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Abstract

Matrix games, defined by a set of strategies and a corresponding matrix of payoffs, are commonly used to mod
populations because they are both simple and generate meaningful results. It is generally assumed that payoffs are in
of time. However, the timing of contests in real populations may have a marked effect on the value of rewards. We
matrix games where the payoffs are functions of time. Rules are found which hold in this more general situation,
complexity of possible behaviour is underlined by demonstrating other conditions which do not hold and an illustrativ
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Résumé

Jeux évoliutionnels avec gains et coûts variables. Les jeux matriciels prennent en compte un ensemble de stratégies
une matrice de gain et de coûts. Ces jeux sont fréquemment utilisés pour modéliser les populations animales parce
simples et génèrent des résultats dont l’interprétation est aisée. Dans ces modèles, il est habituellement supposé qu
et les coûts sont indépendants du temps. Cependant, la durée des rencontres entre individus dans les populations
avoir un effet important sur la valeur des gains. Nous considérons des jeux matriciels pour lesquels les gains et les
fonctions du temps. Nous obtenons des règles valables dans ce cas plus général. La compléxité du comportement e
en recherchant d’autres conditions dans le cas non autonome et en présentant un exemple de jeu illustratif de la métPour
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1. Introduction

We start by explaining some of the basic conce
of evolutionary game theory, introduced in the clas
paper[1] (see also[2]), which will be of use in the res
of the paper. In particular we discuss matrix games
tween symmetric players and their equivalent betw
asymmetric players, bimatrix games. We also use
concept of the replicator dynamic to consider the e
lution of strategies as a function of time.

1.1. Matrix games

The following idea is useful for modelling a pop
lation of animals which compete in pairwise conflic
for some resource, which could be food or mates,
example. It is assumed that all members of the p
ulation are indistinguishable and each individual
equally likely to face each other individual. There ar
finite number ofpure strategiesavailable to the play
ers to play in a particular game. LetU be the set of
pure strategies so thatU = {1, . . . , n}. Given the strate
gies played the outcome is determined; if playe
plays i against player 2 playingj then player 1 re-
ceives rewardaij (player 2 receivesaji ) representing
an adjustment in Darwinian fitness. The valueaij can
be thought of as an element in then × n matrixA, the
payoff matrix.

An animal need not play the same pure strat
every time, it can play amixed strategy, i.e., playi with
probabilitypi for each ofi = 1, . . . , n. Thus the strat-
egy played by an animal is represented by a probab
vector p. The expected payoff to player 1 playingp
against player 2 playingq, which is written asE[p,q],
is

E[p,q] =
∑

aijpiqj = pTAq

A strategyp is a Nash equilibriumif qTAp � pTAp
for all alternative strategiesq (so a strategy is a Nas
equilibrium if it is a best reply to itself).

Thesupportof p is defined asS(p) = {i: pi > 0}.
p is aninternal strategyif S(p) = U .
p is thus a Nash equilibrium if(Ap)i = λ, i ∈ S(p),

(Ap)i � λ, i /∈ S(p) for some constantλ and is thus an
internal Nash equilibrium ifS(p) = U and(Ap)i = λ

∀i.
A strategyp is an Evolutionarily Stable Strateg

(ESS) if
(i) qTAp � pTAp and
(ii ) if qTAp = pTAp thenqTAq < pTAq

for all alternative strategiesq.
A matrix may possess a unique ESS, no ESS

many ESSs. See[3,4] for a discussion of the possib
complexity of the ESS structure of a matrix.

1.2. Bimatrix games

The assumptions underlying the bimatrix ga
model are the same as for the matrix game mo
except that pairwise contests are fought between i
viduals in asymmetric positions, so that the individu
designated player 1 has a different set of pure str
giesU1 to the set available to player 2 (U2). If player 1
plays its strategyi against player 2 playing its stra
egy j , then player 1 receives rewardaij and player 2
receives rewardbji . The payoffs combine to form th
payoff matricesA andB. In the same way individu
als can play mixed strategies, so that if player 1 pl
p and player 2 playsq, the rewards to the players a
pTAq andqTBp, respectively.

The two strategy pairp1,p2 is a Nash equilibrium
pair, if

pT
1Ap2 � qT

1Ap2 and pT
2Bp1 � qT

2Bp1

for any alternative strategiesq1, q2.
The strategy pairp1, p2 is an ESS if it is a Nash

equilibrium pair,

and wheneverpT
1Ap2 = qT

1Ap2

thenpT
1Aq2 > qT

1Aq2

and wheneverpT
2Bp1 = qT

2Bp1

thenpT
2Bq1 > qT

2Bq1

which is only possible if both these strategies
pure[5].

1.3. Replicator dynamics

Let us assume that individuals can only play p
strategies, and let the proportion of players of p
strategyi at a particular time bepi (i = 1, . . . , n),
so that the average population strategy (thepopulation
state) is the vectorp = (pi), with the expected payof
(in terms of Darwinian fitness) of ani-player in such
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a mixture being(Ap)i and the overall expected pa
off in the population being

∑
pi(Ap)i = pTAp. Then

the standard replicator dynamic (continuous) for
matrix game with payoff matrixA is defined by the
differential equation

dpi

dt
= pi

[
(Ap)i − pTAp

]
Thus the proportion of players which play the bet
strategies increases with time (what determines a g
strategy depends upon the composition of the pop
tion). A point in n-dimensional space, represented
the vectorp, is locally stable if it is an ESS (this i
not necessarily true for the discrete dynamic,[6]). p is
called an Evolutionarily StableStaterather than Strat
egy, since no individual actually playsp, it is rather
the average of those strategies played. The replic
equation has been applied in very many situations
[7,8]).

Assuming evolution under the replicator dynam
(or any other dynamic), thetime averageof the pop-
ulation statev (wherevT = (v1, . . . , vn)) at timeT is
the vectorTA(v), whoseith elementTA(v)i is defined
by

TA(v)i = 1

T

T∫
0

vi dt

Note that:

(1) adding a constant to any column of the payoff m
trix makes no difference to the Nash equilibria,
the trajectory of the path taken by the populat
under the replicator dynamic (including time fa
tors), so making no difference to the game at a

(2) If the entire matrix is multiplied by a positive con
stant, then the Nash equilibria remain const
and the trajectory of the replicator dynamic
unaltered, but speed along the trajectory may
changed, and thus the time average of the pop
tion state may also be affected.

1.4. Nonconstant payoffs

The majority of game models deal with a fixed pa
off structure, so that if the strategies adopted by all
combatants are known, then the payoffs are given. T
corresponds with the payoff matrix of constants,A.
In the real world, however, the time at which conte
occur can be crucial. As the breeding season de
ops there is a natural variation in the rewards availa
for any given contest[9,10]. But due to environmenta
changes, variations may occur from year to year,
even day to day due to unpredictable effects suc
the weather[11].

We consider a matrix game where the payoffs v
with time. In particular, if player 1 playsi against
player 2 playingj at time t , then player 1 receive
payoff aij (t). Clearly a lot of the concepts from th
static games must now be reconsidered; for insta
p may be a Nash equilibrium of a particular const
payoff matrix (a snapshot in time) but what happe
in the long term as the matrix changes? We cons
how the population state changes under the replic
dynamic and ask what rules we can establish.

In general we assume that the entries in the pa
matrix are bounded, so thata1 < max|aij (t)| < a2 for
all i, j, t , 0< a1 < a2. It is also usually assumed th
A is continuous and that indeed it cannot change
quickly, so that∣∣∣∣ d

dt
aij (t)

∣∣∣∣ < a3 ∀i, j, t

The class of payoff matricesΛ is defined as follows;

L = (lij ) ∈ Λ if and only if

lij = lj for all i, j

Thus Λ is the set of matrices where all elements
columnj have the same value, for each column (su
matrices yield the same reward to any strategy aga
each opposing strategy). We use the termΛ(t) to in-
dicate a matrix which varies in time, but is always
member ofΛ.

Finally, we assume thata4 < max|aij (t) − akj (t)|
for somei, j, k anda4 > 0, and for allt . This ensures
that the game does not become completely degen
by bounding it away from the setΛ.

2. Results

Firstly we introduce some general results, and th
consequences, before moving on to consider a pa
ular application of the theory.
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2.1. General results

In this section the variable payoff matrix with el
mentsaij (t) is simply written asA and the population
state is the vectorv.

Theorem 1. A converges does not imply that TA(v)

converges.

This results follows simply from the fact that eve
for constantA, not only doesv not always converge
but neither doesTA(v) (see[8]). Complex population
dynamics can thus occur even with constant payo
What can we say about the case where payoffs va

Theorem 2. If v → v∗, wherev(0) has no zero ele
ments, thenA → g(t)A∗ + Λ(t) for some continuou
functiong(t) andA∗, a matrix of constants, such th
v∗ is a Nash equilibrium ofA∗.

So if the prevalent population state converges, t
it must be the case that the payoffs converge eithe
a constant payoff matrix, or one which varies in tim
in such a way that the ratio

ai1,j1(t) − ai2,j2(t)

ai3,j3(t) − ai4,j4(t)

is independent of time, for any combination of stra
gies i1, i2, i3, i4, j1, j2, j3, j4 for which j1 = j2
and j3 = j4. This is an extremely severe restricti
implying strong environmental stability over time.

Theorem 3. If

(a) aij (t) = αij + fij (t) and 1/T
∫ T

0 |fij (t) −
fkj (t)|dt → 0 ∀i, j, k and

(b) any elementvi(t) which approaches the bounda
does so sufficiently slowly so that1/T log(vi(T ))

→ 0,

then TA(v) converges tov∗ which is a Nash equilib
rium ofℵ = (αij ).

If the payoffs vary with time, but to a limited exten
(in particular the environmental impact is such th
there is not regular displacement from the mean,
cept possibly of vanishingly small size), and that t
is not strong enough to eliminate strategies at a s
ciently fast (exponential) rate then convergence of
time average of the population state occurs. We do
have a stronger result for a general constant pa
matrix; thus the assumption of constant payoffs
be relaxed a little without affecting the dominant lo
term behaviour.

Proposition 1. If TA(A) → ℵ and if v∗ is an internal
Nash equilibrium ofℵ, then the distance ofv∗ from
TA(v), the length of the vectorv∗ − TA(v), can con-
verge to a value which is arbitrarily close to1.

This result demonstrates that considering the lo
term mean payoffs is insufficient to find the long-te
average state; indeed it is possible to find situati
when considering the long-term mean payoffs wo
give you the worst possible estimate of the mean st

Proposition 2. TA(v) converges does not imply th
we can find bounded function0 < k1 < g(t) < k2 and
matrix Λ(t), defined as above, such that TA(A∗) con-
verges, whereA∗ = (A − Λ(t))/g(t).

(Note that we need this more elaborate statem
rather than just nonconvergence ofTA(A), as this can
be given by the trivial case ofA = Λ(t) + K for con-
stant matrixK , and suitableΛ(t)).

Even if the mean population state converges
does not imply convergence of the underlying p
offs (or the relative size of payoffs against the sa
pure strategy), and even time average convergen
not guaranteed. This is especially surprising given
convergence of the time average ofv is not guaranteed
even for constant payoffs. Thus observation of this
haviour, without convergence ofv, could be the resul
of a wide range of underlying phenomena.

2.2. The two stage game

One application of the idea of variable payoffs
in the context of multiple stage games, even when
real natural payoffs are constant. Suppose that a p
lation of animals compete in pairwise contests, wh
an animal’s strategy is decided by a pair of ‘cho
es’. The first choice that an animal makes then dec
the particular type of contest that the two animals
involved in, after which the individuals both pick
second choice, which decides the payoffs that e
receive (for other examples of such contests see[12,
13]). The two players make their choices at each st
simultaneously, and both know the result of the fi
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stage before playing the second. For instance, the
‘choice’ could be horn size, which is apparent to bo
players before any contest ensues. The second s
is thus a subgame within this contest; the availa
choices of which may be conditional upon the ho
size of the participants (thus there is a payoff ma
for each pair of horn sizes).

Note that when the first stage choices are differe
then this induces an asymmetry into the contest.
assume that if player 1 picksi and player 2 picksj
then the reward to player 1 is decided by the pay
matrix Bij . If i = j then we have the standard m
trix game with payoff matrixBii , otherwise we have
bimatrix game with payoff matricesBij ,Bji , respec-
tively.

The payoffaij is thus the expected reward for fir
stage strategyi against first stage strategyj , which de-
pends in turn upon the strategies prevalent in such
tests, i.e.,aij = pT

ijBij pji wherepij = (pij,k)k is the
population state ofi-players when facingj -players for
the second stage of the game (and sopji is the popula-
tion state of their potential opponents in this conte
When considering the strategy ofi against that ofj ,
i �= j , pij takes the place ofp1 andpji takes the place
of p2 in the bimatrix games earlier described (for
dividuals of the same first stage strategypii takes the
place ofp in a matrix game). It is assumed that t
strategies involved in this subgame evolve in the sa
manner as the first stage choices, and sopij varies ac-
cording to the replicator equation

d

dt
pij,k = pij,k

(
(Bij pji)k − pT

ijBij pji

)
Theorem 4. If pij → p∗

ij ∀i, j (wherep∗
ii is an ESS

of Bii and p∗
ij ,p∗

ji is an ESS pair ofBij ,Bji for i �=
j ), thenaij (t) = pT

ijBij pji satisfies condition(a) for

Theorem3 with αij = p∗T
ij Bij p∗

ji .

Corollary. Suppose that

(i) p∗
ii is an ESS ofBii andp∗

ij ,p∗
ji is an ESS pair o

Bij ,Bji for i �= j , ∀i, j .
(ii ) pij → p∗

ij ∀i, j .

(iii ) aij (t) = pT
ijBij pij , with none of the first stag

strategies approaching0 at an exponential rate
(except any not featuring in the support ofv∗
below) so that condition(b) of Theorem3 is sat-

isfied.
e

Then TA(v) = v∗ exists, andv∗ is a Nash equilibrium
of ℵ = (αij ), whereαij = p∗T

ij Bij p∗
ji .

Suppose that in a two stage game there are
strategies in the first stage, and then two strategie
each of the four possible second stage situations
fined by the payoff matrices

Bij =
∣∣∣∣bij (11) bij (12)
bij (21) bij (22)

∣∣∣∣
The different stable solutions within each of the ma
ces are shown inTables 1 and 2. The solution for the
matrixBii (i = 1 or 2) are given inTable 1.

When one player plays 1 and the other 2, we h
the bimatrix game defined byB12,B21. Table 2gives
the strategies in the ESSs.

When there are no pure ESSs and a single N
equilibrium pair for the bimatrix game, it is shown
[14] that the pair(p, q) is a centre and that the tim
averages ofp(t) andq(t) arep andq, respectively.
The time averages of the payoffs are also shown
bepTB12q andqTB21p, respectively. Note that in th
cases where there are two pure ESS pairs, there
internal equilibrium which is a saddle point, and
trajectories converge to one or other of the ESS pa

2.2.1. A numerical example
Suppose that the payoff values from the above

ample are

b11(12) = b11(21) = b12(12) = b12(21) = b21(12)

= b21(21) = b22(12) = b22(21) = 1

b11(11) = 2, b11(22) = 3

b12(11) = b12(22) = 4

b21(11) = 5, b21(22) = 10

b22(11) = 2, b22(22) = 3

This yields two possible solutions each forB11, B22
and the pairB12, B21 (the maximum number in eac
case). Thus there are 8 possible limiting matricesA,
depending upon initial conditions. Each of these
an internal ESS. The possible matrices, each with
probability of choosing first stage strategy 1 in bra
ets, are given below.∣∣∣∣2 4

∣∣∣∣ (2/5),

∣∣∣∣ 2 4
∣∣∣∣ (1/5)
5 2 10 2
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Table 1
ESSs and payoffs forBii

Condition bii (11) > bii (21) bii (11) < bii (21) bii (11) > bii (21) bii (11) < bii (21)
bii (12) > bii (22) bii (12) < bii (22) bii (12) < bii (22) bii (12) > bii (22)

ESS(s) (1) (2) (1), (2) p

payoff bii (11) bii (22) bii (11) or bii (22) ∗
(1) – the ESS has all players playing pure strategy (1), with rewardbii (11), (2) – the ESS has all players playing pure strategy (2), with rew
bii (22), (1), (2) – there are two ESSs. Either all players play pure strategy (1), with rewardbii (11), or all players play pure strategy (2), wit

rewardbii (22). p – a mixed ESS which has probability of playing (1) (= p) and payoff, respectively.p = bii (12)−bii (22)
bii (11)−bii (21)+bii (12)−bii (22) ,

bii (12)bii (21)−bii (11)bii (22)
bii (11)−bii (21)+bii (12)−bii (22) .

Table 2
ESSs forB12 andB21

Conditions b21(11) > b21(21) b21(11) > b21(21) b21(11) < b21(21) b21(11) < b21(21)
Conditions b21(12) > b21(22) b21(12) < b21(22) b21(12) < b21(22) b21(12) > b21(22)

b12(11) > b21(21) b12(12) > b21(22) (1,1) (1,1) (1,2) (1,2)

b12(11) > b21(21) b12(12) < b21(22) (1,1) (1,1) or (2,2) (p, q) (2,2)

b12(11) < b21(21) b12(12) > b21(22) (2,1) (p, q) (1,2) or (2,1) (1,2)

b12(11) < b21(21) b12(12) < b21(22) (2,1) (2,2) (2,1) (2,2)

The various symbols in the body of the above table are interpreted as follows:(1,1) – both play pure strategy 1, with rewardsb12(11), b21(11),
respectively.(1,2) – player 1 plays 1, player 2 plays 2, with rewardsb12(12), b21(21), respectively.(2,1) – player 1 plays 2, player 2 plays 1
with rewardsb12(21), b21(12), respectively.(2,2) – both play pure strategy 2, with rewardsb12(22), b21(22), respectively.(p, q) – the fol-

lowing mixed pairsp,q are Nash equilibria but not ESSs.p = b21(12)−b21(22)
b21(11)−b21(21)+b21(12)−b21(22) , q = b12(12)−b12(22)

b12(11)−b12(21)+b12(12)−b12(22) . The

respective payoffs arepTB12q = b12(12)b12(21)−b12(11)b12(22)
b (11)−b (21)+b (12)−b (22) andqTB21p = b21(12)b21(21)−b21(11)b21(22)

b (11)−b (21)+b (12)−b (22) .

12 12 12 12 21 21 21 21
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∣∣∣∣2 4
5 3

∣∣∣∣ (1/4),

∣∣∣∣ 2 4
10 3

∣∣∣∣ (1/9)∣∣∣∣3 4
5 2

∣∣∣∣ (1/2),

∣∣∣∣ 3 4
10 2

∣∣∣∣ (2/9)∣∣∣∣3 4
5 3

∣∣∣∣ (1/3),

∣∣∣∣ 3 4
10 3

∣∣∣∣ (1/8)

In effect there are eight different ESS solutions fro
a situation where each individual has four choic
two at each stage; the equivalent maximum numbe
ESSs for a matrix game with four strategies is four,
that the extra structure has made the game more c
plex. The reason for this is that individuals are allow
to make choices which depend in part on the cho
of the opponent, so that effectively the individual h
eight distinct choices.

3. Discussion

Matrix games have been used to model a variet
animal behaviours. They are structurally simple a
relatively straightforward and thus amenable to ana
sis, but at the same time provide plausible, if simp
tic, explanations for certain behaviours. However,
assumption of constant payoffs independent of tim
is not always realistic. Payoffs change throughout
breeding season, and may also vary markedly fr
year to year. These variations can be critical to
analysis.

In this paper we have introduced the variable pay
matrix A(t) to consider how different time-depende
payoffs may affect strategies. Naturally the evolut
of strategies can be more complex than under cons
payoffs. In particular just taking a simple time avera
of the rewards without recourse to the particular ti
that they are available can lead not just to the wrong
sult, but completely the opposite result to that obtain
by considering the behaviour at each time separa
Similarly if regular behaviour, with a convergent tim
average, occurs, this does not guarantee that the u
lying payoffs have a convergent time-average (or e
that the relative sizes of payoffs against the same p
strategy do), so that simple observed behaviour ma
concealing very complex variations in the underlyi
payoffs.
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On the other hand, it is demonstrated that provid
the variability of the payoffs is severely restricte
then the existence of a convergent time average o
population state occurs as long as there is a leve
persistence of the strategies involved in the time a
age (they do not tend to 0 exponentially). If the act
state converges with time, then the underlying pay
must converge in a given manner. Thus we extend
knowledge of how certain populations must behave
well as demonstrating the complexity of the situat
by showing that certain plausible statements are fa

The idea of variable payoffs is finally applied to
particular example, that of a two-stage game, wh
the basic payoffs are actually constant, but the rewa
for the first stage (and thus the whole game) dep
upon the strategies used, and so are variable.
shown that if the population states converge in al
the second stage games then the long term time
erage of the state of the whole population conver
provided that the first stage strategies do not tend
at exponential rate (indeed convergence of the state
curs in a wide variety of cases). A numerical exam
with two strategies at each stage (and so four diffe
plays in total) is given where each subgame has
ESSs (or ESS pairs), and the population converge
one of eight possible final solutions, depending up
initial conditions. This number of possible solutions
larger than for any matrix game with four strategi
the extra complication resulting from each animal
ing able to use information about the opponent’s st
egy to choose its strategy.

Appendix A

Proof of Theorem 2.

dvi

dt
= vi

(
(Av)i − vTAv

)
If vi → v∗

i then dvi/dt → 0 (since dA/dt is bounded),
thus if v∗

i > 0 then (Av)i − vTAv → 0 ⇒ (Av)i −
(Av)j → 0 ∀i, j s.t.v∗

i > 0, v∗
j > 0, i.e.,

∑
k

(aik − ajk)vk → 0 ⇒
∑

k

(aik − ajk)v
∗
k → 0

If v∗
k = 0 thenvk(t) → 0 but due to the boundedne

of A, v (t) > 0 for all t .
k
(Av)k − vTAv → (Av)k − (Av)j

→ (Av∗)k − (Av∗)j , j ∈ S(v∗)

and so(Av∗)k − (Av∗)j � 0, since otherwisevk(t)

would not converge to 0.
Thus the matrixA becomes arbitrarily close to

matrix which hasv∗ as a Nash equilibrium (we rep
resent the collection of all such matrices asA(v∗)).
There are different such matrices which satisfy th
so that which of theseA approaches may change wi
time. TheA(v∗) are split into different families so tha
if v∗ is a Nash equilibrium ofA∗ it is also a Nash
equilibrium ofµA∗ +L (whereL ∈ Λ andµ is a non-
negative constant). These families only meet at the
Λ, so that given max|aij (t) − akj (t)| > a4 there is a
given minimum distance between members of any
families. Since dA/dt is bounded, thenA cannot move
between families without moving the population st
v away fromv∗. ThusA must converge to one suc
family, i.e.,

A → g(t)A∗ + Λ(t)

for someA∗ which hasv∗ as a Nash equilibrium, an
some positive continuous function oft , g(t). �
Proof of Theorem 3.

dvi

dt
= vi

(
(Av)i − vTAv

)
⇒

log
(
vi(T )

) − log
(
vi(0)

) =
T∫

0

(Av)i dt −
T∫

0

vT Av dt

⇒
log

(
vi(T )

) − log
(
vi(0)

) − log
(
vj (T )

) + log
(
vj (0)

)

=
T∫

0

(
(Av)i − (Av)j

)
dt

⇒
1

T

T∫
0

(
(Av)i − (Av)j

)
dt → 0

if both vi and vj do not approach zero sufficient
closely that either 1/T log(vi(T )) → 0 or 1/T ·
log(vi(T )) → 0 does not hold. We assume that none
the v s do (except any elements that are not involv
i
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t in
he
ar-
r
nd
e

of
in the support ofv∗).

1

T

T∫
0

(
(Av)i − (Av)j

)
dt

= 1

T

T∫
0

(∑
k

aikvk −
∑

k

ajkvk

)
dt

= 1

T

T∫
0

∑
k

(aik − ajk)vk dt

= 1

T

T∫
0

∑
k

(αik − αjk)vk dt

+ 1

T

T∫
0

∑
k

(fik − fjk)vk dt

=
∑

k

(αik − αjk)
1

T

T∫
0

vk dt

+ 1

T

T∫
0

∑
k

(fik − fjk)vk dt

ThusTA(v) is a Nash equilibrium ofℵ, i.e.,

∑
k

(αik − αjk)
1

T

T∫
0

vk dt → 0

if and only if

1

T

T∫
0

∑
k

(fik − fjk)vk dt → 0

∣∣∣∣∣ 1

T

T∫
0

∑
k

(fik − fjk)vk dt

∣∣∣∣

�
∑

k

1

T

T∫
0

∣∣(fik − fjk)
∣∣vk dt

�
∑

k

1

T

T∫
0

∣∣(fik − fjk)
∣∣dt
Thus if

1

T

T∫
0

∣∣(fik − fjk)
∣∣dt → 0

then the time average ofv converges as above.�
Proof of Proposition 1. Consider the payoff matrix∣∣∣∣1 2
2 r(t)

∣∣∣∣
where r(t) is a step function taking value 2− δ a
proportion of the timeλ and 2− k a proportion of
the time 1− λ, where δ > 0 is small andk > 1.
We also assume that the length of the time spen
each state is long, so that for effectively all of t
time spent in each step, the population is at (or
bitrarily close to) the unique internal equilibrium fo
that level. To satisfy the assumption of continuity a
bounded derivative ofaij , the steps can of course b
‘rounded’ (e.g., if the end of the stepr(t) = 2 − δ

occurs att1, r(t1) = 2 − δ, r(t1 + c) = 2 − k, r(t) =
1− δ − (t − t1)(k − δ)/ct1 < t < t1 + c) with no extra
consequences.

The mean ofr(t) is 2− λδ + λk − k. The time av-
erage of the matrix thus gives the equilibrium value
the proportion playing strategy 1 as

v1 = k − kλ + λδ

k + 1− λk + λδ

The equilibrium value ofv1 when r(t) = 2 − δ is
δ/(1+ δ), similarly the equilibrium whenr(t) = 2− k

is k/(1+k). Thus the mean value ofv1 using the equi-
libria from the steps is

v̄1 = λ
δ

1+ δ
+ (1− λ)

k

1+ k
= k − kλ + kδ + λδ

(k + 1)(1+ δ)

Settingλ = 1− 1/
√

k gives

v1 =
√

k + δ(1− 1/
√

k)

1+ √
k + δ(1− 1/

√
k)

→
√

k

1+ √
k
(δ → 0) → 1(k → ∞)

v̄1 =
√

k + δ(k + 1− 1/
√

k)

(k + 1)(δ + 1)

→
√

k

1+ k
(δ → 0) → 0(k → ∞) �
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Proof of Proposition 2. Suppose that the payoff ma
trix alternates between∣∣∣∣∣
2 4 1
1 2 4
4 1 2

∣∣∣∣∣
occurring in intervals(0, T ), (3T ,7T ), . . . , (22m −
1)T , (22m+1 − 1)T . . . and∣∣∣∣∣
2 1 4
4 2 1
1 4 2

∣∣∣∣∣
occurring at all other times. It is easy to see that
time average ofaij does not converge for all values
i, j , but thatv∗ = (1/3,1/3,1/3) is the internal ESS
for each step, and so globally stable under the re
cator dynamic[8] so that the time average ofv andv
itself both converge tov∗ (this is clearly still true if we
add any element ofΛ or multiply by any functiong(t)

as defined in the proposition). Note that rounding
step function makes no difference to the converge
of TA(v). �
Proof of Theorem 4. There are two cases to consid
if i = j and if i �= j .

(a) i �= j . The only possible solution here is a pu
pair, k1, k2 say. Supposing that the payoff matrices
the two players areB andC, respectively, then for thi
pair to be an ESS we require

bk1k2 > bik2, i �= k1, ck2k1 > cik1, i �= k2

Let b = bk1k2 − maxi �=k1(bik2), c = ck2k1 −
maxi �=k2(cik1). Without loss of generality we can a
sume thatbij > 0, cij > 0 for all i, j . We shall de-
note the mean population strategiespij ,pji by pT

ij =
(x1, . . . , xn), pT

ji = (y1, . . . , ym).
Now suppose thatxk1 > 1− ε1 andyk2 > 1− ε2 at

time T1 (this must be true for someT1 since conver-
gence occurs).

dxk1

dt
= xk1

(
(By)k1 − xTBy

)
= xk1

(∑
bk1j yj −

∑
xiyj bij

)

= xk1

(
bk1k2yk2 +

∑
j �=k2

bk1j yj − xk1yk2bk1k2

− xk1

∑
yjbk1j
j �=k2
−
∑
i �=k1

xiyk2bik2 −
∑

i �=k1, j �=k2

xiyj bij

)

= xk1(1− xk1)

[
yk2bk1k2 +

∑
j �=k2

bk1j yj

]

− xk1yk2

∑
i �=k1

xibik2 − xk1

∑
i �=k1, j �=k2

xiyj bij

� xk1(1− xk1)yk2b − xk1M(1− xk1)(1− yk2)

= xk1(1− xk1)
[
yk2b − M(1− yk2)

]
> (1− xk1)b/2

whereM = maxi,j bij .
If v = 1− xk1 then

dv

dt
< −b

2
v ⇒ logv(t) − log

(
v(T1)

)
< −b

2
(t − T1)

⇒ v(t) < Be−bt/2

Similarly settingw = 1− yk2 we can show that

w(t) < Ce−ct/2

Thus(
(1− Be−bt/2)(1− Ce−ct/2)bk1k2

)
< xTBy

< (1− Be−bt/2)(1− Ce−ct/2)bk1k2

+ {
1− (1− Be−bt/2)(1− Ce−ct/2)

}
M

⇒(
(1− Be−bt/2)(1− Ce−ct/2) − 1

)
bk1k2 < fij (t)

= xTBy − bk1k2

<
{
1− (1− Be−bt/2)(1− Ce−ct/2)

}
M

⇒
1

T

T∫
0

∣∣fij (t)
∣∣dt <

1

T

T∫
0

M|Be−bt/2 + Ce−ct/2

− BCe−(b+c)t/2|dt → 0

asT → ∞, i.e., all off-diagonal elements satisfyThe-
orem 3.

(b) i = j . Suppose thatp converges top∗ on the
matrix game defined by the payoff matrixB. Suppose
further, without loss of generality, thatp∗ is an internal
ESS. DefineP by

P =
∏

p
p∗

i

i

(
P ∗ =

∏
p

∗p∗
i

i

)

i i
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Thus
1

P

dP

dt
= d

dt
log(P ) = d

dt

(∑
p∗

i logpi

)

=
∑ p∗

i

pi

dpi

dt
=

∑
p∗

i

(
(Bp)i − pTBp

)
Let pi = p∗

i + εi , so for sufficiently larget , εi will be
as small as we like for alli. Thus

P =
∏

p
∗p∗

i

i

∏(
1+ εi

p∗
i

)p∗
i

⇒ logP = log(P ∗) +
∑

p∗
i log(1+ εi/p

∗
i )

= logP ∗ +
∑

p∗
i

(
εi

p∗
i

− ε2
i

2p∗
i

+ · · ·
)

⇒ logP − logP ∗ ≈ −
∑ ε2

i

2p∗
i

(∑
εi = 0

)

settingεT = (ε1, . . . , εn),

d

dt
logP =

∑
p∗

i

(
B(p∗ + ε)i − (p∗ + ε)TB(p∗ + ε)

)
= p∗TBp∗ + p∗TBε − p∗TBp∗

− p∗TBε − εTBp∗ − εTBε

= −εTBε =
∑

bij εiεj

(since(Bp∗)i is constant and
∑

εi = 0).
p∗ is an internal ESS ofB implies that it satis-

fies the negative definiteness condition of[15] so that
−εTBε � λ

∑
ε2
i for some positiveλ for any suchεis.

Thus we have

log(P ∗) − log(P )

d
dt

log(P )
≈

∑
(ε2

i /2p∗
i )

−εT Bε

<

∑
(ε2

i )/2 mini (p
∗
i )

λ
∑

ε2
i

= 1

2λminp∗
i

= g

Thus

log(P ∗) − log(P ) < g

(
d

dt
log(P )

)

⇒ d

dt

(
log(P )et/g

)
> et/g log(P ∗)

g

⇒ log(P ) � log(P ∗) − ke−t/g

for some positive constantk. Thus

−
∑(

ε2
i /2p∗

i

)
� −ke−t/g ⇒

∑
ε2
i � 2ke−t/g

aij (t) = pTBp = p∗TBp∗ +
∑

εibijpj +
∑

pibij εj
so that

fij (t) =
∑

εibijpj +
∑

pibij εj

⇒ ∣∣fij (t)
∣∣ � 2M

∑
|εi | � nM

√
8ke−t/2g

wheren is the larger dimension ofB. Thus

∞∫
T1

∣∣fij (t)
∣∣dt

is finite and so

1

T

T∫
0

∣∣fij (t)
∣∣dt → 0

thus satisfying the conditions ofTheorem 3. �
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