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Abstract

This paper presents a robust nonlinear asymptotic observer with adjustable convergence rate with a great potential of ap-
plicability for biological systems in which the main state variables are difficult and expensive to measure or such measurements
do not exist. This observer scheme is based on the classical asymptotic observer, which is modified to allow the tuning of the
convergence rate. It is shown that the proposed observer provides fast and satisfactory estimates when facing load disturbance:s
system failures and parameter uncertainty while maintaining the excellent robustness and stability properties of the classical
asymptotic observer. The implementation of the tunable observer is carried out by numerical simulations of a mathematical
model of an anaerobic digestion process used for wastewater treatment. The key results are examined and furtherTeveloped.
citethisarticle: V. Alcaraz-Gonzalez et al., C. R. Biologies 328 (2005).
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Résumé

Un observateur multi-variable, robuste et non-linéaire, a vitesse de convergence réglable pour des systémes biolo-
giques. Cet article présente un observateur non-linéaire a vitesse de convergence réglable pour les systéemes biologiques, don
les principales variables d’état sont difficilement mesurables. Cet observateur est fondé sur le principe de I'observateur asymp-
totique, dont l'intérét a déja été largement démontré dans la littérature, mais il est modifié pour permettre a I'utilisateur d’en
régler la vitesse de convergence. Il est en particulier démontré au sein de cet article que I'observateur proposé fourni des es-
timations rapides et satisfaisantes vis-a-vis de perturbations affectant le procédé, de défaillances du systéme et d'incertitudes
paramétriques liées au modele utilisé, alors que les bonnes propriétés de stabilité et de robustesse de I'observateur asymptotigu
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classique sont préservées. Cet observateur est par ailleurs testé en simulations numériques en utilisant un modéele mathématiqt
d’'un procédé biologique utilisé pour le traitement des eaux usées par digestion anaérobie. Les résultats sont examinés et dis
cutés pour illustrer les bénéfices d'un tel observateur et son applicabilité & de nombreux procédés bioRmiguesr cet

article: V. Alcaraz-Gonzalez et al., C. R. Biologies 328 (2005).
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1. Introduction dependence of asymptotic observers by reducing the
close interaction of the plant parameters in the esti-

In recent years, there has been an increasing in- mator equations. This is accomplished by adopting a
terest to develop new state and parameter estima-methodology similar to that used [B] for a single-
tion schemes to reduce the deficiencies of classical dimension bounded error observer, which is further
schemes such as the Kalman Filter (KF) and the Lu- developed to more complexdimensional cases. The
enberger Observer (LO) which have been frequently main result is the inclusion of an adjustable con-
used to reconstruct variables that are not measured andsergence rate in the design of asymptotic observers
to reduce the effect of noise on the available mea- while maintaining the stability and robustness conver-
surements. However, due to the fact that the stability gence properties in the presence of nonlinear terms
and convergence properties of these estimators are esfi.e., process kinetics) and under the influence of load
sentially locally valid, their application has been re- disturbances. The performance improvement of the
strictive in many practical situations. Other estimation classical asymptotic observer is finally demonstrated
approaches (the high gdih], adaptivg2], and sliding by applying in simulations the proposed tunable ob-
mode[3]) have been also devised to solve the state re- server in an anaerobic digestion wastewater treatment
construction problem since the stability of the system process.
is guaranteed but their designs involve conditions that
must be assumed a priori or that are usually hard to
verify [4]. These may account for the failure of these
estimators to find widespread application in biological
processef?].

In this paper we present an innovative state esti-
mation schemes to overcome the difficulties associ- (Zo) {X(I) =Cf(x(®),1) + A@0)x(@) + b(1) )
ated with the reconstruction of important nonmeasured x(0) =xo
variables in biological processes. It is based on the wherex() € %" is the state vectory € "<’ rep-

well-known Asymptotic Observer (AQ®], whichhas  esents a matrix of constant coefficients. The map-
proved to be suitable for certain biological processes ping f(x(1),1) € 3" denotes the nonlinearities and
by yielding satisfactory estimates in the face of uncer- b(1) € W" gathers the inputs of the process. The time-
tain kinetic parameters and load disturbances despite\,arying matrix A(1) € V%" is the state matrix. The
the dependence of the AO performance and conver- nymper of measured states that are available on-line is
gence on thfe system op.eratmg condmon_s (paruculgrly n2. Thus, the problem reduces to estimate= n — ny
on the dilution rate which may be relatively low in  yariaples. For this purpose, the state vector is split in
most industrial scale biological processes) that have gch a way thatl) can be rewritten such as
prevented the implementation of efficient monitoring )
and control strategies. 21(t) = Cof (x(1). 1) + Ana(D)xa(r)

The objective of this study is then to propose an (51 + Ag2(t)x2(t) + ba(t),  x1(0)=x10
alternative to tune the convergence rate of a typical ! Xo(t) = sz(x(t),t) + A21(t)x1(2)
AO to compensate the effect of this plant features + A2o()x2(t) + ba(t), x2(0)=x20

2. Theconsidered general model

Let us consider the general class of biological sys-
tems that fits within the following mod¢2]:

&)
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where then; measured statesr) have been grouped W, such thatW,” < W,(t) < W,© vt > 0. Thus, in
in the x2(r) vector (i.e.,y(r) = x2(¢)) while the vari- order to guarantee the stability ¢8), the following
ables that have to be estimated are represented byhypotheses are introduced:

x1(t). Aij(t) € WX, C; € W7, bi(t) € R, for

i =12 and;j = 1,2 are the corresponding partitions (H4) W, =0, Vi#].

of x(t), A(¢), C andb(r), respectively. The following (H5) W, andW," are Hurwitz stable.
hypotheses about the model are introduced:

The hypothesis (H4) simply states that the matrix

(H1) The matrixA(t) is known and bounded: > 0, W, and thus, the matrice®, (t) andW," are cooper-
i.e., there exist constant matric&gin and Amax ative[7], while the hypothesis (H5) states the stability
such thatAmin < A(#) < Amax Vt > 0. of these two constant matrices.

(H2) The matrixC is constant and known with the
property raniC = rankCs. Lemma 1. Under hypothesefH1)—(H5) the asymp-

(H3) The vecto(t) is knownVr > 0. totic observel(3)is stable andt1 (r) converges asymp-

totically towardsx1 (¢) for any set of initial conditions.
Note. The operatok applied between vectors and be-
tween matrices should be understood as a collection of  The proof of this lemma is given ii8].
inequalities between elements.

4. A robust tunable asymptotic observer
3. A robust asymptotic observer
This section presents the main results of this study.
Under hypotheses (H1) to (H3), the following sys- The most important limitation of observé) is in-
tem designed by the linear transformationz) = deed that, in most of the cases, its convergence rate
Nx(1): is fixed by the operating conditions of the biological
. R system (namely the dilution rate). To face this limi-
w(r) = WHOHw) + Y@y + Nb@) tation, a change in the observer design is introduced
(£20) { w(0) = Nio () in the following in order to obtain adjustable conver-
£1(6) = NL Y () — Nay () gence rates.
with Proposition. Let us consider the following modi-
W(r) = (N1A11(t) + N2A21()) N7 @ [';d tg?s)fl‘;”]“a“‘(’j”“r’]) = @1‘(’ g”“;g o N0 =
1 t)N2] and where®(t) € R'1>*"1 the gain
Y(6) = N1dw2() + N2Azo() = W(ON2 matrix, is a continuously derivable function matrix
is an asymptotic nonlinear observer @) [6]. Here, with the property
N =[N1 Nz] whereN1 € W"1*" is an arbitrary in-
vertible matrix, No = —N1C1Cy (N2 € %"*P) and
C3 is the generalized pseudo-inverse @f. Notice Then, under hypothes@s1) to (H5), the following dy-
that observe(3) is fully independent of the nonlin-  namical system
ear terms and thus, it is robust with respect to these ) .
terms. Let us now denotesaq(t) = £1(7) — x1(¢) if 2(t) = (N1C1+ O(1)N2Co) £ (R(1), 1)
X1(0) —x1(0) = 0 Orecao(t) = x1(¢) — X1(¢) if £2(0) — + W@ + Y (0)y@) + N@O)b@)
x1(0) < 0. ecao is the observation error associated to (£21) | . ~ .
(3) (the subscripts “cao” denotes “classical asymp- 2(0) =N (0o
totic observer”). It is easy to verify thatyo follows x1(t) = Nl‘l(é(t) — @([)Nzy(t))
the dynamics:iécag(t) = We(t)ecao(t) with W,(r) =
Nf1W(t)N1. Notice also that under hypothesis (H1),
it is possible to find two constant matricés,” and W () = (N1A11(t) + @)(t)N2A21(t))N1_1

lim o) =1 (5)

(6)

where
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Y () = N1A12(t) + O (1) N2A22(1) stability and convergence properties of the AO. Fur-
+(6@) - WHO ()N @ thermore, if@ (1) is chosen a® (1) = diag(d(¢)), with
A ;o . L 0(r) € "', a fully decoupled tuning observer is ob-
S
f(x(t)’ t) €9 Is the best polssnble approximation tained, where the parameters needed to tune each es-
of the badly knowry mapping timated state variablexy; () (i = 1...n1), are ex-
is a stable tuning asymptotic observer for mogg| clusively those involved in the functioft(r). In the
following section the proposed tuning observer will be
Proof (Convergence and stabilityLet e(t) = £1(r) — applied to an actual highly nonlinear biological waste-

x1(7) be the observation error associateddp Under ~ Water treatment process.
hypotheses (H1) to (H3), itis straightforward to verify

that the error dynamics is given by o
5. Application to wastewater treatment processes

é(t) = Eo()e(t) + K(0)p(R(1), x (1), 1) (8)
with Anaerobic Digestion (AD) is a series of multi-
- substrate multi-organism biological processes that
Ec(t) = N{'W (1) N1 = A11(t) — N{ 'O (1) NaApa(t) take place in the absence of oxygen and by which
K(t)=C1+ Nl_l@(l)NZCZ organic matter (expressed as COD, the Chemical Oxy-
R o gen Demand) is decomposed and converted into bio-
p(E(@), x(0), 1) = F(&(), 1) = f(x(0). 1) gas, a mixture of mainly carbon dioxide and methane,
Now, since lim_, ., @(¢) = I, itis clear that: microbial biomass and residual organic matf@}.
Several advantages are recognised to AD processes
() lim;Lo0 Ec(t) = We(2), when used in wastewater treatment processes: high
(i) lim, Lo K(t)=C1+ Nl_lNzCZ =0, and thus, capacity to treat slowly degradable substrates at high
(i) 1M ;00 €(2) = écao(t). concentrations, very low sludge production, potential-
ity for production of valuable intermediate metabo-
Therefore, given the stability properties . (z) pro- lites, low energy requirements and possibility for en-
vided by hypotheses (H4) and (H5), it can be con- ergy recovery through methane combustion. AD is
cluded that lim_, o e(¢) = lim, 5 €cao(t) =0. O indeed one of the most promising options for de-

livery of alternative renewable energy carriers, such

Clearly, the advantage of the tunable obser@&r as hydrogen, through conversion of methane, direct
over the classical AO is that, by choosing a suitable production of hydrogen, or conversion of by-product
gain matrix ®(t), the classical AO is provided with  streams. However, despite these large interests and few
an adjustable convergence rate, which can be tuned bythousands commercial installations refereed world-
the user. Notice tha® (¢) influences both the stabil-  wide[10], many industries are still reluctant to use AD
ity and the convergence properties (see (B9). of the processes, probably because of the counterpart of their
tuning observer and it can be properly chosen to accel- efficiency: they can become unstable under some cir-
erate the convergence rate which allows to reach the cumstances. Hence, actual research aims not only to
zero steady state,= 0, even if the uncertainty of the  extend the potentialities of anaerobic digestjaf],
nonlinear termg (x(¢), t) is reasonable high. Itisalso  but also to optimise AD processes and increase their
worth mentioning that, with the exception of the prop- robustness towards disturband&g]. The design of
erty (5), no other restrictions are imposed on the gain efficient state estimators clearly goes in these two last
matrix @ (¢). Thus, the choice 0B (r), may be, at a  directions since instrumentation is usually scarce at

first glance, a relatively easy task. In other wor@st) industrial scale.
must be chosen to give the fastest convergence to the
true state. Moreover, one can see that@ds) — I, 5.1. An anaerobic digestion model

the knowledge of the nonlinearities is no longer re-
quired and therefore, the tuning observer design con- Let us consider the following dynamical model
verges to the classical AO with the same robustness, (known as AM1) for continuous anaerobic digestion
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procesg13]. This model is given in the following ma-  5.2. Observer design
trix form (seeFig. 1) or simply & = Cf(x(z),1) +

A)E(t) + b(r) which matches exactly modgél) with The goal in this application example is the estima-
x(t) =&(t). In (9), the dotted lines indicate the par- tion of X1, X, Z andCy, by using readily available
titions of Eq.(2). In this model,&; = X1, & = Xo, S1 and S, measurements. In order to match the split

&5 = 51,86 = S2 andé3 = Z, &4 = C1y are the concen-  model(2), the matrix partitionsy; (1), A;;(¢), C; and
trations of acidogenic bacteria, methanogenic bacteria, b; (¢), fori = 1,2 andj = 1, 2 have been clearly indi-
COD, Volatile Fatty Acids (VFA), strongions and total  cated in(9) by the dotted lines. Without loss of gener-
inorganic carbon, respectively. The superscript “in” in-  ality, one can choos#’; = I, such that

dicates the influent concentrations. The varialte,

is the CQ partial pressure whereas (0 < o < 1)
denotes the biomass fraction that is retained by the
reactor bed, i.eq = 0 for an ideal fixed-bed reactor

anda = 1 for an ideal continuous stirred tank reactor _ MatricesW, W, ¥ andY are calculated by using
(CSTR) wherea®(¢) is the dilution rate and it is sup- Egs.(4) and (7)and the gain matri® (1), can be com-

posed to be a persisting input, i.g° D(r)dr > 0. puted by solving the following ODE system:
Moreover,D(r) is a bounded variable since it is con-
ditioned by the minimum flux to the persisting input
and the washout condition for the upper bound, i.e., with G = diag(g), g € %"1. Notice that the necessary
Dmin < D(t) < Dmax- Last but not leastys and 2 property(5) is not restrictive at all and thus, one can
are complex nonlinear mathematical expressions thatchoose many forms o that can fulfill it. In the

describe the kinetics of the biochemical reactor. These present study, it is obvious thét1) not only fulfills

ks ko O ksksa+ koks i|T

Ny = (k1k3)1|: 0 ki O kyks

O=-GO+g (11)

expressions are given by H4.0): this property but also it is very simple and allows the
decoupling of the observer design. In fact, the selec-
1= H1,maxS1 tion of the constantsg;, Vi =1,2,...,n1, allows us
ks1+ 81 (10) to tune the convergence rate for each estimated state
M2 maxS2 individually. In addition, in this way, it is possible to
H2= ks.2+ Sz + (S2/k1.2)2 influence the fast convergence 6f(¢) to the iden-

tity matrix. Notice however that, as long é5¢) does
The AM1 model was developed and experimen- not reach the identity matrix, the proposed tunable ob-
tally validated in a continuous 1 %up-flow fixed bed server exhibits a highly nonlinear behavior and thus,
anaerobic digester used for the treatment of industrial a stability analysis similar to the one used in classical
wine vinasse§l 3]. More details about the process de- approaches, e.g., the extended LO and the extended
sign and instrumentation can be found1d4]. KF, should be implemented. It is worth mentioning
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that the observer gains used here in the implementa-
tion of the tunable observer were chosen after a trial
and error process. In fact, a number of different gain
matrices® (¢) were tested and they all yielded simi-
lar results. These results are not shown in this paper
due to space limitation. For the results shown here,
we used the following parameters in the solution of
Eq. (11): ©(0) =[-25 —14 2 —10", ¢g=

[1 2 1 035". A methodology to decide upon
the optimal choice of the observer gains is now in
progress.

5.3. Hypotheses verification

(H1) The matrixA(¢) is bounded and knowwr > 0
since it depends orD(r) which is measured
and it is also bounded. Moreover,andk; are
bounded and known.

(H2) By inspection, rank’ = rankCs.

(H3) Allinputs to the system are known.

(H4) SinceA»; =0 and providedV; = I, we have

—aDT 0 0 0 ~._j

— 0 —-aD* O 0 =

e = 0 0 -D* 0 .
0 0 k7 —(D* 4 k7)

12)
that fulfills the positivity condition on the off-
diagonal elements d¥,.

(H5) From(12)it is clear that eigW:;) are negative
forany O< D~ < D(¢) < D™ (clearly, W, and
W are Hurwitz).

5.4. Simulation results

Model parameters used in the proposed adjustable
rate observer implementation are listed Tiable 1
Simulations shown hereafter were performed for a 50 &
days period by using operating conditions as close as >~
possible to actual wastewater treatments plants. The &
dilution rate exhibited large fluctuations as well as
drastic step perturbations (sé&y. 2). The behavior
of the inlet concentration patterns f§f', s, zI", and
C¥‘| is shown inFigs. 3—6while the Pco, is depicted in
Fig. 9. As in many continuous bioreactogs)’ and X%’
were considered as negligible. The on-line measure-
ments ofS1 andS» used in the state estimation process

g/m® )

Table 1
Parameters used in the modE3]
tmaxi = 1.25day?
Kmaxz = 0.69day?!
k.1 4.95 Kgcoomd
k2 = 9.28 mol VFA/mM3
ki2 20 (mol VFA/m3)1/2
a = 0.5 (dimensionless)
ki1, = 6.6 KgCODKgxy
ko = 7.8 molVFA/Kgx1
k3 = 611.2 mol VFA/Kg x»
kg = 7.8molCQ/Kgxy
ks = 977.6 molCQ/Kgxy
kg = 1139.2 molCH/Kgxy
k7 = 50day!?
Kg = 0.1579 mo/m3KPa
0.9
0.8+ N~ J
0.6
0.5
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Fig. 2. Dilution rate.
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Fig. 3. Influent COD concentration.
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Fig. 9. CQ partial pressure profile.
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Fig. 11. Estimation of the methanogenic biomass. Fig. 13. Estimation of the total inorganic carbon concentration.

were obtained from model simulations as the observer satisfactory for all estimated state variables since it
inputs to estimateX, X2, C1y and Z (seeFigs. 7 was able to cope with all the difficulties associated to
and 8. The performance of the proposed adjustable load disturbances. As expected, the tunable observer
nonlinear observer under these operating conditions is converge rate is faster than the classical one, show-
depicted inFigs. 10-13For the sake of completeness, ing excellent stability properties even in the presence
the response of a classical asymptotic observer hasof load disturbances and uncertainty on the process
been added to demonstrate the convergence featureskinetics. Notice, however, that in the case of the

of the proposed observer design. Initial conditions for variable, both observers showed essentially the same
both, classical asymptotic observer and the tunable convergence rate (sdég. 11) since Z does not de-
observer were exactly the same. Figs. 10-13 the pend on the nonlinearities nor on any model parameter
continuous line () represents the model predictions, (see&s in Eq. (9)) and as a consequence, the conver-
the dotted line {--) represents the CAO estimations gence rate of both observers schemes rely exclusively
whereas the dashed line (---) represents the tuningon the fixed gain value predetermined by the dilution
observer estimations. By inspecting these figures, it rate. The tunable observer response described, never-
is clear that the response of the tunable observer istheless, the trend of the actuélreadings. Finally, the
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