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Abstract

In this paper, a new algorithm is presented, which makes possible multilevel comparison of BLOSUM protein substitution
matrices based on data from different groups of organisms. As an example, a comparison between substitution matrices basec
on data from two groups of bacterial genomes with different GC content is presented. Our approach includes evaluating the
number of amino acid pairs in BLOCKS databases created separately for the two groups of bacteria using protein sequences
deposited in the COG database. Differences of distributions of amino acid pair counts are tested using the chi-squared basec
G-test. Different analysis levels make it possible to distinguish different patterns of amino acid substitution. Application of the
algorithm reveals statistically significant differences in amino acid substitution patterns between AT-rich and GC-rich groups of
bacterial organisms. The differences are particularly visible in the overall substitution pattern, amino acid conservation pattern
and in comparison of substitution patterns for single amino acids. The algorithm presented in this paper can be considered a
novel method for multi-level comparison of amino acid substitution patterns. The presented approach is not limited to bacterial
organisms and BLOSUM substitution matrices. Statistically significant differences between substitution patterns in the two
groups of bacterial organisms with respect to amino acid conservation pattern can be the evidence of different rate of evolution-
ary change between AT-rich and GC-rich bacterial organidimsite thisarticle: M. Pacholczyk, M. Kimmel, C. R. Biologies
328 (2005).
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1. Introduction

— . Protein alignment is the basic step in the analysis of
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(M. Pacholczyk)kimmel@rice.edyM. Kimmel). Protein similarities may reveal degree of functional
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similarity and evolutionary relatedness among differ-
ent organisms.
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cepted that environmental conditions affect genome
composition and thereby amino acid content in pro-

By comparing differences between sequences of tein sequences. For extensive study of this mechanism,

amino acids, one can infer the properties of the sub-

stitution process, which is an element of molecular
evolution. This substitution process is mathematically
formulated as a continuous-time Markov chain with
states corresponding to different amino acjds?].
The Markov chain is defined by specifying its tran-
sition probability matrix. Entries of the amino acid
substitution matrix are derived from transition proba-
bilities. Substitution matrices are usually used in the
form of log-odds ratios, which provide score terms
in protein alignment algorithms. The process of esti-
mating a substitution matrix mostly consists of count-
ing amino acid substitutions in confirmed multiple se-
quence alignmentfl,2]. The oldest method for es-
timating substitution matrices (Dayhoff's PANS])

uses maximum parsimony trees of amino acid se-

we refer to[9]. As a consequence, there exists a need
for substitution matrices suited for a particular compo-
sitional context. Yu et al[10] provide a rationale for
modifying standard substitution matrices like PAM or
BLOSUM to be used with proteins encoded by AT-
rich and GC-rich genomes. In this paper, we consider
construction of substitution matrices appropriate for
subgroups of organisms and then comparison of sub-
stitution patterns characteristic of these groups. As a
source of protein sequence data, the COG (Clusters of
Orthologous Groups) databadd ,12]was used.

The problem of the comparison between differ-
ent substitution matrices was considered in the liter-
ature and was approached using correlation, Jensen—
Shannon divergendé3], relative entropy comparison
and principal component analygis4]. Here we pro-

quences to estimate times and structure of substitu- pose a method of comparison based on testing consis-
tion events. This approach works properly for closely- tency of distributions of amino acid pair counts, using
related proteins only. Later improvements, i.e., JTT theG-statistic[15]. Whereas other methods are suited
[4], based on much larger database or VT matrices to compare matrices in general, our approach tackles
[5,6] based on reworked theoretical model, allow us- the problem of comparison in a more detailed way.
ing data involving proteins separated by a wider range Complexity of the comparison task requires hierarchi-
of evolutionary distances. The drawback of these ap- cal manner of analysis. Different levels of hierarchy
proaches is their computational load. are focused on different aspects of amino acid sub-
In this paper, the analysis is based on the BLO- stitution. We propose five levels (steps) of compari-
SUM family of matriceq7] derived from amino acid  son of substitution patterns, including: overall substi-
substitution rates observed in highly-conserved pro- tution pattern, amino acid conservation pattern, sub-
tein regions, called blocks. The BLOSUM approach is stitution patterns for single amino acids, intensity of
simpler than methods if8—6] and ignores some evo-  substitution, and comparison of single substitutions.
lutionary information. However, it has important ad- Multilevel analysis allows answering more directly the
vantages. Widely-used BLOSUM matrices are known question, which aspect of amino acid substitution dis-
for their excellent performance and are easier to com- tinguishes the considered groups of organisms. This is
pute than matrices derived according to the Dayhoff not feasible using other methods.
approach. Therefore, they allow incorporating more
sequence data as a prior for estimation of substitution
rates, compared to PAM and its later improvements.
In the present analysis, BLOCKS datab48F of
highly-conserved protein regions was first created and  As explained in the ‘Introduction’ section, we
then counts of amino acid pairs were calculated. analyse counts of amino acid pairs evaluated using
The main goal of the current work is to develop a two BLOCKS databases corresponding to AT-rich and
tool for comparing substitution matrices created for GC-rich bacterial genomes. Data was organized into
data taken from different groups of organisms, and multiple contingency tables with different categories,
thus to compare substitution patterns characteristic of depending on the particular step of the analysis. In
these groups. As an example, we consider bacteriaeach step, th&-tests were carried out under differ-
with AT-rich and GC-rich genomes. It is widely ac- ent null hypotheses, assuming identity of distributions

2. Resultsand discussion
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ot G-statistic value

of respective features in both groups of bacteria under rar!
consideration. Details of the procedure are explained
in the ‘Methods’ section, at the end of the paper. top

Results of all tests are presented as series of graphs |
(exact numerical results available upon request) show- [
ing the value ofG-statistic versus clustering percent-
agel[7,8] ranging from 30% to 100%, and for the case
when no clustering is applied (none). Clustering per-
centage level.% means that sequences in BLOCKS
database are clustered together if their similarity is
equal to or exceed4.%. Clustered sequences con-
tribute to a substitution matrix with weight depending
on the size of the cluster. Lower clustering percent-
age levels correspond to longer evolutionary distances, . . ;| | . | | . | | . | | |
higher to shorter. The clustering percentage levelisthe * % 4 4 50 5 60 6 7 g = 2 % 100 e
parameter of the BLOSUM family of matrices, i.e., in
the BLOSUMG62 matrix, the 62% clustering percent- Fig. 1.G-statisticsva|u§foroveraII substitution pattern compar?son.
age level was applied. When no clustering is applied Cat.egory.é’f the I\‘jlaFa o ””deft"oq asa part'clu'ar dS“bS““‘t'c}” or
(BLOSUMn), every amino acid pair contributes to a amino acid pair. Main diagonal entries were analysed separately.
substitution matrix. R0 G-statisti value

Graphs are depicted in the same order as descrip- P P
tions of respective tests in the ‘Methods’ section. In  °["
cases for whictp-value< 10>, only the G-statistic af-
value was given. Clustering of protein blocks within .
BLOCKS database (clustering percentage) can be con-
sidered a measure of resolution of the data used to ©
derive a substitution matrix. Smaller clustering per-
centage means lower resolution. In case of no clus-
tering at all, every sequence from BLOCKS database
contributes to a substitution matrix. Such situation cor- s}
responds to a maximum resolution of the source data.

8-t

2.1. Stepl. Comparison of the overall substitution
pattern 0

1 1 1 1 1 1 I I I I 1 1 I 1 1
3 35 40 45 50 55 60 65 70 75 80 8 90 95 100 none
Clustering percentage

Fig. 1 shows the plot of thEG_'Sta.‘t'St'C used for Fig. 2. G-statistics value for conservation pattern comparison. In
comparison of the overall substitution patterns. The this comparison, only main diagonal entries, responsible for conser-
category of data is, in this case, a particular substitu- vation of amino acids, were taken into consideration (excluded from
tion or amino acid pair. The results of the test allow Previous comparison).
rejecting the null hypothesis of identity of substitution
patterns in the two groups of bacteria under consid- 2.2. Step 2. Comparison of amino acid conservation
eration. The value of th&-statistic is much higher  pattern
than the critical value (237.14), corresponding to the
0.01 significance level. Additionally, th&-statistic Similarly to the comparison of overall substitu-
value increases with increasing clustering percentage,tion pattern, results for comparison of conservation of
which means that differences between bacterial groupsamino acids (the category of data is now identity (di-
increase when the resolution of input data used to cal- agonal) amino acid pair) at their respective positions
culate a substitution matrix increases. in proteins Fig. 2) have shown significant differences
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Fig. 3. G-statistics value for comparison of substitution patterns for
single amino acids. Comparison of single rows allows us to analyse
differences in substitution patterns of a given amino acid between
the AT-rich and the GC-rich groups of bacterial genomes. More de-
tails are given in the text.

between the AT-rich and the GC-rich groups. Also in
this test, theG -statistic value increases with the higher
clustering percentage.

2.3. Step 3. Comparison of substitution patterns for
single amino acids

Fig. 3 shows the results of comparison of substi-
tution patterns for single amino acids (a category of
data are now counts of pairs related to substitution of
particular amino acid by one of the possible 19 amino
acids). The results also have shown significant differ-
ences between the AT-rich and the GC-rich groups
at the level of substitution patterns for single amino
acids. TheG-statistic shows the previously observed
trend, an increase with the higher clustering percent-

age. The smallest difference is observed in substitution

patterns of C (cysteine) and W (tryptophan) and the
greatest difference in amino acids E (glutamic acid)
and L (leucine).

2.4. Step 4. Comparison of the intensity of
substitution for single amino acids

The results of the comparison of intensity of substi-
tutions (identity pairs versus sum of pairs of different
amino acids) are shown Fig. 4. This analysis reveals
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a different pattern of significant differences in amino
acid substitution patterns between the two groups of
bacteria. The absence of significant differences, as one
could expect, is observed at lower clustering percent-
ages. However, the increasing trend of thestatistic
observed before, is not present for all the amino acids
(Fig. 4C and D). Initially, the G-statistic value in-
creases with clustering percentage, to reach a maxi-
mum at the clustering level depending on the particular
amino acid (e.g., for cysteine (C) at the clustering level
of 55%) and then decreases to the initial level. Conse-
quently, significant differences in substitution patterns
analysed are observed at low and medium clustering
percentages and are absent at higher clustering per-
centages.

2.5. Step 5. Comparison of single substitutions

Fig. 5 shows results of the comparison of single
substitutions (particular kind of amino acid pair ver-
sus sum of all the remaining kinds of pairs). Again,
we observe a non-monotonous pattern of statistically
significant differences between two groups of bac-
teria. The differences gradually increase with higher
clustering percentages, and therefore with higher res-
olution of the data used to create substitution ma-
trix. The results of this comparison parallel the re-
sults of the comparison of substitution patterns for
single amino acids. The smallest difference is ob-
served for substitution patterns of C (cysteine) and
W (tryptophan) and the greatest difference for amino
acids E (glutamic acid) and L (leucine). Addition-
ally, a large difference in substitution patterns for
single amino acids is observed for K (lysine) amino
acid.

3. Conclusions

The algorithm presented in this paper can be con-
sidered a novel method for multi-level comparison of
amino acid substitution patterns (using nonparamet-
ric statistical tests) among different organisms. The
method was tested and proved its usefulness for analy-
sis of differences in substitution patterns between two
groups of bacteria. The basis for statistical analysis
were counts of amino acid pairs calculated using a
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Fig. 4.G-statistics value, and the-value forG-test for the comparison of intensity of substitution),((C), (D) G-statistics value &) p-value
for the G-test. In this test, two types of events were taken into consideration, the fact that a particular amino acid undergoing substitution versus
this amino acid remaining unchanged. More details are given in the text.

slightly modified BLOSUM algorithm. Presented ap- different rate of evolutionary changes among bacteria
proach to comparison is not limited to bacterial organ- with AT-rich and GC-rich genomes.

isms and BLOSUM substitution matrices. The analy- The absence of significant differences between the
sis should be regarded as a test and a demonstratiortwo groups obtained from intensity of substitution and
of features of the algorithm. However, some interest- single substitutions analysis suggests that substitution
ing conclusions on evolutionary differences between patterns of some of the amino acids are similar in these
the two groups of bacteria can be made. two groups of organisms.

The analysis has shown statistically significant dif- Additionally, we found by observation that pro-
ferences in overall substitution patterns as well as in tein sequences encoded by AT-rich genomes differ in
single amino acid substitution patterns between the amino acid composition between those encoded by
two groups of bacteria. Main diagonal entries of the GC-rich genomes. According to Yu et 4lL0], AT-
substitution matrix measure the absence of changerich organisms tend to have higher contents of pheny-
(conservation) of amino acids. Significant differences lalanine, leucine, isoleucine, aspargine, lysine, tyro-
between the two groups of bacteria with respect to sine, and methionine (FLINKYM) encoded by AU-
amino acid conservation pattern provides evidence for rich codons, and lower contents of proline, arginine,
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Fig. 5. Thep-value forG-test for the comparison of single substitution) ¢lustering 30%,B) clustering 50%, ) clustering 70%, D) Clus-
tering 100%.

alanine, tryptophan, and glicine (PRAWG), encoded 3.1. Multiple testing
by GC-rich codon sets.

In our case, for protein sequences encoded by AT-  Multiple testing might have an impact on results
rich genomes, we observed excesses of: phenylala-Particularly in Steps 4 and 5, where Bonferroni cor-
nine (0.8%), isoleucine (3.2%), aspargine (1.8%), ly- rgctions[lS] markedly Iimit the number of significant
sine (3.4%), thyrosine (0.7%), methionine (0.1%), ser- differences. However,. since the analysis has an ex-
ine (1%) and glutamic acid (0.7%) (FINKYMSE) and pIoratory charagter, this will not affect the conclusions,
shortages of: proline (1,1%), arginine (2.1%), alanine exceptin a straightforward way.

(3.2%), tryptophan (0.5%), glicine (1.8%), histidine

(0.3%), valine (1.5%), aspartic acid (0.2%), cysteine
(0.1%), leucine (0.5%) (PRAWGHVDCL) and equal

(to these encoded by GC-rich genomes) contentof glu- 4 1. Preparation of the input data

tamine (Q).

The results of our observation are convergent, ex-  The source of protein sequences data was the COG
cept for leucine (L), a greater (0.5%) content of which (Clusters of Orthologous Groups) database. The COG
we found in protein sequences encoded by GC-rich database contains clustered protein sequences crucial
genomes. to the most important functions of bacterial life. Data

4. Methods
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Table 1

Bacterial genomes used to create BLOSUM matrices with GC content percentage
AT-rich GC% GC-rich GC%
Ureaplasma urealyticum 25.50 Escherichia colK12 50.79
Buchnera spAPS 26.31 Neisseria meningitidig2491 51.81
Borrelia burgdorferi 28.59 Xylella fastidiosa 52.67
Rickettsia prowazekii 29.00 Treponema pallidum 52.77
Campylobacter jejuni 30.55 Mycobacterium leprae 57.80
Mycoplasma genitalium  31.69 Mesorhizobium loti 62.75
Lactococcus lactis 35.33 Mycobacterium tuberculosis  65.61
Haemophilus influenzae 38.15 Deinococcus radiodurans 66.02
Streptococcus pyogenes 38.51 Pseudomonas aeruginosa  66.55
Helicobacter pylori 38.87 Caulobacter crescentus 67.21

from the COG database, involving 43 bacterial organ- integer and symmetrized according to the following
isms, were divided into two groups, first of 10 bacte- formula:

ria with AT-rich genomes and second of 10 bacteria cicT

with GC-rich genomes. GC content in genomes was F =

estimated by counting G and C bases in text files con- 2
taining Comp|ete genome sequence recorded for gi\/enWhereC is the matrix with amino acid pair counts as
bacteria. Such files can be found in GenBank resourcesentries andC is the transpose of the matrix.

[16]. Table 1presents the two groups of bacteria with

the corresponding GC contents. 4.2. Statistical analysis
Target protein sequences were extracted from each
cluster, separately for AT-rich and GC-rich groups. Statistical analysis was carried out in the terms of

Clusters in the database containing less than two se-categorical data. By category of data, we understand
guences drawn from selected genomes were omitted.a particular amino acid pair, i.e., AG or AR, and so
Multiple sequences from the same organism were al- forth. The categories include all possible amino acid
lowed. Freely-available BLOSUM program requires substitutions.

specific kind of multiple alignments called blocks; Let us note that, for two matrices, only two items
thus we found original alignments deposited in COG from each category are available. This is caused by the
inappropriate for our purpose. Extracted raw protein process of creation of the substitution matrix, where
sequences were passed to the PROTOMAT packageone sample of amino acid pair counts represents the
[8]. Application of motifj and motomatprograms to ~ whole group of organisms. Due to the complexity of
extracted sequences resulted in 6840 protein blocksthe problem (210 categories including identity pairs
in the AT-rich group and 9948 protein blocks in the AA, RR, etc.) and the different kinds of information
GC-rich group.Motifi and motomatwere run in the about protein substitutions that can be read from a
non-interactive, iterative, mode, with parameters val- matrix, the analysis was divided into several hierar-
ues being defaults determined automatically by the chical steps. Throughout the analysis, the counts of
software. Protein blocks were then concatenated into amino acid pairs were placed in contingency tables,
two BLOCKS databasd8] corresponding to AT-rich  each of which consisted of two rows (AT-rich and GC-
and GC-rich organisms. Slightly modified BLOSUM rich bacterial genomes) and different, for each step of
program was used to calculate raw counts of amino analysis, number of columns, corresponding to partic-
acid pairs within protein blocks in both BLOCKS ular amino acid pairs.

databases for clustering percentage ranging from 30 Taking into consideration the character of the data,
to 100, and without clustering. As a result, a family of the analysis was carried out using non-parametric tests
matrices of amino acid pair counts was obtained. En- of consistency of distribution. Standard test of con-
tries of each count matrix were rounded to the nearest sistency of distributions for contingency data use the
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chi-square oiG-statistic. TheG-statistic is calculated  4.4. Step 2. Comparison of amino acid conservation

using the following expressidd5]: pattern
G= 2(2 fijIn fi; — Zf,-j InZ fij This test was carried out similarly to the previous
i ; ; one, but now only main diagonal entries, excluded
from the previous comparison, were taken into consid-
- Zfij |anij + Z.fij |”Z~fij> eration. As mentioned before, main diagonal entries
j j ij ij are counts of identity pairs. This test detects differ-
wherei is row index, j the column index.;; the ij ences in .mutability of a_mino.acids in the two.gr_oups
cell frequencyG-statistic calculated for a x ¢ table ~ ©f bacteria under consideration. However, this infor-
has an approximate? distribution withd f = (r — 1) - matlon is not .suff|C|ent: except fpr the fact that t'he
(c — 1) degrees of freedom. differences exist, we do not obtain any more detailed

The null hypothesigfo for all the described steps of informa?ion apout_ the Iev<_e| of participation of partic-
analysis assumed consistency of distributions of fea- Ular @amino acids in the differences. An example of a
tures in both populations, which in this particular case €orrésponding contingency table is presentedan
means consistency of substitution patterns betweenPl€ 3
AT-rich and GC-rich groups of bacterial genomes. The i o
significance level for all tests was setdoe= 0.01. 4'.5. Step'3. Comparlson of substitution patterns for

To confirm the results, an additional set of permuta- SiNgleé amino acids
tion tests was carried out. Results obtained using com- ] o )
putationally the intensive Fisher—Freeman—Halton test ~ Off-diagonal entries in particular rows count the
[17] (with Monte Carlo option due to the large size of substitutions of a given amino acid by one of the re-

the dataset), implemented StatXact Ssoftware[18], maining 19 amino acids. Comparison of single rows
are not appreciably different from simpig-test re- allows analysing differences in substitution patterns
sults. of given amino acid between the AT-rich and the GC-

rich groups of bacterial genomes. The test is similar to
4.3. Step 1. Comparison of the overall substitution ~ te test used for analysis of diagonal entries, except,
pattern this step requires a separate test for each row of the
matrix. Examples of corresponding contingency tables

Category of data is understood as a particular sub- &€ Presented ifable 4

stitution or amino acid pair. Assuming symmetry of

the matrices, this makes 190 off-diagonal categories. Table 3

Diagonal entries are equal to the rates of conserva- _Sampl;e contingency table for conservation rate comparison (cluster-
tive changes. Due to relatively large values of these ing 50%)

entries (the case that amino acid remains in the same A—-A R—>R VoV
state is most probable) and their dominance over a row, AT 12774 8141 9804
these values were excluded from this analysis as theyGC 51976 29626 30620
would have major influence on the test results. Diago-

nal entries were analysed separately. An example of atapje 4

contingency table can be foundTable 2 Sample contingency tables for substitution patterns for single amino
acids comparison (clustering 50%)

Table 2 A—=R A—>N A—>V
Sample contingency table for comparison of the overall substitution AT 814 1312 . 2736
pattern (clustering 50%) GC 8707 3361 e 13424

A—->R A—>N V->Y R—> A R— N R—>V
AT 814 1312 ... 836 AT 814 1064 ... 566

GC 8707 3361 .. 2200 GC 8707 2642 . 4104
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4.6. Step 4. Comparison of intensity of substitution
for single amino acids

In this test the data are divided into two categories
defined by types of events, first when an amino acid

M. Pacholczyk, M. Kimmel / C. R. Biologies 328 (2005) 632—641

genomes. The design of a contingency table for this
test is shown irmable 6

4.8. Software

remains unchanged and second that when it undergoes The analysis was carried out using thtatlab 5

an arbitrary substitution.

The idea of this test is to indicate differences
between AT-rich and GC-rich groups of bacterial
genomes with respect to a particular amino acid un-
dergoing or not undergoing substitution. The design
of a contingency table for this test is showriliable 5

4.7. Step 5. Comparison of single substitutions

The next step, after revealing differences in the fact
of undergoing or not undergoing substitution of par-
ticular amino acids, is a more detailed analysis of the
matrix elements. The idea of this test is show in detail
which substitutions (amino acid pairs) cause the differ-
ences between AT-rich and GC-rich group of bacterial

Table 5
Method of building a contingency table for the intensity of substitu-
tion comparison

Change (substitution)
AT;; Zj AT;j — ATy

GCij >.;GCij —GCjj

AT;;, count of identity pairs (diagonal entries) inrowi =1, ...,
20, for an AT-rich group;zj AT;j, sum of off-diagonal entries in
rowi, i=1,..., 20,j=1,..., 20, for an AT-rich group;GCj;,
count of identity pairs (diagonal entries) in rawi =1,..., 20,

No change

system fromMathworks[19]. Matlab scripts used to
calculate test statistics and to visualize results are
available from the first author upon requetable 7
shows summary of all five steps of the analysis.

4.9. Multiple testing

Steps 3, 4 and 5 of our algorithm consistmoE
20, 20, and 210 repeated identical tests, respectively.
Therefore, at a nominal significance levelper test,
under the hypothesis that there is no difference in each
tested comparison (i.eHp holdsn times), there will
be on the averagen falsely significant test outcomes.
This amounts to inflation of the real significance level.
To account for this in our analysis, the Bonferroni cor-
rections[15] may be used, which requires setting the

Table 6
Method of building a contingency table for single substitutions com-
parison

AT;; 2ij ATij — ATjj
GCyj Zij GCij —GCjj
AT;j, ij element of the substitution matrix=1,...,20, j =1,
..., 20 (for an AT-rich group);zij AT;j, sum of all elements of
the substitution matrix=1,...,20,j =1,..., 20 (for an AT-rich
group); GC;;, ij element of the substitution matrix=1, ...,
j=1,...,20 (fora GC-rich group)zij GC;j, sum of all elements

for a GC-rich group;zj GC;j, sum of off-diagonal entries in row of the substitution matrix =1,..., 20,j=1,..., 20 (for a GC-
i,i=1...,20,j=1,...,20, for a GC-rich group. rich group).
Table 7
Summary of the five steps of statistical analysis
Step 1 Step 2 Step 3 Step 4 Step 5
Test range Matrix Main diagonal  Single rows  Main diagonal and Single matrix
(off-diagonal  off-diagonal entries elements
entries) from single rows
Number of categories 190 20 19 2 2
x2 distribution degrees 189 19 18 1 1
of freedom
Critical value for 237.14 36.19 34.80 6.63 6.63
significance level 0.01
Table dimensions 2x190 2x 20 2x 19 2x 2 2x2
Tables per matrix 1 1 20 20 210
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nominal significance level at/n (see ‘Results’ and [6] T. Mueller, R. Spang, M. Vingron, Estimating amino acid sub-

‘Discussion’ sections). stitution models: a comparison of Dayhoff’s estimator, the
resolvent approach and a maximum likelihood method, Mol.
Biol. Evol. 19 (1) (2002) 8-13.

[7] S. Henikoff, J.G. Henikoff, Amino acids substitution matri-
ces from protein blocks, Proc. Natl Acad. Sci. USA 89 (1992)
10915-10919.

M.P. prepared the data used, carried out the statisti- [8] S. Henikoff, J.G. Henikoff, Automated assembly of protein
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