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Abstract

Some principles for a current methodology for biological systems’ modelling are presented. It seems possible to promote a
model-centred approach of these complex systems. Among present questions, the role of mechanisms producing random or qua:
random issues is underlined, because they are implied in biological diversification and in resulting complexity of living systems.
Now, biodiversity is one of our societies’ and scientific research’s main concerns. Basically, it can be interpreted as a manner, for
Life, to resist environmental hazards. Thus, one may assume that biodiversity producing mechanisms could be selected durin
evolution to face to corresponding risks of disappearance: necessity of chance? Therefore, analysing and modelling these ‘biolog
ical and ecological roulettes’ would be important, and not only their outputs like nowadays by using the theory of probabilities. It
is then suggested that chaotic behaviours generated by deterministic dynamical systems could mimic random processes, and th
‘biological and ecological roulettes’ would be represented by such models. Practical consequences can be envisaged in terms ¢
biodiversity management, and more generally in terms of these ‘roulettes’ control to generate selected biological and ecological
events’ distributionTo cite thisarticle: A. Pavé, C. R. Biologies 329 (2006).
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Résumé

En guised’introduction : Modéliser les systémesvivants, leur diversitéet leur complexité: quelques problémes méthodo-
logiques et théoriques. Quelques principes d’'une méthodologie actuelle de modélisation des systémes biologiques sont présentés
Il semble maintenant possible de promouvoir une approche centrée modéle de ces systemes complexes. Parmi les questions
tuelles, le réle des mécanismes produisant des événements aléatoires ou quasi-aléatoires est souligné, parce qu'ils sont impligt
dans la diversification des systémes vivants et dans la complexité résultante de ces systemes. Or, la biodiversité est une préocc
pation majeure de nos sociétés et de la recherche scientifique. Fondamentalement, elle peut étre interprétée comme une fagon
résister aux aléas environnementaux, si bien que les mécanismes impliqués dans cette diversification auraient pu étre sélectionr
au cours de I'évolution pour faire face aux risques de disparition : nécessité du hasard ? Il serait donc intéressant d’analyser et d
modeéliser ces «roulettes biologiques et écologiques » et pas seulement leurs « sorties », comme aujourd’hui, en utilisant la théori
des probabilités. Aussi est-il suggéré que les comportements chaotiques, engendrés par des systémes dynamiques déterminis
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pourraient singer des processus stochastiques, et que les «roulettes biologiques et écologiques » pourraient étre représentée:
des modeles de ces systemes. Des conséquences pratiques peuvent étre envisagées en terme de gestion de la biodiversité, €
généralement pour le contrdle de telles roulettes, afin d’engendrer des distributions choisies a I'avance d’événements biologiqu
et écologiquesPour citer cet article: A. Pavé, C. R. Biologies 329 (2006).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction ing’s development, new agronomical techniques lead to
an increasing demand in modelling approaches too.
Modelling in environmental sciences has been dis- 1€ present workshop's aim is to keep track of these
cussed during meetings organized by interdisciplinary different scientific streams by proposing specific exam-
research programs on environment and supported byP!€S; from gene level to agro and_techno_ecosys%er_ns
the CNRS[L,2]. It has also been the case during the ©N€S: | am therefore grateful to this meeting’s partic-
‘Modelling and numerical simulatior3] program and ~ 1Pants and speakers, as well as to the authors of the
workshop recently supported by the French Academy of articles of this thematic issue. .
Agriculture[4]. Actually, among the contributors, many In this introduction, | would like to specifically evoke

were mainly interested by living systems’ modelling. In some problems. The main, _theoretlcal,’ has however
addition, at least half of a more recent paper has also practical consequences on living systems’ management.
been de,voted to these topics’ discusgBh It concerns the importance of inner random processes

Living systems are complex, in the primary sense working into these systems and the need of modelling

of the word: they are constituted of interrelated sub- approaches taking these processes into account. There-

. o fore, this introduction is not a presentation of author
entities at all levels of organization (structural complex- oo o oo
) o . . ._contributions, but inspired by these contributions; it is
ity) and can exhibit amazing behaviours, such as chaotic ~__. .
. . : mainly an opening to future developments.
or stochastic ones (behavioural or dynamical complex-
ity) [6].> They are therefore well adapted to study the

2. Thei ing diversity of modelling tool
relevance of these concepts, which have a wider field of eincressing diversity of modeting tools

interest. _ _ Today, if mathematical modelling still represents the
All these initiatives proceed on an international ef- . part of formal approaches, computer-based mod-
fort illustrated by specialized journals’ success and by els, such as cellular automata or multi-agents systems,
the position of international councils, such as the IUBS 4,6 more and more used. They generally enable a bet-
(e.g..[7]). o , ) ter representation of dynamical process generated struc-
~ Anyway, living systems’ modelling, now well recog-  tyra| complexity of living systems than mathematical
nized, leads to multiplication and diversification of ini-  5nes put conversely do generate weaker theoretical re-
tiatives. It is not a surprise then to notice the important gjts.
number of papers published in a lot of journals on these  However, modelling success is strongly dependent
topics and by the diversity of modelling objectives. on computer-tool developments. Clearly, simulation
From a mathematical point of view, biology is a frame-  concerns computer-based models as well as mathemat-
work justifying mathematical developments; but from a jcal ones (e.g., numerical solutions of ODE or PDE).
biological one, the central question comes from biology, High-Performance Computing (HPC) is not still crucial
and the model is a tool that enables to answer this ques-
tion. Furthermore, we know that modelling is a good 2 For that matt derline th ¢ of
’ H H H s or that matter, one can underline € concept o agroecosys-
way to analyse systems compIeX|ty, in parthUIar ||V|ng tem comes from the introduction of ecological approaches in agron-

ones. In addition, blOlOglcal and ecologlcal engineer- omy. We also propose to speak of technoecosystems for biotechnical
processes, when ecological concepts and models are used in analysis,
- design and control of these processes. It is significant to note artificial
1 One may note that living systems’ structures also are the conse- ecosystems now concern ecology, devoted for a long time to natural
quence of processes governing their dynamics, particularly their de- spontaneous ones. It illustrates the efficiency of these concepts and
velopments for organisms or their spatial arrangement for ecosystems. models. That is one of the reasons why the idea of “ecological sys-
Therefore, structural complexity is linked to dynamical complexity. tems engineering[8] was recently introduced.
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in biological sciences, but recent works show it will be
more and more used in a nearest fufi$je in computa-
tional biology[10], for example.

The under-equipment in France, even in Europe, in
comparison to the situation in the USA and Japan, be-
coming a problenfl1], we must plan for equipment.

Another important point is to have easy-to-use soft-
ware adapted to specific applications. If general ones
such as Mathematica or Mapple are very powerful tools,
they conversely often require effort and particular skills
difficult to support or gain for a non-specialist.

We can be nostalgic of tools such as Dynamac, de-
veloped during the 1980s in the Edora Club framework
supported by INRIA but no further developed nor
adapted.

Real or formal

problem

Mathematical models
(e.g. ODE or PDE)

Computer based models
(e.g. multiagent systems)

Analytical study and
numerical simulation

3. Modelsin biological sciencesversus modelsin Fig. 1. Sometimes it would be convenient to compare the two ap-
physi cal sciences proaches’ results, mathematical and computer-based ones: on the one

hand to test the reliability of simulators designed for computer based
models, on the other hand to propose a mathematical model of a
In fact, living sciences’ models’ status and efficiency possible global behaviour of the reality represented in details by a
are quite different from those of models in physical sci- computer-based model.
ences. The principal difference comes from theoretical
bases, more substantial and formalized in Physics thanhuman population. The emergence concerns also new
in Biology. In the latter case, one speaks more of mod- properties, unknown at lower organization levels. A way
els’ class than of specific theory-derived models. There to analyse these emergences is to build detailed mod-
are exceptions though: for example, a great part of ge- els describing these populations at the individual level
netics and population dynamics is well formalized and and study the convergence conditions leading to global
the neutral theory of evolution’ success mainly comes logistic behaviour. More generally, simultaneous ma-
from its mathematical developmens3]. nipulation of mathematical models and of computer-
Another important difference is related to the nature based ones may be a good solution to study emer-
of objects and phenomena. Biological ones are more gence of global properties, but also, conversely, to test
variable and difficult to measure than physical ones. the reliability of a simulator. For example, in popu-
It leads to methodological problems. In some cases, lation dynamics, there are a lot of models where im-
random processes appear to be inherent to biologicalplicit hypothesis on relationships between individuals
systems. As mentioned above, biological systems alsocan be explicitly represented (e.g., Logistic’s, predator-
are complex, constituted of numerous interacting en- prey’s, competition’s, etc. models). Then if the simu-
tities, hierarchically organized, changing over time. In lator works properly we must find a dynamic closed
addition living processes are generally nonlinear and to that foreseen by the mathematical modeig( 1.
do sometimes produce complex dynamics, chaotic or Finally, a methodological scheme associating these ap-
stochastic ones (op. cif6]). Simple models can how- proaches can be drawn, both being obviously related to
ever represent global dynamics, resulting from a large reality.
set of elementary units that may be individually com- Models of environmental systems associate sub-
plex. It is a kind of ‘emergence of global properties’. models of biological and physicochemical components
For example, the well-known logistic law gives good of these systems. Furthermore, human actions have
descriptions of population dynamics, where interaction sometimes to be included. Even when restricted to bio-

between individuals may be as complex as they are in physical models, it appears, for example, in aquatic
systems, that the efficiency and reliability of biologi-

e a— cal components’ sub-models are weaker than models of
3 B. Rousseau developed this software during his tH&gis It was

hysicochemical ong44,15
devoted to an easy study of ODE (Ordinary Differential Equations) P )\/Nh'l t E[ foh 1 ical del ft
and recurrent equations. The graphic interface was particularly so- e parameters of physical models are ofien mea-

phisticated and well adapted to user with basic knowledge about these SUrable, in most cases, parameters of biological ones are
kinds of mathematical objects. not and have to be estimated from experimental data.
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Fig. 2. The model-centred methodology (adapted from Schmidt-Lainé and Pavé, {))clt.is important to identify and if possible to follow
principal steps. In this scheme, the previous figure can be in the background of the boxes ‘formal model(s)’ and ‘simulators’. It is particularly
important to clearly distinguish between model construction and simulation step. Bad results can be the consequence either of a bad model ol
bad simulator. Moreover, one of the main interests of the scientific research is to provide generic results, and to think in a general framework. S
it is necessary to include this kind of approach in a general theoretical background. Even within a practical context, the best guarantee to obta
good results is to back up on strong theoretical basis and methodology. This scheme also concerns modelling approaches in many other science
technology fields.

Although, optimization procedures exist, parameters’ becoming an unavoidable tool and modelling an es-
values are often empirically determined. As for valida- sential methodology entering in a scientific approach,
tion, itis rarely a central preoccupation of many authors. strongly connected to experiments and observations.
The problems of coupling different models also deal However, in order to be efficient, it has to follow some
with scales’ and concerned system’s precise definition’s rules, as described iRig. 2 This is what we might
compatibility [16]. For instance, limits of a system de- call a model-centred approach. It proceeds from clas-
signed from physicochemical components may be dif- sical hypothetico-deductive method, where the model
ferent from bio-ecological ones (a watershed is a ‘nat- becomes the central tool. It can be elaborated very early
ural’ domain for hydrological problem, but a forest, as  from initial knowledge, data and hypothesis, and may
ecological system, may belong to more than one water- change over time to fit well with additional informa-

shed). tion. This method is efficient both in problem-oriented
or object-oriented approaches.
4. Model-centred approach However modelling is obviously not the unique ap-

proach, at least because it is not always possible to draw
Progressively in life sciences, from an additional and up an efficient model, or may not be necesséiy. 2
ornamental object, a way to conclude a scientific pa- gives a general (and ideal) diagram of this approach. If
per (it was frequently the case before the 1970s) or itis not specific to life sciences; however these sciences
an alibi for mathematical development, the model is have significantly contributed to elaborate it.
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5. Theprocesses generating quasi-random events In fact, it is possible to identify ‘biological roulettes’
in living systems fundamental role or at least their results, from genome to ecosystem
level. For instance, at the genome level, if sponta-

In recent paper and bodk7,18] the role of chance ~ N€OUS punctual mutations may be attributed to exter-
in living entities, from gene to ecosystem, has been Nal events (e.g., radiations, chemical mutagens), con-
analysed: we proposed inner processes generating Spcm\_/ersely genome structure’s modifications by insertion,

taneously appeared random events have been selecteHEIGtion or transfer of DNA pieces are consequences of
during evolution. The interpretation is simple: inner biochemical mechanisms. At the organism level,

one can retain the continuous synthesis of possible an-
tibody proteins from a limited number of genes, but
with particular transcription rules from DNA to mRNA,

ronmental hazards. In the diversity of organisms that look like a combinatory process. Infectious agent’s
there are chances to have ones well-adapted to’astructure being a priori unpredictable, the solution is
particular environment and to changes of this en- to produce a great diversity of such proteins synthe-
vironment, even drastic ones. Life’s history shows sized by some kind of random process. At the organ-

L - . ism level once more, for sexed organisms, there are a
such catastrophic situations and biodiversity explo-
. . . ] lot of gene transfers between chromosomes, such as
sions following the disastef49,20]

. . ... .. crossing-over, during the meiotic phase producing ga-
— necessity of chance? These systems’ diversification, 9 9 ic p P 99
L o . ) metes. These make the genetic structure of produced
as well as biodiversity’s maintenance are mainly

th f rand duced bygametes different from that of the ‘original’ organism.
the consequence of random processes p‘)rc_> uce At the population level then, partner’s choice for sex-
inner mechanisms, that can be called ‘biological

. o ual reproduction is casual, at least for one part. It is
roulettes’, and work at all organlzaupn levels, from still another diversity source for the offspring. Finally,
gene to ecosystem. examples are given be'OV_V? at ecosystem level, natural systems are generally di-

— like Monte Carlo methods a}nd 'genet|c algorithms versified and organisms quasi randomly distributed in
developed by computer scientists to solve com-

X ; Lo the ecosystem’s geographic space (e.g., trees in inter-
plex problems, in particular optimization ones, we tropical forests)
can assume that stochastic processes have appeared | ihe negative point of view about chance was to

spontaneously and have been selected over evolu-pg e it would be difficult to explain that, on the one

tion to ‘insure’ ‘life sustainability’ within an un- hang evolution has produced many precise and sophis-
certain and unpredictable environment. MOreover, ticated systems and processes, but has conserved need-
such mechanisms enable to produce organisms welljgss even worst ones on the other one. If chance is to be
adapted to a particular environment. Producing a yseful, even necessary, to produce diversity that ensures
large diversity of organisms, potentially adapted t0 |iying systems sustainability as a whole, it is reason-

a large set of environmental conditions is an ana- aple, as announced above, to assume that mechanisms

logue to find an optimum for a complex and multi- - producing random processes have been selected during
dimensional response function. evolution.

— a high level of biodiversity is the way to ensure
survival of biological systems confronted to envi-

This is a positive point of view about random events, 6. Modelling ‘biological roulettes , from chaosto
while chance is generally considered in a negative way, chance
as an unavoidable constraint disturbing elsewhere de-

terministic processes or experimental measures. For ex-  Anyway, we do observe random events inner pro-

ample, the well-known formula; = f(x;) + ¢; links cesses produced into living systems. We therefore have
the effective measure of a state variapjevith the ex- a good and efficient theory for randomly distributed
pected valuef (x;) calculated for a given valug of an events: the theory of probabilities. However, we have

independent variable, wheree; is an error assumed few theories and models regarding mechanisms and
to be a particular value of a random variable with a processes producing these events from mechanical laws,
null average and a varianee®. Function f is analytic: like the mechanical roulettes of casino, and not for bio-
it is the formal deterministic model of the relationship chemical, biological and ecological processes produc-
betweenx and y. It can be called classical modelling ing stochastic-like events. Now algorithms producing
approach, where chance is viewed as disturbing term re-pseudo-random processes are not explainable in terms
sulting from uncontrolled factors. of biological mechanisms. We also know that chaotic
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which displays the pt of " ity" to processes uniformly distributed on [0,1].

initial conditions (r is the same, but initial
conditions have a very small difference)

Fig. 3. Atfirst blush, the temporal series at the left of schemes (1) and (2) are similar. But in a convenient represgntatiorf.(x, ), they can be
distinguished. (1) corresponds to the discrete time logistic @@t can exhibit a chaotic behaviour. It is the case here. In the planecf1)
values are distributed along a parabola. (2) corresponds to a stochastic uniform prof@4$ simulated by a pseudo-random generator. Values
are uniformly distributed in the plane(, x,,.1). The graph#4) is generated by the formutg = x,, — y,, wherex,, 11 = rx,; (1—xu), Yp+1="ryn

(21— yn), andr = 3.98, with slightly different initial conditionsxg = 0.5000 etyg = 0.5001. The graphh() corresponds t@, =&, — ¥, &, and

Y, are values of stochastic variables uniformly distributed®ri[. At the beginning, the chaotic system is foreseeable (if the valwéknown,

y is also known with a good precision). But the sensitivity to initial condition leads to a divergence between the seriessabdcomes chaotic.
Conversely, there is no interval where stochastic series are cloged (

dynamics can somewhere mimic stochastic processesnamics. This property of sensitivity to initial conditions
and the frontiers between these two classes of processesan be used to produce quasi-independent series with
can be very blurry and porous. It is however reasonable the same value of model parametdfigy( 4).
to assume, at least for one part, such processes result On the other hand, we have compared stochastic
from chaotic dynamicf21]. and chaotic variables’ behaviours to illustrate chaotic
On the one hand, we have drawn the well-known dynamics’ quasi-random behaviours. Therefore, the
graphs ofFig. 3 to illustrate the difference between ‘central-limittheorem’ is a keystone theorem of the the-
chaotic and random behaviours, or more precisely the ory of probabilities and statistics. Very schematically,
results of algorithms simulating these behaviours. Theseit says that a linear combination of stochastic variables
graphs show two different structures of successive val- generally tends toward a Gaussian distribution, indepen-
ues: a simple one, a parabola, for chaotic simulation, dently of each variable’s specific distribution. Can this
and a largely distributed one (uniform distribution), for behaviour also be observed for chaotic variables’ lin-
the random simulation. We also observe a divergence ear combination? We have chosen to study on one side
between two chaotic dynamics obtained from the same the sum of chaotic variables, each one generated by the
discrete time logistic model, from two different initial  well-known discrete time logistic model. On the other
values. This is sensitivity to initial conditions: at the be- side, we will study the sum of stochastic variables, each
ginning dynamics are closed, but divergence rapidly ap- one uniformly distributed on0, 1[. Fig. 5 shows re-
pears, while difference immediately appears and always sults obtained by simulations. Convergence towards a
has the same amplitude for simultaneous stochastic dy-Gaussian distribution, overall for sums of chaotic vari-
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Fig. 4. Comparison between two simultaneous chaotic (at the left) and stochastic (at the right) processes. As previously, the chaotic ong is generate
by the discrete time logistic model & 3.98, xg = 0.2 andyg = 0.1). The stochastic one is generated by the ALEA() function from Excel. Hundred
values have been computed foandy; in both casesy andy are not correlated. The chaotic process exhibits a U distribution, with an accumulation

on the edges, while the random one shows a quasi-uniform distribution, as expected. A simple chaotic process where two variables are generate
simultaneously, but with very different initial conditions, begins to mimic a random behaviour.

ables, as well as its speed was a surprise. Then chaoticoutputs, but also how mechanisms’ modifications can
variables can exhibit properties that simulate those of affect results’ distribution. Model should then be effi-
stochastic ones, even for a strong formal result such ascient to simulate such modifications and their conse-
the central-limit theorem. guences.

We have shown the likeness between simple chaotic  Finally, biological and ecological roulettes generate
processes and stochastic ones, and also between theicomplexity. Usually, logical complexity and stochas-
statistical properties. It is not a formal demonstration, tic complexity are opposef3]. However, algorithms
but it suggests that deterministic and mechanistic mod- generate pseudo-random sequences of numbers, and, at
els and then biological and ecological processes can beleast sometimes, chaotic dynamics look like stochas-
represented by such models, can be precisely ‘biological tic processes and exhibit statistical properties similar to
or ecological roulettes’. The challenge is now to analyse stochastic ones. Is this opposition necessary or useful?
these processes and build their modE€lig (6). Would it be a progress to analyse their likeness, even

Itis quite different from classical approaches. In fact, their relationships? From our practical point of view,
these approaches analyse the output of these ‘biologicalit would be interesting to show some convergences be-
roulettes’, considered as ‘black-boxes’. Then, the theory cause it would be an encouragement to progress in the
of probabilities gives efficient tools for such analyses application ofFig. 6.
and also to build models of the output processes. How-  This last scheme is a proposal for a modelling ap-
ever, if we open the black-boxes, it does not solve the proach of living systems that combines determinis-
problem, no more than for a mechanical roulette. Prac- tic and stochastic aspects. Stochasticity is assumed to
tically, for games of chance, the output can be adjusted come from inner mechanisms generating chaotic re-

empirically, because experience shows that a well-
equilibrated roulette, or die, lead to a quasi-uniform
distribution. In biological or ecological roulettes’ cases,
it can be of some interest to analyse, not only their

sults, which look like random variables. Then the clas-

sical modelling approach that uses stochastic process
models is viewed as a phenomenological one that repre-
sents the output, but does not give a mechanistic repre-
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Fig. 5. Comparison between distributions of linear combinations of chaotic variables and of stochastic variables. Like above, chaotic dynamic
are generated by the formuls; 1 = rx, (1 —x,), with r = 3.98 and different initial conditions that ensure to obtain quasi-independent series

of values although successive ones in a series are self-correlated. The chosen vakgfesponds to a chaotic domain whereovers almost

the interval]0, 1[. Stochastic dynamics are obtained with the generator ALEA, an Bxeeiction, based on an arithmetic congruence method.

The first line shows histograms of the distributions obtained for a single variable (it is asymmetric and has a ‘U’ form for the chaotic variable and
quasi-uniform for the stochastic one). The other histograms have been obtained by weighted summation (to ensure values distributed betweer
and 1) of 2 &), 4 ($4) and 8 &) independent chaotic variable€haos, left column) and stochastic on€#\LEA, right column). For each case,

the Gaussian curve fitted to data is drawn and the basic parameter of the distribution isigitles §verage, and the standard deviation). The
convergence towards a Gaussian distribution was expected in the stochastic case, but not in the chaotic one.

sentation of how these results are obtained. The choiceanisms, as in games, where the importance is to have
of the modelling way depends of objectives. It is not uniform and uncorrelated issues and not to have a pre-
always necessary to detail and to model the inner mech- cise roulette model.
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Fig. 6. Modelling of biological systems by taking into account deterministic and stochastic components. For the latter, it is proposed to complete
the classical probabilistic approach by a mechanistic one representing inner processes generating stochastic-like events. These maalgls are gener
written in terms of Ordinary Differential Equations (ODE), Partial Differential Equations (PDE) or Recurrent Equations (RE). For instance, the
discrete time logistic model used above is an example of a recurrent equation.

7. Conclusion

Modelling approaches are more and more used in
life and environmental sciences. It is therefore impor-
tant to agree on a common methodology. The debate
being open for at least 30 years; we have proposed
here an ideal scheme of a ‘model-centred’ approach,
which is a kind of ‘good-practice’ synthesis. It has also
been proposed to examine more acutely the problem of
mechanisms and models that can exhibit random out-
puts. They indeed have probably been selected during
evolution to produce a large diversity of living systems
that can work and live through a large variety of envi-
ronmental conditions. The fact underlining the impor-
tance of chance in generating biodiversity is obviously
not new. But to assume a selection of mechanisms pro-
ducing chance is not standard. The question of biodi-
versity being important today, it is suggested that par-
ticular efforts should be made in this way. Finally, it
would be ideal to converge towards a genuine theory
of biodiversity, in the same idea defended by Hubbell
[24], but by adopting a wider approach from ‘gene to
ecosystem’ and by integrating all diversification and
maintenance aspects of the resulting biodiversity mech-
anismg18].
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