a yea(T = 365 we present (4053 immatures and 18 adults) and also the popula-
some figures which show the value of the numerical tion is clearly divided between juveniles and adults. In
solution as a function of the length, at times- 30, the second montfr = 60), there is a fertile population
t =60,7 =90, =120 (end of the fertile period), which has been born in this season. This fact is main-
t = 150, = 200 andr = 365. We first analyse the tained in the next two months & 90 andr = 120), a
results fronFig. 11 The choice made of the vital func-  situation which generates the greatest number of births
tions implies that at the end of the first month (May, in the season and the fact that the biggest part of the
t = 30), the greatest part of the population is immature mature population is born in this season. At the end of
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the fertile period(r = 120) we can show that the ma-
ture population of the previous season remains and it
starts to diminish until it completely disappears over  2s;
longer times. Also, in this period & 120,¢ = 150),
we can show that the profile of the population, which 2
could be considered as an archetype, begins to appeatr.
We can say that the population at the end of the year 15}
is only composed of adults. (Séég. 5) Also, after
the study of the monthly evolution of the newborns, 1t
we can affirm that these adults correspond to the live
newborns of the last fertile month. The newborns in  os}
such a period do not reproduce in the year and they \
are the only ones with this property. Finally, the third QUL e e e e D e IR U
fertile month is the most prolific. time in years

As has been pointed out before, the influence of
the seasons is remarkable Fiig. 7. This shows that
the total population and newborns tend to be periodic.
This behaviour has been obtained with different ini- g500r
tial conditions. Therefore, the existence of a periodic
solution which is asymptotically stable is shown nu-
merically. This means that the population stabilizes in 14000}
a state with annual periodicity under the hypotheses
considered and by using field data. This annual pe-
riodicity is a consequence of the dependence of the 1oo00f
vital functions with respect to the seasons. The asymp- 6
totic state is determined by the life conditions imposed
on the population. They have been deduced from real 6000f
data where possible. Therefore, under simple hypothe-
ses, and if there is no change in the vital conditions of
the population, we have observed that the population 2000y,
reaches a state which allows a specific population with kL, . ‘ . . . . ‘ .
a specific size distribution to survive. L s L

An open question concerns the capacity of the
model to reproduce other behaviour of the population. Fig. 13. Evolution of total population and the newborns over ten
This can depend on the vital functions selected. As an Y&ars- SGN method: =20.
example, we focus on the mortality function. The vari-
ation in the parameter of the mortality ratg(ih5) can method, with a mortality rate of the for(2.5), where
be interpreted as a change in the life conditions. Thisis C = 200,000. The behaviour of the population again
observed in the model by the fact that the asymptotic tends to be periodic. However, if we compare this with
state allows a larger or smaller number of individuals Fig. 7, we observe that the population grows in two
to survive. orders of magnitude. This percentage shows a linear

We have already commented that if the constant  dependence of the population, with respect to the value
in (2.5) is bigger, maximum mortality is reached for of the constanC, on the mortality functiorf2.5).
greater size, which makes life conditions easier, with ~ Similarly, when the constarn is smaller, life con-
less competition and a greater number of resources forditions are harder. Ifrig. 13 we show the evolution
the immature population. This should imply growth of the population ofGambussia affinis over ten years
in the population. InFig. 12 we show the evolution by using the SGN method with a mortality rate of the
of the population over ten years by using the SGN form (2.5), whereC = 20. We observe that when life

— To}a/ Pclqulaltion
--- Newborns

Fig. 12. Evolution of total population and the newborns over ten
years. SGN method” = 200,000.

—— Total Population ||
16000} -- Newborns

000

40007,
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conditions become harder, the total population of the
asymptotic equilibrium does not manage to reach indi-
vidual. This can be interpreted as the extinction of the

population. However, the way this fact is shown math- ...,

ematically, that is from a periodic function (which
therefore does not go to zero) is a deficiency of the
model. We will try to improve this in a future work.
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Appendix A. Numerical methods
A.1. The Lax-Wendroff method [ 10]

Let J be a positive integer. Let the points of the
grid in the size variable be; = xmin+ j2,0< j < J,
whereh = (xmax— xmin)/J is the grid diameter. We
denote byk the time step, and the discrete time levels
ast, =nk, 0<n < N, N =[T/k]. The sub-index
makes reference to the grid poinf and the super-
indexn to the time levek,. Finally, we denote b)U”
the numerical approximation (x;,1,), 0<j < J
0 < n < N.We also consider that an approximation to
the initial condition(1.3), U9, is given.

The Lax—Wendroff method is a two-stage scheme
defined foreach =0, 1,..., N —1. Firstwe calculate
the intermediate values

U;qirll//z2 =Uj_ 10— Zkh (87U —g}-1U}_1)
IO (A1)
where
Wi _12(U) = p(xj-172, On(y V"), 1)
Xj_12= :—zl(xj—l +xj)

1
771/2—2(Un 1+Un) j=1,2,...,]
and
gi=g(xj.t). j=0.1,....J
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The functionQn(U™), n=0,1,..., N — 1, denotes
the composite trapezoidal quadrature fi@g]. In the
second stage, we obtain the valuéJ§+1, j=12,

J—1,as

k
41 Y22 nd/2nt )2
Ujr'l _U;_E( +1/2U +1/2 — 8- 1/2U, 1/2)
n+1/2(U)Un+l/2
urtt=o0
where
nt2 1o at12 | ont1)2
U; = E(Uj+1/2 +U;_ 1/2)

k
n+1/2(U) _ (xﬁ Qh(}’ﬂun+l/2), fy + E)
ji=12..,J-1

and

1/2
8ii1)s = 8(xj 1172, tn +K/2),
Now, Qn(y,U"™/%), 0< n < N — 1, are approx-
imations to(2.1) by using the composite mid-point
quadrature rule and the valueg'f>2 j =o,...,

j=01,...,J-1

j+1/20 1
J — 1, defined in(A.1), Qn(y,U"?) =Y "gh -
y,L(thl/g)UJ”Jrll//z2 Finally, the approximatiort/; to

u(xmin, n), for 1 < n < N is calculated with the con-
dition

UL = On(eU")
where a”" = (a(xo, ty), a(x1, ty), ...,
2o = &(xmin, tn), L<n < N.

a(xy,t,)) and

A.2. The Box method [22]

The parameters, N, h andk are defined as iAp-
pendix A.1

We introduce the half integer grid pointg_1/> =
Z(x] 1+ xj), 1< j < J; the mean value operators

an+l/2 _ Z(Un+l+ Un) Un 12 = 2( ) + U")
U7+11//22 = 2(U"+l/2 + U”+1/2) and the d|fference op-
eratorDU7 = U”+l un.
The box metﬁod is deflned by
n n n+1/2,,n+1/2 n+1/2, ,n+1/2
DUj + DU, L8 Ui —8;1 Uj
2k h
_ n+1/2 n+1/2
Hj— l/z(U)U -1/2 (A.2)
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go Ut = On(a Ut (A.3) First, the grid values at the time levgl, » are calcu-
lated b
1<j<J,0<n< N -1, whereQy represents the y
trapezoidal quadrature rule, and, fock0: < N — 1: X8+2 = Xmin, X'}ﬁﬁ = Xmax (A.4)
k k k
g;.l+1/2:g(xj,tn+§>, 0<j<J Xl]1_+2=kg<§g(xmin7fn+l),fn+l+ 5) (A.5)
26" = g(xmin, ta11) X2 =Xy + 2kg (X511, 1)
» k 2<J J+n+1 (A.6)
RO = (-2 O, U720+ o B
) and the approximations to the theoretical solution in
1<j<J these nodes at such time level using
an+l = (a(x()a tl’l+l)1 a(-xls tn+l)s ceey a(x./s tn+1)) k
n+2 _ n+1 k )
with U™ =Uy" "exp| —ku —g(xmln, In+1)s
7 3Qn+l(xn+l yn+lU)1+1) Qn (Xn n n)
On(r, U") =) hyu(xjy2U} 15, 0<n<N 2 ’
j=1 k
In41+ 5)) (A7)
A.3. Aggregation Grid Nodes method (AGN) [24
aared (AGN) [24] U2 = U yexp(—2ku (X",
The parameters, N, h andk are defined as iAp- Q"+1(X"+1, yIU) )
pendix A.1 o i< 1 A8
The initial grid nodes are’ =Xmin+ jh,0<j < n+; JS St (A-8)
J. We suppose that the apprOX|mat|ons to the theoret- Uj 1,12 =0 (A.9)

0
ical solution in such nodes are knowii;, 0< j < J. The equations at the time leve),, are completed

We also suppose that at the first time levgl the with the approximationU6'+2 t0 u(xmin, fns2) DY

. l - .
grid n?desx and the corresporgdmg S?M'O” val-  means of the discretization of the boundary condi-
ues,U", are known. Furthermore(’ and X ;, 0< tion (1.2)

j < J —1, are (numerically) in the same characteristic
curve. Angulo and Lépez-Marcos obtained the initial ni2_ Q" T2(XM 2 g (X1 t2)ynt2)
conditions by means of the well-known second-order
method[24].

The numerical approximations at the time level A4. Selection Grid Nodes method (SGN) [24]
th+2, 0< n < N — 2 are obtained as follows. We sup-
pose that the numerical approximations at the previous  The following scheme considers a modification in
time levelsg, andz, 1, are knownX", U" andX"*1, the grid of the previous one so that, by using a selec-
U™+l Wherex” andX’?jj, 0<j<J+n-—1belong tion of the grid nodes, the number of nodes does not
(numerically) to the same characteristic curve. We in- increase at each time level. Thus, we try to reduce the

(A.10)
& (Xmin, th42)

troduce the notation computational cost without loss of accuracy.

. ) . ; The grid nodes and the numerical approximations
a(X") = (a(Xg, tn), (X1 tn), ..o (X g0 1)) at time 7o, X2, U2, are defined by means ¢A.4)—
Y = (X8 Y XD oo v (X)) (A.10) for n = 0. Next, we calculatg?(X?2, y2 U?).

At consecutive time levels, there are different num-
Also, Q"(X",V") = ZJHSH T(XMVE where bers of nodes because a new node that fluxes through
q;(X"),0<j<J+n+1,arethe coefﬁuents ofthe the boundary is introduced. So, at the time legelve
composite quadrature rules of at least second order.have(J + 1) grid nodes, at; we have(J + 2) and at
This notation will be used throughout the subsection. 7 we have(J + 3). Now, the first grid node?(l2 that
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satisfies

L Min X5 — X5
is eliminated and, aIsX,l_l, the grid node in the same
characteristic curve at, is taken out. The number of
nodes at the levels involved in the implementation of
our two-step scheme are kept fix¢d:+ 3) nodes for
the time level reached in the integration apd+ 2)
and (J + 1) for the previous ones. However, the ap-
proximations to the nonlocal terms at such time levels
are not recomputed.

Now, we suppose that the numerical approxima-
tions at time levels,, andr,,1 are known, and they
are denoted byXg, X7, ..., X"_4, X} = xmax}, {Up,
Uy, U UT =0}, Q"(X", ynUm) and{X§ ™t =
Xmin, X0 X XL — e, (U U,

J+1
s U;t-i-l7 U;l::-_:]l: =0}, Qn-‘rl(xn-i-l’ }'Z+1U”+l) (note

that X and X1}, 0< j < J — 1, are, numerically,
in the same cl']1aracteristic curve). In addition, the grid
considered at, has lost two nodes with respect to
the moment wherX” was actually calculated, while
the grid used at,;1 has only one node less than
X"*+1, The numerical grid nodes at the new time level
t,+2, are computed by means @%.5) and (A.6) 2 <

Jj < J + 1, and the approximations to the theoreti-
cal solution in these nodes are obtained ugiAg)
and (A.8) 2< j < J + 1. The equations at time level
t,+2 are completed with the approximaticltfg”r2 to
u(Xmin, t+2) USING(A.10).

Now, we calculateQ"+2(X"*+2, y"t2U"+2). Note
that, for the time levels,, n > 2, the quadrature rules
always use the same number of nodés- 3). Finally,
we eliminate the first grid nodR(;“r2 that satisfies

n+2 n+2
| XIT = X]

: 2 n—+2
min | X"t — x”"
1+1 1 1<j<1+1‘ j+1 ,—1|

and we take oqu”fll, the grid node in the same char-

acteristic curve at the previous time level.

References

[1] J.A.J. Metz, E.O. Diekmann (Eds.), The Dynamics of Physio-
logically Structured Populations, Lecture Notes in Biomathe-
matics, vol. 68, Springer, Heidelberg, 1986.

[2] G.F. Webb, Theory of Nonlinear Age-Dependent Population
Dynamics, Marcel Dekker, New York, 1985.

401

[3] M. lannelli, Mathematical Theory of Age-Structured Popu-
lation Dynamics, Applied Mathematics Monographs, CNR,
Giardini Editori e Stampatori, Pisa, 1995.

[4] J.M. Cushing, An Introduction to Structured Populations Dy-
namics, CMB-NSF Regional Conference Series in Applied
Mathematics, SIAM, 1998.

[5] J.W. Sinko, W. Streifer, A new model for age-size structure of
a population, Ecology 48 (6) (1967) 910-918.

[6] L.F. Murphy, A nonlinear growth mechanism in size-structured
population dynamics, J. Theor. Biol. 104 (1983) 493-506.

[7] H. Von Forster, Some remarks on changing populations, in:
F. Stohlman Jr. (Ed.), The Kinetics of Cellular Proliferation,
Grune and Stratton, New York, 1959, pp. 382—407.

[8] M.E. Gurtin, R.C. MacCamy, Nonlinear age-dependent pop-
ulation dynamics, Arch. Ration. Mech. Anal. 54 (1974) 281—
300.

[9] A. Calsina, J. Saldafia, A model of physiologically structured
population dynamics with a nonlinear individual growth rate,
J. Math. Biol. 33 (4) (1995) 335-364.

[10] D. Sulsky, Numerical solution of structured population models
1l. Mass structure, J. Math. Biol. 32 (1994) 491-514.

[11] L.A. Krumholtz, Reproduction in the western mosquitofish,
Gambussia affinis (Baird & Girard) and its use in mosquito
control, Ecol. Monogr. 18 (1948) 1-43.

[12] A.J. Fabens, Properties and fitting of the von Bertalanffy
growth curve, Growth 29 (1965) 265-289.

[13] L.W. Bostford, B. Vondracek, T.C. Wainwright, A.L. Linden,
R.G. Kope, D.E. Reed, J.J. Cech Jr., Population development
of the mosquitofishGGambussia affinis, in rice fields, Environ.
Biol. Fish. 20 (2) (1987) 143-154.

[14] O. Angulo, J.C. Lopez-Marcos, M.A. Lépez-Marcos, A nu-
merical simulation for the dynamics of the sexual phase of
monogonont rotifera, C. R. Biologies 327 (2004) 293-303.

[15] O. Angulo, J.C. L6pez-Marcos, M.A. Lépez-Marcos, A nu-
merical integrator for a model with discontinuous sink term:
The dynamics of the sexual phase of monogonont rotifera,
Nonlinear Anal. Real World Appl. (2005), in press.

[16] K.W. Morton, D.F. Mayers, Numerical Solution of Partial Dif-
ferential Equations, Cambridge University Press, Cambridge,
1994.

[17] A.M. de Roos, Numerical methods for structured population
models: The escalator boxcar train, Numer. Methods Partial
Differ. Equations 4 (1988) 173-195.

[18] K. Ito, F. Kappel, G. Peichl, A fully discretized approximation
scheme for size-structured population models, SIAM J. Numer.
Anal. 28 (1991) 923-954.

[19] W. Huyer, A size-structured population-model with dispersion,
J. Math. Anal. Appl. 181 (3) (1994) 716-754.

[20] O. Angulo, J.C. Lopez-Marcos, Numerical schemes for size-
structured population equations, Math. Biosci. 157 (1999)
169-188.

[21] O. Angulo, J.C. L6épez-Marcos, Numerical integration of non-
linear size-structured population equations, Ecol. Model. 133
(2000) 3-14.

[22] O. Angulo, J.C. Lépez-Marcos, Numerical integration of au-
tonomous and nonautonomous nonlinear size-structured popu-
lation models, Math. Biosci. 177-178 (2002) 39-71.



402 0. Angulo et al. / C. R Biologies 328 (2005) 387—402

[23] A.S. Ackleh, K. Ito, An implicit finite difference scheme for [25] L.M. Abia, O. Angulo, J.C. Lépez-Marcos, Age-structured

the nonlinear size-structured population model, Numer. Funct. population dynamics models and their numerical solutions.
Anal. Optim. 8 (9-10) (1997) 865-884. Ecol. Model. (2005), in press.

[24] O. Angulo, J.C. Lopez-Marcos, Numerical integration of fully ~ [26] L.M. Abia, O. Angulo, J.C. Lépez-Marcos, Size-structured
nonlinear size-structured models, Appl. Numer. Math. 50 (3—4) population dynamics models and their numerical solutions,

(2004) 291-327. Discrete Contin. Dyn. Syst. Ser. B 4 (4) (2004) 1203-1222.



	Numerical study of size-structured population models:  A case of Gambussia affinis
	Introduction
	Gambussia affinis model
	Numerical approximation
	Numerical results
	Efficiency study
	Long-time behaviour

	Biological discussion of the model

	Acknowledgements
	Numerical methods
	The Lax-Wendroff method [10]
	The Box method [22]
	Aggregation Grid Nodes method (AGN) [24]
	Selection Grid Nodes method (SGN) [24]

	References


