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Abstract

Some principles for a current methodology for biological systems’ modelling are presented. It seems possible to p
model-centred approach of these complex systems. Among present questions, the role of mechanisms producing rando
random issues is underlined, because they are implied in biological diversification and in resulting complexity of living s
Now, biodiversity is one of our societies’ and scientific research’s main concerns. Basically, it can be interpreted as a ma
Life, to resist environmental hazards. Thus, one may assume that biodiversity producing mechanisms could be selec
evolution to face to corresponding risks of disappearance: necessity of chance? Therefore, analysing and modelling the
ical and ecological roulettes’ would be important, and not only their outputs like nowadays by using the theory of probab
is then suggested that chaotic behaviours generated by deterministic dynamical systems could mimic random processe
‘biological and ecological roulettes’ would be represented by such models. Practical consequences can be envisaged
biodiversity management, and more generally in terms of these ‘roulettes’ control to generate selected biological and e
events’ distribution.To cite this article: A. Pavé, C. R. Biologies 329 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

En guise d’introduction : Modéliser les systèmes vivants, leur diversité et leur complexité : quelques problèmes méthodo-
logiques et théoriques. Quelques principes d’une méthodologie actuelle de modélisation des systèmes biologiques sont p
Il semble maintenant possible de promouvoir une approche centrée modèle de ces systèmes complexes. Parmi les q
tuelles, le rôle des mécanismes produisant des événements aléatoires ou quasi-aléatoires est souligné, parce qu’ils so
dans la diversification des systèmes vivants et dans la complexité résultante de ces systèmes. Or, la biodiversité est un
pation majeure de nos sociétés et de la recherche scientifique. Fondamentalement, elle peut être interprétée comme u
résister aux aléas environnementaux, si bien que les mécanismes impliqués dans cette diversification auraient pu être s
au cours de l’évolution pour faire face aux risques de disparition : nécessité du hasard ? Il serait donc intéressant d’ana
modéliser ces « roulettes biologiques et écologiques » et pas seulement leurs « sorties », comme aujourd’hui, en utilisan
des probabilités. Aussi est-il suggéré que les comportements chaotiques, engendrés par des systèmes dynamiques d
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ésentées par
ersité, et plus
iologiques
pourraient singer des processus stochastiques, et que les « roulettes biologiques et écologiques » pourraient être repr
des modèles de ces systèmes. Des conséquences pratiques peuvent être envisagées en terme de gestion de la biodiv
généralement pour le contrôle de telles roulettes, afin d’engendrer des distributions choisies à l’avance d’événements b
et écologiques.Pour citer cet article : A. Pavé, C. R. Biologies 329 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Modelling in environmental sciences has been
cussed during meetings organized by interdisciplin
research programs on environment and supporte
the CNRS[1,2]. It has also been the case during
‘Modelling and numerical simulation’[3] program and
workshop recently supported by the French Academ
Agriculture[4]. Actually, among the contributors, man
were mainly interested by living systems’ modelling.
addition, at least half of a more recent paper has
been devoted to these topics’ discussion[5].

Living systems are complex, in the primary sen
of the word: they are constituted of interrelated s
entities at all levels of organization (structural compl
ity) and can exhibit amazing behaviours, such as cha
or stochastic ones (behavioural or dynamical comp
ity) [6].1 They are therefore well adapted to study
relevance of these concepts, which have a wider fiel
interest.

All these initiatives proceed on an international
fort illustrated by specialized journals’ success and
the position of international councils, such as the IU
(e.g.,[7]).

Anyway, living systems’ modelling, now well recog
nized, leads to multiplication and diversification of in
tiatives. It is not a surprise then to notice the import
number of papers published in a lot of journals on th
topics and by the diversity of modelling objective
From a mathematical point of view, biology is a fram
work justifying mathematical developments; but from
biological one, the central question comes from biolo
and the model is a tool that enables to answer this q
tion. Furthermore, we know that modelling is a go
way to analyse systems’ complexity, in particular livi
ones. In addition, biological and ecological engine

1 One may note that living systems’ structures also are the co
quence of processes governing their dynamics, particularly thei
velopments for organisms or their spatial arrangement for ecosys
Therefore, structural complexity is linked to dynamical complexity
.

ing’s development, new agronomical techniques lea
an increasing demand in modelling approaches too

The present workshop’s aim is to keep track of th
different scientific streams by proposing specific exa
ples, from gene level to agro and technoecosyste2

ones. I am therefore grateful to this meeting’s par
ipants and speakers, as well as to the authors o
articles of this thematic issue.

In this introduction, I would like to specifically evok
some problems. The main, theoretical, has howe
practical consequences on living systems’ managem
It concerns the importance of inner random proces
working into these systems and the need of model
approaches taking these processes into account. T
fore, this introduction is not a presentation of aut
contributions, but inspired by these contributions; i
mainly an opening to future developments.

2. The increasing diversity of modelling tools

Today, if mathematical modelling still represents
main part of formal approaches, computer-based m
els, such as cellular automata or multi-agents syste
are more and more used. They generally enable a
ter representation of dynamical process generated s
tural complexity of living systems than mathemati
ones but conversely do generate weaker theoretica
sults.

However, modelling success is strongly depend
on computer-tool developments. Clearly, simulat
concerns computer-based models as well as mathe
ical ones (e.g., numerical solutions of ODE or PD
High-Performance Computing (HPC) is not still cruc

2 For that matter, one can underline the concept of agroeco
tem comes from the introduction of ecological approaches in ag
omy. We also propose to speak of technoecosystems for biotech
processes, when ecological concepts and models are used in an
design and control of these processes. It is significant to note arti
ecosystems now concern ecology, devoted for a long time to na
spontaneous ones. It illustrates the efficiency of these concept
models. That is one of the reasons why the idea of “ecological
tems engineering”[8] was recently introduced.
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in biological sciences, but recent works show it will
more and more used in a nearest future[9], in computa-
tional biology[10], for example.

The under-equipment in France, even in Europe
comparison to the situation in the USA and Japan,
coming a problem[11], we must plan for equipment.

Another important point is to have easy-to-use s
ware adapted to specific applications. If general o
such as Mathematica or Mapple are very powerful to
they conversely often require effort and particular sk
difficult to support or gain for a non-specialist.

We can be nostalgic of tools such as Dynamac,
veloped during the 1980s in the Edora Club framew
supported by INRIA,3 but no further developed no
adapted.

3. Models in biological sciences versus models in
physical sciences

In fact, living sciences’ models’ status and efficien
are quite different from those of models in physical s
ences. The principal difference comes from theoret
bases, more substantial and formalized in Physics
in Biology. In the latter case, one speaks more of m
els’ class than of specific theory-derived models. Th
are exceptions though: for example, a great part of
netics and population dynamics is well formalized a
the neutral theory of evolution’ success mainly com
from its mathematical developments[13].

Another important difference is related to the nat
of objects and phenomena. Biological ones are m
variable and difficult to measure than physical on
It leads to methodological problems. In some cas
random processes appear to be inherent to biolog
systems. As mentioned above, biological systems
are complex, constituted of numerous interacting
tities, hierarchically organized, changing over time.
addition living processes are generally nonlinear
do sometimes produce complex dynamics, chaoti
stochastic ones (op. cit.[6]). Simple models can how
ever represent global dynamics, resulting from a la
set of elementary units that may be individually co
plex. It is a kind of ‘emergence of global propertie
For example, the well-known logistic law gives go
descriptions of population dynamics, where interact
between individuals may be as complex as they ar

3 B. Rousseau developed this software during his thesis[12]. It was
devoted to an easy study of ODE (Ordinary Differential Equatio
and recurrent equations. The graphic interface was particularly
phisticated and well adapted to user with basic knowledge about
kinds of mathematical objects.
Fig. 1. Sometimes it would be convenient to compare the two
proaches’ results, mathematical and computer-based ones: on th
hand to test the reliability of simulators designed for computer ba
models, on the other hand to propose a mathematical model
possible global behaviour of the reality represented in details
computer-based model.

human population. The emergence concerns also
properties, unknown at lower organization levels. A w
to analyse these emergences is to build detailed m
els describing these populations at the individual le
and study the convergence conditions leading to glo
logistic behaviour. More generally, simultaneous m
nipulation of mathematical models and of comput
based ones may be a good solution to study em
gence of global properties, but also, conversely, to
the reliability of a simulator. For example, in pop
lation dynamics, there are a lot of models where
plicit hypothesis on relationships between individu
can be explicitly represented (e.g., Logistic’s, preda
prey’s, competition’s, etc. models). Then if the sim
lator works properly we must find a dynamic clos
to that foreseen by the mathematical model (Fig. 1).
Finally, a methodological scheme associating these
proaches can be drawn, both being obviously relate
reality.

Models of environmental systems associate s
models of biological and physicochemical compone
of these systems. Furthermore, human actions h
sometimes to be included. Even when restricted to
physical models, it appears, for example, in aqu
systems, that the efficiency and reliability of biolog
cal components’ sub-models are weaker than mode
physicochemical ones[14,15].

While parameters of physical models are often m
surable, in most cases, parameters of biological one
not and have to be estimated from experimental d
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rticularly
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ework. So
e to obtain
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Fig. 2. The model-centred methodology (adapted from Schmidt-Lainé and Pavé, op. cit.[5]). It is important to identify and if possible to follow
principal steps. In this scheme, the previous figure can be in the background of the boxes ‘formal model(s)’ and ‘simulators’. It is pa
important to clearly distinguish between model construction and simulation step. Bad results can be the consequence either of a bad
bad simulator. Moreover, one of the main interests of the scientific research is to provide generic results, and to think in a general fram
it is necessary to include this kind of approach in a general theoretical background. Even within a practical context, the best guarante
good results is to back up on strong theoretical basis and methodology. This scheme also concerns modelling approaches in many othe
technology fields.
rs’
a-
rs.

eal
on’s
e-
dif-
at-
as
ter-

nd
pa-
) or
l is

es-
ch,
ons.

e
t
las-
del
arly
ay

a-
ed

p-
raw

h. If
ces
Although, optimization procedures exist, paramete
values are often empirically determined. As for valid
tion, it is rarely a central preoccupation of many autho

The problems of coupling different models also d
with scales’ and concerned system’s precise definiti
compatibility [16]. For instance, limits of a system d
signed from physicochemical components may be
ferent from bio-ecological ones (a watershed is a ‘n
ural’ domain for hydrological problem, but a forest,
ecological system, may belong to more than one wa
shed).

4. Model-centred approach

Progressively in life sciences, from an additional a
ornamental object, a way to conclude a scientific
per (it was frequently the case before the 1970s
an alibi for mathematical development, the mode
becoming an unavoidable tool and modelling an
sential methodology entering in a scientific approa
strongly connected to experiments and observati
However, in order to be efficient, it has to follow som
rules, as described inFig. 2. This is what we migh
call a model-centred approach. It proceeds from c
sical hypothetico-deductive method, where the mo
becomes the central tool. It can be elaborated very e
from initial knowledge, data and hypothesis, and m
change over time to fit well with additional inform
tion. This method is efficient both in problem-orient
or object-oriented approaches.

However modelling is obviously not the unique a
proach, at least because it is not always possible to d
up an efficient model, or may not be necessary.Fig. 2
gives a general (and ideal) diagram of this approac
it is not specific to life sciences; however these scien
have significantly contributed to elaborate it.
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5. The processes’ generating quasi-random events
in living systems fundamental role

In recent paper and book[17,18], the role of chance
in living entities, from gene to ecosystem, has b
analysed: we proposed inner processes generating
taneously appeared random events have been sel
during evolution. The interpretation is simple:

– a high level of biodiversity is the way to ensu
survival of biological systems confronted to en
ronmental hazards. In the diversity of organism
there are chances to have ones well-adapted
particular environment and to changes of this
vironment, even drastic ones. Life’s history sho
such catastrophic situations and biodiversity exp
sions following the disasters[19,20];

– necessity of chance? These systems’ diversifica
as well as biodiversity’s maintenance are mai
the consequence of random processes produce
inner mechanisms, that can be called ‘biologi
roulettes’, and work at all organization levels, fro
gene to ecosystem. examples are given below;

– like Monte Carlo methods and genetic algorith
developed by computer scientists to solve co
plex problems, in particular optimization ones, w
can assume that stochastic processes have app
spontaneously and have been selected over ev
tion to ‘insure’ ‘life sustainability’ within an un-
certain and unpredictable environment. Moreov
such mechanisms enable to produce organisms
adapted to a particular environment. Producin
large diversity of organisms, potentially adapted
a large set of environmental conditions is an a
logue to find an optimum for a complex and mul
dimensional response function.

This is a positive point of view about random even
while chance is generally considered in a negative w
as an unavoidable constraint disturbing elsewhere
terministic processes or experimental measures. Fo
ample, the well-known formulayi = f (xi) + ei links
the effective measure of a state variableyi with the ex-
pected valuef (xi) calculated for a given valuexi of an
independent variablex, whereei is an error assume
to be a particular value of a random variable with
null average and a varianceσ 2. Functionf is analytic:
it is the formal deterministic model of the relationsh
betweenx andy. It can be called classical modellin
approach, where chance is viewed as disturbing term
sulting from uncontrolled factors.
-
d

d

In fact, it is possible to identify ‘biological roulettes
or at least their results, from genome to ecosys
level. For instance, at the genome level, if spon
neous punctual mutations may be attributed to ex
nal events (e.g., radiations, chemical mutagens),
versely genome structure’s modifications by inserti
deletion or transfer of DNA pieces are consequence
inner biochemical mechanisms. At the organism le
one can retain the continuous synthesis of possible
tibody proteins from a limited number of genes, b
with particular transcription rules from DNA to mRNA
that look like a combinatory process. Infectious age
structure being a priori unpredictable, the solution
to produce a great diversity of such proteins synt
sized by some kind of random process. At the org
ism level once more, for sexed organisms, there a
lot of gene transfers between chromosomes, suc
crossing-over, during the meiotic phase producing
metes. These make the genetic structure of produ
gametes different from that of the ‘original’ organism

At the population level then, partner’s choice for se
ual reproduction is casual, at least for one part. I
still another diversity source for the offspring. Final
at ecosystem level, natural systems are generally
versified and organisms quasi randomly distributed
the ecosystem’s geographic space (e.g., trees in i
tropical forests).

If the negative point of view about chance was
be true, it would be difficult to explain that, on the o
hand, evolution has produced many precise and sop
ticated systems and processes, but has conserved
less even worst ones on the other one. If chance is t
useful, even necessary, to produce diversity that ens
living systems sustainability as a whole, it is reas
able, as announced above, to assume that mecha
producing random processes have been selected d
evolution.

6. Modelling ‘biological roulettes’, from chaos to
chance

Anyway, we do observe random events inner p
cesses produced into living systems. We therefore h
a good and efficient theory for randomly distribut
events: the theory of probabilities. However, we ha
few theories and models regarding mechanisms
processes producing these events from mechanical
like the mechanical roulettes of casino, and not for b
chemical, biological and ecological processes prod
ing stochastic-like events. Now algorithms produc
pseudo-random processes are not explainable in t
of biological mechanisms. We also know that chao
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lues

.

Fig. 3. At first blush, the temporal series at the left of schemes (1) and (2) are similar. But in a convenient representation:xn+1 = f (xn), they can be
distinguished. (1) corresponds to the discrete time logistic model[22]. It can exhibit a chaotic behaviour. It is the case here. In the plane (xn, xn+1)
values are distributed along a parabola. (2) corresponds to a stochastic uniform process on[0,1[ simulated by a pseudo-random generator. Va
are uniformly distributed in the plane (xn, xn+1). The graph (a) is generated by the formulazn = xn −yn, wherexn+1 = rxn (1−xn), yn+1 = ryn

(1− yn), andr = 3.98, with slightly different initial conditions:x0 = 0.5000 ety0 = 0.5001. The graph (b) corresponds toζn = ξn − ψn, ξn and
ψn are values of stochastic variables uniformly distributed on[0,1[. At the beginning, the chaotic system is foreseeable (if the value ofx is known,
y is also known with a good precision). But the sensitivity to initial condition leads to a divergence between the series, andz also becomes chaotic
Conversely, there is no interval where stochastic series are closed (b).
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dynamics can somewhere mimic stochastic proce
and the frontiers between these two classes of proce
can be very blurry and porous. It is however reason
to assume, at least for one part, such processes r
from chaotic dynamics[21].

On the one hand, we have drawn the well-kno
graphs ofFig. 3 to illustrate the difference betwee
chaotic and random behaviours, or more precisely
results of algorithms simulating these behaviours. Th
graphs show two different structures of successive
ues: a simple one, a parabola, for chaotic simulat
and a largely distributed one (uniform distribution), f
the random simulation. We also observe a diverge
between two chaotic dynamics obtained from the sa
discrete time logistic model, from two different initi
values. This is sensitivity to initial conditions: at the b
ginning dynamics are closed, but divergence rapidly
pears, while difference immediately appears and alw
has the same amplitude for simultaneous stochastic
s

lt

namics. This property of sensitivity to initial conditio
can be used to produce quasi-independent series
the same value of model parameters (Fig. 4).

On the other hand, we have compared stocha
and chaotic variables’ behaviours to illustrate cha
dynamics’ quasi-random behaviours. Therefore,
‘central-limit theorem’ is a keystone theorem of the th
ory of probabilities and statistics. Very schematica
it says that a linear combination of stochastic variab
generally tends toward a Gaussian distribution, indep
dently of each variable’s specific distribution. Can t
behaviour also be observed for chaotic variables’
ear combination? We have chosen to study on one
the sum of chaotic variables, each one generated b
well-known discrete time logistic model. On the oth
side, we will study the sum of stochastic variables, e
one uniformly distributed on[0,1[ . Fig. 5 shows re-
sults obtained by simulations. Convergence toward
Gaussian distribution, overall for sums of chaotic va
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Fig. 4. Comparison between two simultaneous chaotic (at the left) and stochastic (at the right) processes. As previously, the chaotic oned
by the discrete time logistic model (r = 3.98,x0 = 0.2 andy0 = 0.1). The stochastic one is generated by the ALEA() function from Excel. Hun
values have been computed forx andy; in both cases,x andy are not correlated. The chaotic process exhibits a U distribution, with an accumu
on the edges, while the random one shows a quasi-uniform distribution, as expected. A simple chaotic process where two variables ar
simultaneously, but with very different initial conditions, begins to mimic a random behaviour.
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ables, as well as its speed was a surprise. Then ch
variables can exhibit properties that simulate those
stochastic ones, even for a strong formal result suc
the central-limit theorem.

We have shown the likeness between simple cha
processes and stochastic ones, and also between
statistical properties. It is not a formal demonstrati
but it suggests that deterministic and mechanistic m
els and then biological and ecological processes ca
represented by such models, can be precisely ‘biolog
or ecological roulettes’. The challenge is now to anal
these processes and build their models (Fig. 6).

It is quite different from classical approaches. In fa
these approaches analyse the output of these ‘biolo
roulettes’, considered as ‘black-boxes’. Then, the the
of probabilities gives efficient tools for such analys
and also to build models of the output processes. H
ever, if we open the black-boxes, it does not solve
problem, no more than for a mechanical roulette. P
tically, for games of chance, the output can be adju
empirically, because experience shows that a w
equilibrated roulette, or die, lead to a quasi-unifo
distribution. In biological or ecological roulettes’ case
it can be of some interest to analyse, not only th
ir

l

outputs, but also how mechanisms’ modifications
affect results’ distribution. Model should then be e
cient to simulate such modifications and their con
quences.

Finally, biological and ecological roulettes gener
complexity. Usually, logical complexity and stocha
tic complexity are opposed[23]. However, algorithms
generate pseudo-random sequences of numbers, a
least sometimes, chaotic dynamics look like stoch
tic processes and exhibit statistical properties simila
stochastic ones. Is this opposition necessary or use
Would it be a progress to analyse their likeness, e
their relationships? From our practical point of vie
it would be interesting to show some convergences
cause it would be an encouragement to progress in
application ofFig. 6.

This last scheme is a proposal for a modelling
proach of living systems that combines determin
tic and stochastic aspects. Stochasticity is assume
come from inner mechanisms generating chaotic
sults, which look like random variables. Then the cl
sical modelling approach that uses stochastic pro
models is viewed as a phenomenological one that re
sents the output, but does not give a mechanistic re
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Fig. 5. Comparison between distributions of linear combinations of chaotic variables and of stochastic variables. Like above, chaotic
are generated by the formula:xn+1 = rxn (1 − xn), with r = 3.98 and different initial conditions that ensure to obtain quasi-independent s
of values although successive ones in a series are self-correlated. The chosen value forr corresponds to a chaotic domain wherex covers almos
the interval]0,1[. Stochastic dynamics are obtained with the generator ALEA, an Excel® function, based on an arithmetic congruence meth
The first line shows histograms of the distributions obtained for a single variable (it is asymmetric and has a ‘U’ form for the chaotic var
quasi-uniform for the stochastic one). The other histograms have been obtained by weighted summation (to ensure values distributed
and 1) of 2 (S2), 4 (S4) and 8 (S8) independent chaotic variables (-Chaos, left column) and stochastic ones(-ALEA, right column). For each cas
the Gaussian curve fitted to data is drawn and the basic parameter of the distribution is given (m, the average, ands, the standard deviation). Th
convergence towards a Gaussian distribution was expected in the stochastic case, but not in the chaotic one.
oice
ot

ech-

have
pre-
sentation of how these results are obtained. The ch
of the modelling way depends of objectives. It is n
always necessary to detail and to model the inner m
anisms, as in games, where the importance is to
uniform and uncorrelated issues and not to have a
cise roulette model.
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Fig. 6. Modelling of biological systems by taking into account deterministic and stochastic components. For the latter, it is proposed to
the classical probabilistic approach by a mechanistic one representing inner processes generating stochastic-like events. These modelsally
written in terms of Ordinary Differential Equations (ODE), Partial Differential Equations (PDE) or Recurrent Equations (RE). For insta
discrete time logistic model used above is an example of a recurrent equation.
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7. Conclusion

Modelling approaches are more and more use
life and environmental sciences. It is therefore imp
tant to agree on a common methodology. The de
being open for at least 30 years; we have propo
here an ideal scheme of a ‘model-centred’ approa
which is a kind of ‘good-practice’ synthesis. It has a
been proposed to examine more acutely the proble
mechanisms and models that can exhibit random
puts. They indeed have probably been selected du
evolution to produce a large diversity of living syste
that can work and live through a large variety of en
ronmental conditions. The fact underlining the imp
tance of chance in generating biodiversity is obviou
not new. But to assume a selection of mechanisms
ducing chance is not standard. The question of bi
versity being important today, it is suggested that p
ticular efforts should be made in this way. Finally,
would be ideal to converge towards a genuine the
of biodiversity, in the same idea defended by Hubb
[24], but by adopting a wider approach from ‘gene
ecosystem’ and by integrating all diversification a
maintenance aspects of the resulting biodiversity me
anisms[18].
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