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Abstract

We study, from a numerical point of view, some properties of a model which describes the evolution of a popula
Gambussia affinis. Our model includes sufficiently smooth vital functions. First we select, among four numerical meth
second order, the most appropriate in terms of adaptation to the problem. The most efficient method also reveals new
of the model for long times, such as the tendency to periodicity, obtained with different initial conditions. We also discu
advantages and deficiencies of the model.To cite this article: O. Angulo et al., C. R. Biologies 328 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Étude numérique de modèles de population structurés en taille : le cas Gambussia affinis. Nous étudions, d’un point d
vue numérique, quelques propriétés d’un modèle qui décrit l’évolution d’une population deGambussia affinis. Notre modèle
inclut des fonctions vitales suffisamment lisses. Nous sélectionnons d’abord, parmi quatre méthodes numériques du
ordre, celle qui est la plus appropriée en termes d’adaptation au problème. La méthode la plus efficace révèle aussi de
propriétés du modèle aux temps longs, telles qu’une tendance à la périodicité, obtenue avec différentes conditions
Nous discutons aussi quelques avantages et déficiences du modèle.Pour citer cet article : O. Angulo et al., C. R. Biologies 328
(2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The purpose of this paper is to analyse, from
numerical point of view, some aspects in the e
lution of a population ofGambussia affinis or mos-
quitofish as an example of a size-structured popula
model. We show how to study the dynamics of a mo
from numerical techniques. First, it is appropriate
use different numerical integrators and compare
corresponding results. Such comparisons allow u
achieve some certainty regarding different questi
in the dynamics of the population. From this, we c
choose the numerical method which shows the b
adaptation to the problem. With the help of the m
efficient scheme we study the evolution of the po
lation in order to evaluate the values and deficienc
of the model proposed. One of the relevant proper
discovered is that, with appropriate vital functions,
population tends to be periodic and stable.

One of the ways to study the dynamics of specie
biology or ecology is based on the so-called structu
models. In these models, one or more internal v
ables of the individuals, like age, size, etc., allow us
show the effect of the physiological state of the in
viduals on the population dynamics. At the same tim
these models incorporate vital functions like mortal
fertility, etc., generally in nonlinear form (with nonlo
cal terms). The way these vital functions depend on
structural variables and density of population de
mines the adaptation of the model to the real behav
of the species[1–4].

In many cases, size is the individual parame
which has more influence on the evolution of the p
ulation. The ability of individuals to survive and repr
duce depends on it. This gave rise to the considera
of the so-called size-structured mathematical mod
The first models of this type were proposed in[5,6]
and generalized the well-known age-structured m
els [7,8]. A general size-structured population mod
can be described by the following equations:

ut + (
g(x, Ig(t), t)u

)
x

= −µ
(
x, Iµ(t), t

)
u

(1.1)xmin < x < xmax, t > 0

g
(
xmin, Ig(t), t

)
u(xmin, t)

(1.2)=
xmax∫

α
(
x, Iα(t), t

)
u(x, t)dx, t > 0
xmin
(1.3)u(x,0) = u0(x), xmin � x � xmax

Iφ(t) =
xmax∫

xmin

γφ(x)u(x, t)dx

(1.4)t � 0, φ = α,µ,g

The independent variablesx, t represent, respectivel
size and time, withx in an interval[xmin, xmax]. The
dependent variableu(x, t) represents the density of in
dividuals in the population with sizex at time t . We
assume that the size of any individual evolves acco
ing to the ODE

dx

dt
= g

(
x, Ig(t), t

)
The so-called vital functions of the populatio

which determine the life history of an individual, a
given by the functionsg, α and µ, representing, re
spectively, growth, fertility and mortality rates. All th
functions in the model are nonnegative and depen
size and time. This time dependence implies a po
ble seasonal behaviour of the population. Finally,
order to consider the influence of individuals with d
ferent size on life conditions, the vital functions c
also depend on the total number of individuals. Thi
indicated by the integrals(1.4), Ig(t), Iα(t) andIµ(t),
which average the density of the population by us
specified functionsγg, γα andγµ.

Eq. (1.1) is a PDE with nonlocal terms represen
ing the balance law of the population. It describes
evolution of the number of individuals with a give
size due to growth and mortality. Eq.(1.2) is a nonlo-
cal boundary condition which represents the birth l
of the population. Finally, the initial distribution of th
density is given by Eq.(1.3).

It is also usually assumed that

(1.5)u(xmax, t) = 0, t � 0

a condition which shows the fact that individuals
the population cannot reach their maximum individ
size. In some cases, this property can be deduced
the behaviour of the growth functiong [9].

The paper is structured as follows. In Section2, we
study the evolution of a population of mosquitofis
from the general equations(1.1)–(1.4). We introduce
significative hypotheses in the model, the equati
and the selection of the vital functions with their bi
logical properties. The type of these functions and
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initial condition is determined both from a biologic
and mathematical point of view. In the latter case, o
of the most noticeable properties is regularity. Smo
functions are initially chosen for numerical reasons
convergence of the methods used. This selection is
ferent from the one considered in Ref.[10] and has a
relevant influence on the numerical results and als
a biological sense. Section3 is a numerical study of th
model. In general, the analytical resolution of mod
like (1.1)–(1.4)is not possible; thus it is necessary
use numerical integration to obtain information ab
the behaviour of the population under considerati
This study is based on two questions. First, we ana
the efficiency of four numerical methods for solvin
the problem. This allows us to choose the schem
which, in our opinion, are the most appropriate for
model considered. Also, with the methods selected
introduce a numerical analysis of the model for lo
times. This previous numerical study leads us to c
sider a final biological discussion of the model. He
we first describe the behaviour of the population
one year. Finally, the analysis for long times sho
new topics such as the periodicity in the evolution
the population. This tendency to periodicity seems
be a property of the model since it occurs for diffe
ent initial conditions. Some other phenomena, suc
overcrowding or extinction, may take place if the m
tality rate, which includes the only nonlinearity in th
model, is changed.

2. Gambussia affinis model

The biological model which our study focuses
analyses the dynamics of a population of the so-ca
Gambussia affinis or mosquitofish. Sulsky[10] analy-
ses some numerical questions in the integration
model similar to(1.1)–(1.4)by building vital func-
tions from experimental data, including seasonal
potheses. Functions used by Sulsky are, in gen
C1-piecewise, with an initial condition and a morta
ity rate represented by discontinuous functions.

Sulsky introduced some hypotheses in the mo
in order to simplify the study. First, length is used
the model as the variable which represents individ
size. This quantity is measured in milimetres, within
range betweenxmin = 9 mm andxmax = 63 mm. She
also chose the day as a unit of measure for temp
evolution. Furthermore, she assumed that the m
uses the same size distribution for males and fema
Therefore, only the population of females is cons
ered andu(x, t) denotes the density of females wi
lengthx at timet . Finally, she only considered the in
fluence of the number of individuals of different si
in the mortality. This dependence is represented by
function

(2.1)Iµ(t) =
63∫

9

γµ(x)u(x, t)dx, t � 0

With these hypotheses, Sulsky’s model for the m
quitofish is specified by the equations

ut + (
g(x, t)u

)
x

= −µ
(
x, Iµ(t), t

)
u

(2.2)9< x < 63, t > 0

(2.3)g(9, t)u(9, t) =
63∫

9

α(x, t)u(x, t)dx, t > 0

(2.4)u(x,0) = u0(x), 9� x � 63

The use of(2.1)–(2.4)to describe the dynamics o
a population ofGambussia affinis requires the specifi
cation of the vital functions, fertility(α), growth (g)

and mortality(µ) rates. Our proposal, based on t
study of Sulsky[10], assumes, as she does, dep
dence of the vital functions with respect to seaso
with a periodic character. The most important diff
ence in our study is the use of smoother data, funct
with more regularity. This selection is motivated
two reasons. The first is of a numerical character:
numerical methods we use are of order two, hence
theoretically necessary some regularity of data in or
to make them work. We have carried out experime
with less regular data and the results do not cha
significatively although efficiency is lost. On the oth
hand, we think that the use of smoother functions
more realistic from a biological point of view and e
tablishes new proposals in the model. Therefore,
have constructedC2-functions which are periodic in
time (with annual periodicity) and that satisfy the co
patibility conditions so that the solution to the proble
is of aC2-type.

Now, we describe in detail our selection of the
tal functions. We first consider the fertility rate whic
we suppose in the formα(x, t) = α(x)Tα(t). Here, we
have used field data by Krumholtz[11], which relates
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Fig. 1. Shape ofα(x) function.

the length of gravid females to the number of you
they have. In order to fit Krumholtz’s data,(xi, yi),
we choose the functionα(x) as a smooth spline whic
minimizes the functional

p
∑

i

wi

(
yi − α(xi)

)2 + (1− p)

xmax∫
xmin

(
α′′(x)

)2 dx

Here we have used a MATLAB© function called
csaps and p = 0.5. This fitting is better than th
one proposed by Sulsky[10], which does not take
into account the decrease of the function to fit the
data (seeFig. 1).

On the other hand, it is necessary to include dep
dence on time, because fertility is affected by seas
We choose the functionTα(t) as

Tα(t) =




( t
30)

3(1− t−30
10 + (t−30)2

150 )

for 0 � t � 30

1, for 30� t � 90

−( t−120
30 )3(1+ t−90

10 + (t−90)2

150 )

for 90� t � 120

0, for 120� t � 365

with Tα(t + 365n) = Tα(t), n = 0,1, . . . .
This function is periodic with periodTp = 365 days

and includes the fact that during a year there is o
a season of 120 days when the population is fer
The breeding season begins in May(t = nTp) (see
Krumholtz data[11]). The birth rate increases reg
larly as a quintic polynomial during the first mon
until it reaches a maximum value for the next tw
months. Then it decreases to zero during the follo
ing month while no births occur during the rest of t
year. The same behaviour takes place every year.

The growth rate is also assumed in the fo
g(x, t) = g(x)Tg(t). The functiong is

g(x) = 63

80.2

(
1− x

63

)
, for 9 � x � 63

This belongs to the type of growth curves propos
by von Bertalanffy[12] and takes into account that
newborn with a length of 9 mm takes about six wee
to reach an adult length of 31 mm. Furthermore,
function g is zero for the maximum length allowe
(63 mm) and it is of the type which makes that(1.5)
holds.

The growth also varies with the season. The fu
tion Tg(t) is alsoTp-periodic with

Tg(t) =




0.2+ 0.8( t
30)

3(1− t−30
10 + (t−30)2

150 )

for 0� t � 30

1, for 30� t � 90

0.2− 0.8( t−120
30 )3(1+ t−90

10 + (t−90)2

150 )

for 90� t � 120

0.2, for 120� t � 365

Tg(t +365n) = Tg(t), n = 0,1, . . . . Therefore, growth
has a seasonal behaviour, the maximum being rea
during the fertile months.

Now, we describe the mortality rate, which includ
the nonlinearity of the model. Bostford et al.[13] es-
timate the instantaneous per capita mortality rate
females with a length larger than 30 mm. They co
sider the quantity

N(t) =
∞∫

x(t)

u(x, t)dx

as the number of individuals that survive from a cert
sizex(t). They estimate the mortality rate for femal
larger than 30 mm as the slope of the natural logari
of values ofN(t). Experiments estimate a mortali
rate of 0.023 days−1, suggesting that the population
adult survivors decreases as a Malthusian law.

Our proposal assumes a mortality rate of the fo
µ(x, t, z) = µ(x, z)T (t), z = I (t). The function
µ µ
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µ(x, z) is a regularization of the discontinuous fun
tion considered by Sulsky[10]

(2.5)

µ(x, z) =




0.1 exp(−C
z

), for 9� x � 31

0.1 exp(−C
z

) − (0.023− 0.1 exp(−C
z

))

×(x − 31)3(1− 3(x − 32)(65− 2x))

for 31< x � 32

0.023, for 32< x � 63

with C = 2000, whereI (t) = ∫ 31
9 2u(x, t)dx, which

describes the number of immature fish in the popu
tion.

Mortality also varies seasonally. The functionTµ(t)

is

Tµ(t) =




2− ( t
30)

3(1− t−30
10 + (t−30)2

150 )

0� t � 30

1, 30� t � 90

2+ ( t−120
30 )3(1+ t−90

10 + (t−90)2

150 )

90� t � 120

2, 120� t � 365

We have thatTµ(t + 365n) = Tµ(t), n = 0,1, . . . , and
Tµ expresses the fact that a high mortality occurs d
ing the nonfertile seasons.

The mortality function depends on the number
individuals by means of the quantityIµ described
in (2.1). The weight functionγµ represents the way to
tal population affects the mortality of the youngest.
our case, this dependence is exclusively due to the
mature fish, showing the behaviour of juveniles w
respect to predation and competition for limited
sources. Explicitly,

γµ(x) =




2, 9� x � 30

−2(x − 31)3(1+ 3(x − 30)(2x − 59))

30< x < 31

0, 31� x � 63

3. Numerical approximation

As it was observed in Section1, the analytical reso
lution of the Gambussia problem is not possible. Th
our study has to be carried out by using numerical
tegration and includes information of two types: t
first one is quantitative. We can obtain results ab
the density of the population in a fixed time in terms
the size under certain vital conditions. The results
also be of a qualitative type, showing, for instance
certain behaviour for long times.

This section has two parts. The first one est
lishes a competition between four numerical schem
in terms of efficiency and adaptation to the biologi
problem. This allows us to select the integrator wh
in our opinion is the most appropriate for the case c
sidered. Secondly, with this method, we discuss
results in a biological sense, describing the relev
properties of the model proposed.

The selection of the numerical method to be u
for the experiments is a question to take into acco
It is natural to consider those methods that, givin
good approximation to the solution to problems li
(2.1)–(2.4), their computational efficiency is appropr
ate. Therefore, before obtaining conclusions about
population under study through numerical analysis
is necessary to make a selection between possible
merical integrators, in terms of the various types
efficiency. Then, the analysis of the model from n
merical techniques requires two stages: first, we h
to consider different numerical integrators and rej
those which give results with no biological sense
with little computational efficiency. A second sta
consists of obtaining conclusions about the dynam
of the model, studying its values and deficiencies
using the best of the numerical methods employed
the literature, we can find some studies in this w
for different species, such as the monogonont rotif
whose sexual phase dynamics was studied in[14,15].

Numerical integration of size-structured models
still at a primary stage, especially in the analy
of the convergence of numerical schemes. Roug
speaking, there are basically two classes of nume
schemes for the integration of size-structured pr
lems: the standard finite difference methods (Upwi
Lax–Wendroff, Box)[16] and those schemes bas
on integration along characteristic curves, where
PDE is transformed into a system of ODE, infin
dimensional, using the characteristic curves. Hig
order methods are appropriate for obtaining the
lution faster than the others. However, the regula
of the data in real problems is not as high as need
So, second order schemes maintain a good com
mise between the required smoothness and the
ciency of the schemes. The first study was writ
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by de Roos[17], who introduced the escalator boxc
train, a semidiscrete scheme for integrals (mome
of the density function. Ito et al.[18] introduced a
method for the linear problem based on the integra
along the characteristic curves by using an invar
grid called natural grid. They proved convergence
second order for initial conditions of compact suppo
Schemes based on the natural grid have been prop
by different authors, for the linear problem[19,20]and
the nonlinear problem[21]. In [22], the approximation
to the nonautonomous problem with a growth fun
tion depending on size has been analysed by usi
second order scheme based on the box method.
analysis of the fully nonlinear problem was initiat
by Ackleh et al.[23]. They introduced an implicit fi-
nite difference scheme of first order. The first metho
of second-order were proposed by Angulo et al.[24].
These methods are based on the integration along
characteristic curves, with a dynamic construction
the grid to improve the efficiency. On the other ha
the diversity of the numerical methods used for
problem also generates works about efficiency[10,
22]. One conclusion which can be deduced from th
is that methods that integrate along the characte
tic curves are probably more efficient. However,
it is revealed in[22], the choice of the numerica
method probably depends on the particular prob
to be solved. Finally, we can find an extensive re
sion in[26], focused on the physiologically-structure
models, which extends the study made in[26] for the
age-structured ones.

3.1. Numerical results

In our case, we have considered two differen
methods of second order, the Lax–Wendroff sche
[10,22] and box method[22] and two characteristic
methods, Aggregation Grid Nodes method (AGN) a
Selection Grid Nodes method (SGN)[24] to study the
problem(2.1)–(2.4). All the schemes are briefly de
scribed inAppendix A. The Lax–Wendroff method i
an explicit scheme with an easy implementation o
uniform grid. The box method is an implicit scheme
a uniform grid. Therefore, a nonlinear system of eq
tions at each time step has to be solved by means o
iterative technique[22]. Both AGN and SGN method
are explicit and implemented in a nonuniform spa
grid. In the case of the AGN scheme, the numbe
d

grid nodes grows at each time step, making the c
putational cost in the long-time numerical integrati
more expensive. The SGN method avoids this cos
means of a selection strategy applied to each time s
They are described and analysed in[24].

We assume an initial distribution of the form

(3.1)

u0(x) =




0, 9� x � 34

5(1+ x−38
4 )3, 34� x � 38

5+ 15x−38
4 + 15( x−38

4 )2 + 30( x−38
4 )3 x−46

4

38� x � 42

5(2− x−38
4 )3, 42� x � 46

0, 46� x � 63

Note that the initial population only contains adul
This fact is congruent with the hypothesis that the
tial time corresponds to the beginning of the fert
period of the population. It is also supposed that, if
individual which was born on the last day of the fert
period of the last year has survived, then its lengt
greater than 31 mm.

3.1.1. Efficiency study
First, we show some experiments in order to de

mine the adaptation of the methods to the problem
Fig. 2the evolution in a year of the total population

P(t) =
63∫

9

u(x, t)dx

Fig. 2. Evolution of total population and newborns with time (day
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Fig. 3. Population density with length. The Lax–Wendroff meth
t = 365,J = 864,N = 5840.

and the number of newborns is plotted. The figure
obtained with all the numerical methods employ
Nevertheless, we shall see that the behaviour of
schemes is quite different when we focus on how t
approximate the density function.

For a final time of one year(T = 365) we present,
for each method, a figure which shows the value of
numerical solution as a function of the length at tim
t = 365.

We begin with the results obtained by the La
Wendroff scheme. We should point out that th
method must satisfy the Courant–Friedrichs–Le
(CFL) condition. A more complete discussion of th
method can be found in general studies on the
merical solution to partial differential equations lik
for example, the work of Morton and Mayers[16]. To
the best of our knowledge, the convergence of suc
scheme for the solution to size-structured popula
models has still to be carried out. Numerical expe
ments in the literature[22] suggest that the method
of second order. The most efficient results corresp
to the values ofr = k

h
, closer to the one determine

by the CFL condition (in this caser � 1.485). Tak-
ing r = 1 in Fig. 3, we show the numerical solutio
with N = 5840,J = 864 (k = 0.0625 andh = 0.0625)
and a computational cost of 8.49 CPU-time (the CPU
time will be always measured in seconds). We n
that some spurious oscillations appear, giving, in so
cases, a negative population that has no biolog
meaning and that could damage the long time in
gration. This behaviour is not acceptable for grea
Fig. 4. Population density with length. The box method,t = 365,
J = 432,N = 730.

values ofk andh, although these oscillations tend
disappear as the discretization parameters are sm
The results are even worse for smaller values ofr , as
we have confirmed with different experiments.

Next, we deal with the behaviour of the bo
method. In the form given in[22], the scheme is truly
implicit and at each time step the nonlinear equati
must be solved by some fixed-point iteration pro
dure. Again, the text of Morton and Mayers can
useful in finding more properties of this scheme a
we should point out that the authors emphasize
difficulty of carrying out convergence analysis even
the simple cases[16, p. 110]. However, the numerica
method is second-order accurate ash tends to zero as
suming that the time step is of the formk = rh, with
r an arbitrary and positive constant fixed through
the analysis. The stability and convergence analys
the cases of an age-structured and a nonautonom
size-structured population model has been derived[25,
26]. We should also point out that, contrary to t
rest of the methods employed in this section, the
scheme does not make use of(1.5) in the case of size
structured population models. Therefore, this met
can be used with more general models where this c
dition does not appear. Our experience with the b
method leads us to use parameter values with a
lation r = k

h
greater than the one considered for

Lax–Wendroff scheme. InFig. 4, we show the nu-
merical solution obtained withN = 730, J = 432
(k = 0.5, h = 0.125) corresponding tor = 4 and a
computational cost of 1.63 CPU-time. Here, we ob
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Fig. 5. Population density with length. AGN (J = 54, N = 1460)
and SGN methods (J = 216,N = 730),t = 365.

serve some oscillations in the final profile. This cou
provide wrong information about the solution. Wh
using r � 4, we need more CPU-time in order
make these oscillations disappear, since an appro
ate number of nodes in the spatial grid is necess
On the other hand, in our experiments withr � 6,
we need more CPU-time to obtain good profiles;
this case some oscillations, similar to those of
Lax–Wendroff method with less computational co
appear.

Next, we have considered the numerical integrat
of the problem with the characteristics schemes in
duced in[24]. We should note that, in the case of AG
method, the number of nodes grows at each time l
because a new node is introduced at each time s
The SGN-scheme avoids the increasing numbe
nodes by using a selection of them at each time le
These two methods are the first two second-or
schemes which solve the fully nonlinear model. T
convergence of the schemes was carried out in[24]. In
Fig. 5, we show the results obtained with both me
ods. We have usedN = 1460,J = 54 (k = 0.25, h =
1) with r = 0.25, which implies a CPU-time of 1.24
for the first method andN = 730,J = 216 (k = 0.5,
h = 0.25) with r = 2 and 0.20 CPU-time for the sec
ond one. The values ofr are presented as the mo
efficient in the exhaustive experimentation with diffe
ent parameters. The profiles obtained in both case
smooth and no oscillations appear. Besides, the c
putational cost is much smaller than the one nee
for the finite difference methods. Therefore, Aggre
.

Fig. 6. Error vs. CPU-time. Lax–Wendroff method(∗), box method
(�), AGN scheme(�), SGN method(+).

tion and Selection Grid Nodes methods are the m
appropriate for the biological example, while the La
Wendroff scheme is the worst, since it needs m
more CPU-time to obtain a profile of the solution wit
out oscillations.

From a more quantitative point of view, the resu
are very similar. InFig. 6, we present, in a logarith
mic scale, an efficiency plot where we show the er
as a function of the computational time (in second
In the case of the computation of the error, since
do not know the exact solution to this problem, we o
tain a numerical approximation to the total populat
at timet = 365 with small enough discretization par
meters, for each numerical scheme. These values
very closed among them and we can consider them
the theoretical one. Thus, for another values of the
rametersh andk the corresponding error is obtaine
by comparing the approximation to the total popu
tion with the considered as the theoretical one. N
we build, for each numerical scheme, a tableau w
the errors corresponding to different values of the
rametersk and h. Now, by means of the procedu
employed in[22], we discovered the most efficie
value ofr (for each method) and, finally, we compa
all the schemes inFig. 6. These values ofr have been
introduced previously.

Fig. 6 shows that the most efficient methods a
the characteristics schemes, and the best one c
sponds to the SGN method. The behaviour of the A
method is better as less computational time is e
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ployed. It begins to be less efficient when the num
of nodes grows with the corresponding computatio
cost increment. In this last case, the difference m
ods are close to the efficiency of the AGN schem
Among the difference methods, the Lax–Wendr
scheme is more efficient than the box method. (We
call that this method is implicit.) However, the distan
between them is not as large as we previously co
suppose, because the box method provides more
dom to choose the parameter values (k andh) than the
Lax–Wendroff scheme, since this scheme must sa
the CFL condition.

Finally, we should note that our study is made w
C2-piecewise data functions and with compatible i
tial and boundary data. If we were unable to reach s
smoothness or the initial and boundary data were
compatible, the behaviour of the difference metho
would be even worse, except for the box withr = 1.
On the other hand, the characteristics methods dyn
ics is good enough and they are shown to be as
most efficient schemes[15,25].

3.1.2. Long-time behaviour
We now study the evolution of the population

mosquitofish. The numerical integration for long tim
requires to control the spurious oscillations, in ord
to avoid inappropriate results. Thus we have analy
the integration of the biological example for a peri
of ten years(T = 3650) by using the methods whic
integrate along the characteristic curves. As we h
seen previously, they achieve a smooth solution pro
in a more efficient way.

In Fig. 7, we show the evolution over ten years
the numerical approximation to the total populati
and the number of newborns obtained with the AG
and SGN methods. Here we have usedN = 14600,
J = 54, with a CPU-time of 12.4 in the case of the
AGN method andN = 3650, J = 108 and a CPU
time of 0.5 for the SGN method. This figure show
that the behaviour of mosquitofish population, with
initial distribution given by(3.1), tends to be periodic
This periodic evolution represents the influence of
seasons on the model and we have obtained this
haviour with different initial conditions, even with th
one considered by Sulsky[10]. In fact, we have re
peated the same experiment with the vital functio
selected in[10] and the periodic behaviour has al
been obtained, but with greater computational eff
-

Fig. 7. Evolution of total population and newborns for ten yea
AGN and SGN methods.

This is one of the reasons why the regularity of vi
functions is important.

Therefore, the periodic evolution of the numeric
approximation seems to be a property of the mo
The SGN method is, in this case, more efficient th
the AGN method, since the first one achieves the p
odic behaviour of the total population and the num
of newborns with much less computational time.

The study made in the previous subsection, wh
includes an appropriate selection of the parametek

and h (that is, the parameterr), is necessary. If we
employ the Lax–Wendroff method, the box scheme
the AGN and SGN methods with smaller values or
than those employed here, the solution to the prob
could not be obtained for long values ofT .

3.2. Biological discussion of the model

In this subsection, we study the model from a b
logical point of view. First we explain the vital func
tions involved in the problem and then we descr
some biological conclusions from the numerical
sults.

The model employed for the solution to the Ga
bussia problem is structured: this means that the
namics of the population are determined by the v
functions defined in Section2. The fertility rate is
considered asα(x, t) = α(x)Tα(t). Functionα(x) is
built using the field data (seeFig. 1), where we as-
sume that the fertile females have a size longer t
31 mm and the fertility increases with the size. T
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Fig. 8. Shape ofTα(t) function.

maximum is reached at 54 mm and then it decli
to zero at the maximum size. In order to take into
count the seasonal behaviour, this is multiplied b
periodic functionTα(t) (with a period equal to 365
days) so that the fertile period are the months
tween May and August and the maximum fertility
reached in June and July (seeFig. 8). The growth rate
is taken asg(x, t) = g(x)Tg(t) (seeFig. 9) whereg(x)

is chosen as a von Bertalanffy growth curve, wh
is a classical approach in ecology, and the para
ters are obtained by the field data. The functionTg(t)

weights the growth in order to show that this is grea
at the period of the year with more environmental
cilities (June/July) and it maintains a minimum duri
the months between September and April (both inc
sive) while May and August are considered transit
months between the extreme situations. Finally,
mortality function is taken in the form ofµ(x, t) =
µ(x)Tµ(t) (seeFig. 10). Its behaviour is also season
and it is supposed that the maximum mortality per
spans the months between September and April
the minimum one corresponds to the months of J
and July. According to the studies of Bostford[13], the
mortality rate is constant for adults and the choice
the immature fish depends on the total immature po
lation. This last property implies a life of competitio
among these individuals and demonstrates the in
ence of the dynamics of the population in the life co
ditions of immature fish. The mathematical express
of this fact is arbitrary but we will show numerical
the existence of a periodic state which is asympt
cally stable. This dynamics is coherent with the b
logical setting. We will also discuss later the role
the constantC in the population dynamics.

Another property of the vital functions is that th
individuals do not reach the maximum value in fin
time. Moreover, it is easy to show that the fluxgu at
the maximum size is null.

The previous discussion between the four num
cal methods was necessary to establish the mos
propriate one to deduce conclusions about the mo
The numerical study in Section3.1 shows that for
this problem the most efficient scheme is the S
method. Therefore, with this integrator, here we w
make some remarks, in biological terms, about
model considered in this paper.
(a) (b)

Fig. 9. (a) Shape ofg(x) function. (b) Shape ofTg(t) function.
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(a) (b)

Fig. 10. (a) Shape ofµ(x, z) function. (b) Shape ofTµ(t) function.

Fig. 11. Evolution of population density with length. SGN method,J = 216,N = 730.
ical
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For a final time of a year(T = 365) we present
some figures which show the value of the numer
solution as a function of the length, at timest = 30,
t = 60, t = 90, t = 120 (end of the fertile period)
t = 150, t = 200 andt = 365. We first analyse th
results fromFig. 11. The choice made of the vital func
tions implies that at the end of the first month (Ma
t = 30), the greatest part of the population is immat
(4053 immatures and 18 adults) and also the pop
tion is clearly divided between juveniles and adults
the second month(t = 60), there is a fertile population
which has been born in this season. This fact is m
tained in the next two months (t = 90 andt = 120), a
situation which generates the greatest number of b
in the season and the fact that the biggest part of
mature population is born in this season. At the end
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the fertile period(t = 120) we can show that the ma
ture population of the previous season remains an
starts to diminish until it completely disappears ov
longer times. Also, in this period (t = 120, t = 150),
we can show that the profile of the population, wh
could be considered as an archetype, begins to ap
We can say that the population at the end of the y
is only composed of adults. (SeeFig. 5.) Also, after
the study of the monthly evolution of the newborn
we can affirm that these adults correspond to the
newborns of the last fertile month. The newborns
such a period do not reproduce in the year and t
are the only ones with this property. Finally, the th
fertile month is the most prolific.

As has been pointed out before, the influence
the seasons is remarkable inFig. 7. This shows tha
the total population and newborns tend to be perio
This behaviour has been obtained with different i
tial conditions. Therefore, the existence of a perio
solution which is asymptotically stable is shown n
merically. This means that the population stabilizes
a state with annual periodicity under the hypothe
considered and by using field data. This annual
riodicity is a consequence of the dependence of
vital functions with respect to the seasons. The asy
totic state is determined by the life conditions impos
on the population. They have been deduced from
data where possible. Therefore, under simple hypo
ses, and if there is no change in the vital conditions
the population, we have observed that the popula
reaches a state which allows a specific population w
a specific size distribution to survive.

An open question concerns the capacity of
model to reproduce other behaviour of the populati
This can depend on the vital functions selected. As
example, we focus on the mortality function. The va
ation in the parameter of the mortality rate in(2.5)can
be interpreted as a change in the life conditions. Th
observed in the model by the fact that the asympt
state allows a larger or smaller number of individu
to survive.

We have already commented that if the constanC

in (2.5) is bigger, maximum mortality is reached f
greater size, which makes life conditions easier, w
less competition and a greater number of resource
the immature population. This should imply grow
in the population. InFig. 12, we show the evolution
of the population over ten years by using the SG
.

Fig. 12. Evolution of total population and the newborns over
years. SGN method.C = 200,000.

Fig. 13. Evolution of total population and the newborns over
years. SGN method.C = 20.

method, with a mortality rate of the form(2.5), where
C = 200,000. The behaviour of the population aga
tends to be periodic. However, if we compare this w
Fig. 7, we observe that the population grows in tw
orders of magnitude. This percentage shows a lin
dependence of the population, with respect to the v
of the constantC, on the mortality function(2.5).

Similarly, when the constantC is smaller, life con-
ditions are harder. InFig. 13, we show the evolution
of the population ofGambussia affinis over ten years
by using the SGN method with a mortality rate of t
form (2.5), whereC = 20. We observe that when lif
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conditions become harder, the total population of
asymptotic equilibrium does not manage to reach in
vidual. This can be interpreted as the extinction of
population. However, the way this fact is shown ma
ematically, that is from a periodic function (whic
therefore does not go to zero) is a deficiency of
model. We will try to improve this in a future work.
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Appendix A. Numerical methods

A.1. The Lax–Wendroff method [10]

Let J be a positive integer. Let the points of th
grid in the size variable bexj = xmin + jh, 0� j � J ,
whereh = (xmax− xmin)/J is the grid diameter. We
denote byk the time step, and the discrete time lev
as tn = nk, 0 � n � N , N = [T/k]. The sub-indexj
makes reference to the grid pointxj and the super
indexn to the time leveltn. Finally, we denote byUn

j

the numerical approximation tou(xj , tn), 0 � j � J ,
0� n � N . We also consider that an approximation
the initial condition(1.3), U0, is given.

The Lax–Wendroff method is a two-stage sche
defined for eachn = 0,1, . . . ,N −1. First we calculate
the intermediate values

U
n+1/2
j−1/2 = Un

j−1/2 − k

2h

(
gn

j Un
j − gn

j−1U
n
j−1

)

(A.1)− k

2
µn

j−1/2(U)Un
j−1/2,

where

µn
j−1/2(U) = µ

(
xj−1/2,Qh(γ µUn), tn

)

xj−1/2 = 1

2
(xj−1 + xj )

Un
j−1/2 = 1

2

(
Un

j−1 + Un
j

)
, j = 1,2, . . . , J

and

gn = g(x , t ), j = 0,1, . . . , J
j j n
The functionQh(Un), n = 0,1, . . . ,N − 1, denotes
the composite trapezoidal quadrature rule[22]. In the
second stage, we obtain the valuesUn+1

j , j = 1,2,

. . . , J − 1, as

Un+1
j = Un

j − k

h

(
g

n+1/2
j+1/2U

n+1/2
j+1/2 − g

n+1/2
j−1/2U

n+1/2
j−1/2

)
− kµ

n+1/2
j (U)U

n+1/2
j

Un+1
J = 0

where

U
n+1/2
j = 1

2

(
U

n+1/2
j+1/2 + U

n+1/2
j−1/2

)

µ
n+1/2
j (U) = µ

(
xj ,Qh

(
γ µUn+1/2), tn + k

2

)

j = 1,2, . . . , J − 1

and

g
n+1/2
j+1/2 = g(xj+1/2, tn + k/2), j = 0,1, . . . , J − 1

Now, Qh(γ µUn+1/2), 0 � n � N − 1, are approx-
imations to(2.1) by using the composite mid-poin
quadrature rule and the valuesUn+1/2

j+1/2 , j = 0, . . . ,

J − 1, defined in(A.1), Qh(γ µUn+1/2) = ∑J−1
j=0 h ·

γµ(xj+1/2)U
n+1/2
j+1/2 . Finally, the approximationUn

0 to
u(xmin, tn), for 1� n � N is calculated with the con
dition

gn
0Un

0 = Qh
(
αnUn

)
where αn = (α(x0, tn), α(x1, tn), . . . , α(xJ , tn)) and
gn

0 = g(xmin, tn), 1� n � N .

A.2. The Box method [22]

The parametersJ , N , h andk are defined as inAp-
pendix A.1.

We introduce the half integer grid pointsxj−1/2 =
1
2(xj−1 + xj ), 1 � j � J ; the mean value operato

U
n+1/2
j := 1

2(Un+1
j + Un

j ), Un
j−1/2 = 1

2(Un
j−1 + Un

j ),

U
n+1/2
j−1/2 = 1

2(U
n+1/2
j−1 +U

n+1/2
j ) and the difference op

eratorDUn
j = Un+1

j − Un
j .

The box method is defined by

DUn
j + DUn

j−1

2k
+ g

n+1/2
j U

n+1/2
j − g

n+1/2
j−1 U

n+1/2
j−1

h

(A.2)= −µ
n+1/2

(U)U
n+1/2
j−1/2 j−1/2
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(A.3)gn+1
0 Un+1

0 = Qh
(
αn+1Un+1)

1 � j � J , 0 � n � N − 1, whereQh represents the
trapezoidal quadrature rule, and, for 0� n � N − 1:

g
n+1/2
j = g

(
xj , tn + k

2

)
, 0� j � J

gn+1
0 = g(xmin, tn+1)

µ
n+1/2
j−1/2(U) = µ

(
xj−1/2,Qh

(
γ µUn+1/2), tn + k

2

)

1� j � J

αn+1 = (
α(x0, tn+1), α(x1, tn+1), . . . , α(xJ , tn+1)

)
with

Qh
(
γ µUn

) =
J∑

j=1

hγµ(xj−1/2)U
n
j−1/2, 0� n � N

A.3. Aggregation Grid Nodes method (AGN) [24]

The parametersJ , N , h andk are defined as inAp-
pendix A.1.

The initial grid nodes areX0
j = xmin + jh, 0� j �

J . We suppose that the approximations to the theo
ical solution in such nodes are known,U0

j , 0� j � J .
We also suppose that at the first time levelt1, the
grid nodes,X1, and the corresponding solution va
ues,U1, are known. Furthermore,X0

j andX1
j+1, 0 �

j � J −1, are (numerically) in the same characteris
curve. Angulo and López-Marcos obtained the init
conditions by means of the well-known second-or
method[24].

The numerical approximations at the time lev
tn+2, 0� n � N − 2 are obtained as follows. We su
pose that the numerical approximations at the prev
time levels,tn andtn+1, are known,Xn, Un andXn+1,
Un+1. WhereXn

j andXn+1
j+1, 0� j � J +n−1 belong

(numerically) to the same characteristic curve. We
troduce the notation

α(Xn) = (
α(Xn

0, tn), α(Xn
1, tn), . . . , α(Xn

J+n+1, tn)
)

γ n
µ = (

γµ(Xn
0), γµ(Xn

1), . . . , γµ(Xn
J+n+1)

)
Also, Qn(Xn,Vn) = ∑J+n+1

j=0 qn
j (Xn)V n

j where
qn
j (Xn), 0� j � J + n + 1, are the coefficients of th

composite quadrature rules of at least second or
This notation will be used throughout the subsecti
First, the grid values at the time leveltn+2 are calcu-
lated by

(A.4)Xn+2
0 = xmin, Xn+2

J+n+2 = xmax

(A.5)Xn+2
1 = kg

(
k

2
g(xmin, tn+1), tn+1 + k

2

)

Xn+2
j = Xn

j−2 + 2kg
(
Xn+1

j−1, tn+1
)

(A.6)2� j � J + n + 1

and the approximations to the theoretical solution
these nodes at such time level using

(A.7)

Un+2
1 = Un+1

0 exp

(
−kµ

(
k

2
g(xmin, tn+1),

3Qn+1(Xn+1,γ n+1
µ Un+1) − Qn(Xn,γ n

µUn)

2
,

tn+1 + k

2

))

Un+2
j = Un

j−2 exp
(−2kµ

(
Xn+1

j−1,

Qn+1(Xn+1,γ n+1
µ Un+1), tn+1

))
(A.8)2� j � J + n + 1

(A.9)Un+2
J+n+2 = 0

The equations at the time leveltn+2 are completed
with the approximationUn+2

0 to u(xmin, tn+2) by
means of the discretization of the boundary con
tion (1.2)

(A.10)Un+2
0 = Qn+2(Xn+2,α(Xn+2)Un+2)

g(xmin, tn+2)

A.4. Selection Grid Nodes method (SGN) [24]

The following scheme considers a modification
the grid of the previous one so that, by using a se
tion of the grid nodes, the number of nodes does
increase at each time level. Thus, we try to reduce
computational cost without loss of accuracy.

The grid nodes and the numerical approximatio
at time t2, X2, U2, are defined by means of(A.4)–
(A.10) for n = 0. Next, we calculateQ2(X2,γ 2

µU2).
At consecutive time levels, there are different nu

bers of nodes because a new node that fluxes thro
the boundary is introduced. So, at the time levelt0, we
have(J + 1) grid nodes, att1 we have(J + 2) and at
t we have(J + 3). Now, the first grid nodeX2 that
2 l
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∣∣X2
l+1 − X2

l−1

∣∣ = min
1�j�J+1

∣∣X2
j+1 − X2

j−1

∣∣
is eliminated and, alsoX1

l−1, the grid node in the sam
characteristic curve att1, is taken out. The number o
nodes at the levels involved in the implementation
our two-step scheme are kept fixed:(J + 3) nodes for
the time level reached in the integration and(J + 2)

and (J + 1) for the previous ones. However, the a
proximations to the nonlocal terms at such time lev
are not recomputed.

Now, we suppose that the numerical approxim
tions at time levelstn and tn+1 are known, and they
are denoted by{Xn

0,Xn
1, . . . ,Xn

J−1,X
n
J = xmax}, {Un

0 ,

Un
1 , . . . ,Un

J−1,U
n
J = 0}, Qn(Xn,γ n

µUn) and{Xn+1
0 =

xmin,X
n+1
1 , . . . ,Xn+1

J ,Xn+1
J+1 = xmax}, {Un+1

0 ,Un+1
1 ,

. . . ,Un+1
J ,Un+1

J+1 = 0}, Qn+1(Xn+1,γ n+1
µ Un+1) (note

that Xn
j andXn+1

j+1, 0 � j � J − 1, are, numerically
in the same characteristic curve). In addition, the g
considered attn has lost two nodes with respect
the moment whenXn was actually calculated, whil
the grid used attn+1 has only one node less tha
Xn+1. The numerical grid nodes at the new time le
tn+2, are computed by means of(A.5) and (A.6), 2�
j � J + 1, and the approximations to the theore
cal solution in these nodes are obtained using(A.7)
and (A.8), 2� j � J + 1. The equations at time leve
tn+2 are completed with the approximationUn+2

0 to
u(xmin, tn+2) using(A.10).

Now, we calculateQn+2(Xn+2,γ n+2
µ Un+2). Note

that, for the time levelstn, n � 2, the quadrature rule
always use the same number of nodes(J +3). Finally,
we eliminate the first grid nodeXn+2

l that satisfies

∣∣Xn+2
l+1 − Xn+2

l−1

∣∣ = min
1�j�J+1

∣∣Xn+2
j+1 − Xn+2

j−1

∣∣

and we take outXn+1
l−1 , the grid node in the same cha

acteristic curve at the previous time level.
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