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Abstract

We consider some mathematical issues raised by the modelling of gene networks. The expression of genes is governed by
complex set of regulations, which is often described symbolically by interaction graphs. These are finite oriented graphs where
vertices are the genes involved in the biological system of interest and arrows describe their interactions: a positive (resp. negative
arrow from a gene to another represents an activation (resp. inhibition) of the expression of the latter gene by some product of the
former. Once such an interaction graph has been established, there remains the difficult task to decide which dynamical properties ¢
the gene network can be inferred from it, in the absence of precise quantitative data about their regulation. There mathematical tools
among others, can be of some help. In this paper we discuss a rule proposed by Thomas according to which the possibility for the
network to have several stationary states implies the existence of a positive circuit in the corresponding interaction graph. We prove
that, when properly formulated in rigorous terms, this rule becomes a theorem valid for several different types of formal models
of gene networks. This result is already known for models of differential [C. Soulé, Graphic requirements for multistationarity,
ComPlexUs 1 (2003) 123-133] or Boolean [E. Rémy, P. Ruet, D. Thieffry, Graphic requirements for multistability and attractive
cycles in a boolean dynamical framework, 2005, Preprint] type. We show here that a stronger version of it holds in the differential
setup when the decay of protein concentrations is taken into account. This allows us to verify also the validity of Thomas’ rule in
the context of piecewise-linear models. We then discuss open problertise this article: C. Soulé, C. R. Biologies 329 (2006).
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Résumé

Approches mathématiques de la régulation des genes et de la différenciation. Nous abordons certaines questions mathé-
matiques posées par la modélisation des réseaux de genes. L'expression des génes est contrdlée par un ensemble complexe
régulations, qu’on décrit souvent symboliquement par un graphe d’interactions. Il s’agit d’'un graphe fini orienté, dont les sommets
sont les genes du systéeme biologique considéré et dont les arétes décrivent leurs interactions : une aréte positive (resp. négati
d’un gene vers un autre représente une activation (resp. une inhibition) de I'expression de ce dernier gene par un produit du premie
Une fois que I'on a établi un tel graphe d'interactions, il reste une tache difficile, qui est de deviner quelles propriétés dynamiques
du réseau de génes en résultent, et ce en I'absence de données quantitatives précises sur leur régulation. C'est la que des oL
mathématiques peuvent, entre autres, étre utiles. Dans cet article, nous nous intéressons a une régle proposée par R. Thomas s
laquelle, si un réseau de génes peut présenter plusieurs états stationnaires, le graphe d’interactions correspondant doit possédel
circuit positif. Nous montrons que, apres que cette régle a été rigoureusement formulée, elle devient un théoréme valable pour plt
sieurs classes de modéles des réseaux de géenes. Un tel résultat était déja connu pour les modeles différentiels [C. Soulé, Grap
requirements for multistationarity, ComPlexUs 1 (2003) 123-133] et booléens [E. Rémy, P. Ruet, D. Thieffry, Graphic require-
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ments for multistability and attractive cycles in a boolean dynamical framework, 2005, Preprint]. Nous prouvons ici qu’une version
plus forte de ce théoreme est valable dans le cadre différentiel si I'on tient compte du déclin des concentrations des protéine
Ce résultat permet de montrer que la regle de Thomas est aussi valable pour les modéles de type linéaires par morceaux. N

présentons également plusieurs questions ouvélbes citer cet article: C. Soulé, C. R. Biologies 329 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords:Gene network; Regulation; Differentiation; Interaction graph; Positive circuit; Model; Boolean network; Differential system;

Piecewise-linear differential inclusion

Mots-clés :Réseau de génes ; Régulation ; Différenciation ; Graphe d'interactions ; Circuit positif ; Modéle ; Réseau booléen ; Systéme

différentiel ; Inclusion différentielle linéaire par morceaux

1. Introduction

In living organisms, many proteins are transcription
factors: they can bind to DNA and regulate the tran-
scription of specific genes, i.e. the synthesis of RNA
from coding regions of chromosomal DNA. This reg-
ulation of transcription is a very complex mechanism,
which can involve up to dozens of genes, and other fac-
tors as well. Furthermore, regulation occurs during the
full process of gene expression. In all cases, one will
say that a genel activates (resp. inhibits) a gern@
when A produces a protein that has a positive (resp.
negative) effect on the expression of gahelf several
genes are involved in a given biological system, they
form a gene network from which one can drawian
teraction graph GIn mathematical termgj is a finite
oriented graph, the edges of which are endowed with

topology, for instance, those involving few vertices that
are overrepresented in gene netwdi{s

In this paper we shall studgircuits. A circuit C in
an interaction graply is a sequencey, ..., ¢, of edges
suchthatthe end pointef,i =1,...,k—1(respeg)is
the origin ofe; 11 (resp.e1), each vertex ot; occurring
at most once irC. The sign of a circuit is the product
of the signs of its edges. When gene regulation was dis-
covered, it was soon noticed that circuits (or ‘feedback
loops’) are often present in gene networks (or at least in
mixed networks, with interactions between genes, pro-
teins and metabolites), and that their biological role de-
pends on their sign. For instancef= C consists of a
single positive circuit, the network can have two possi-
ble stable stationary states. For instance, wiidnoks
as follows:

AL_B

a sign: the vertices are the genes, and a positive (respwhere —-denotes a negative edge, common sense sug-

negative) edge fronj to i means thay activates (resp.
inhibits) . Note that a gene can activate or inhibit itself,

gests that eitheA or B will win the competition andB
(resp.A) will be shut off. Now, according to an idea of

i.e. G can have edges that end where they start. Further-Delbriick[2], the possibility for a gene network to have
more, depending on the concentrations of the proteins Several stationary states is one possible mechanism for

in the system, the effect gf oni can be positive, neg-
ative, or absent. In other word§; is a function of the
concentrations.

In general, very little is known about the strength
of the interactions between genes. One is thus face
with the following difficult problem: which dynamical
properties of a gene network can be inferred from the
topology of its interaction graph (despite the lack of

biological differentiation.

However, when the interaction gragh contains a
positive circuitC, there is no reason to expect that
will govern the dynamic behaviour of the underlying

ghetwork; this depends on the strength of the interac-

tions. Thomagq3] had the idea to turn the statement
another way: positive circuits are necessary if not suf-
ficient for multistationarity. He proposed the following:

quantitative information)? Several methods have been Thomas’ rule: Assume a gene network has several non-
used to tackle this question. One of them is numerical degenerate stationary states. Then its interaction graph
simulation, which requires choosing kinetic parameters contains, somewhere in phase space, a positive circuit

in a realistic way. Another method is to study the sta-  Here, the expression “somewhere in phase space”
tistical properties of gene networks, by comparing their refers to the fact, mentioned earlier, that the concentra-

interaction graphs with random ones. One can also try to tions of proteins have to be given for the graph to be
decompose a given graph into submodules of biological defined.

significance. Finally, some authors have focused their  This rule of Thomas, if true, can be quite useful
attention on special motifs, i.e. subgraphs with simple for geneticists. For instance, if one knows that a given
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biological system can differentiate, one will be led to
search for a positive circuit relating the genes involved.
Itis therefore worthwhile to decide how general this rule
is. One way to check it is the following. First, describe a
gene network in a formal mathematical way (a model).
Then, within this formalism, make sense of all the
terms figuring in Thomas' rule (non-degenerate station-

ary state, interaction graph, phase space...). Thomas’
rule then becomes, in this context, a precise mathemati-

cal statement (a conjecture), which one can try to prove
(or to contradict) logically.

For instance, Thomas and Kaufman phrased Thomas’

rule [3] as a precise mathematical conjecture by using
a differential model of gene network4]. This conjec-
ture was proved under additional assumptionfb#V],

and in general ii8]. Later, Thomas’ rule was checked
for Boolean modeld9]. Many more models of gene
networks have been proposed ($#@] for a thorough
survey). In this paper, we shall show that Thomas’ rule
is true for five different types of models of gene net-
works: the Boolean, differential, differential with decay,
piecewise-linear and multivalued discrete models. Of
course, knowing that the rule is true for one type of
models does not imply automatically that it is true for
another one. Still, our arguments will exhibit interest-
ing connections between several ways of modelling.
When the spontaneous decay of all proteins is taken
into account, Thomas’ rule happens to be more robust,
and this allows us to study the piecewise-linear case
by approximation. And, in some cases, the piecewise-
linear models can in turn be described in discrete terms.
We conclude the paper by discussing open problems.
Among them is whether Thomas’ rule remains valid for
other biological networks, or when the stochastic nature
of gene regulation is taken into account.

2. Boolean models

Letn > 1 be an integer an®2 = {0, 1}", the set of
strings ofn letters in the alphabg0, 1}. Consider a map

F=(F):2—> 0

The pair §2, F) is usually called a Boolean network.
[According to Kaufmann11], we can view the data
(£2, F) as a model for the dynamic of a network iof
genes. A poink = (x;) € £2 describes a state of the net-
work: x; = 1 (resp.x; = 0) when the geneé is active
(resp. inactive). The map describes the evolution of
this network: if it is in statex at a given time, it will
be in statef'(x) at timer + 1.]

To everyx in £2 we attach an interaction gragh(x)
which is described as follows. Fike {1, ..., n} and let

15

y € £2 be defined by:

if k£ j

Giveni € {1,...,n}, there is an edge from to i when
F(y); # F(x);. This edge is positive if; = F(x); and

it is negative otherwise. [To illustrate this definition, as-
sume thatc; =1, i.e. gengj is active inx and inactive
iny.If F(x); =x; =1andF(y); =0, we can say that,
by inhibiting j in x, we have inhibited in F(x). In
other words,j is an activator of in the statex, and we
have a positive edge fromto i in the graphG(x).]

A stationary state of the network is a fixed point of
F, i.e. a pointx € £2 such thatF(x) = x. Part (2) of
the following theorem says that Thomas’ rule is true for
Boolean models.

yj=1—xj and  yr = xg

Theorem 1.

(1) [10] Assume that none of the graptsx), x € £2,
contains a circuit. Ther# has a unigue fixed point.

(2) [12] Assume thaf" has several fixed points. Then
there existsc € £2 such thatG(x) contains a posi-
tive circuit.

3. Differential models

Let n > 1 be an integer an®2 = R” the standard
real vector space of dimensianConsider a differential

map:
F=(F):2— %2
and the system of differential equations:

dx
— =F(x)

& @)
wherex:R — R" is any differential path in2. [Ac-
cording to Thomas and Kaufméd4], this is a model for
a network ofn genes. For every=1, ..., n, the num-
berx; (¢) is the concentration of the proteirat timez.
Eq.(1) says that the variation af (¢) is a function of all
the concentrations;(r), j =1,...,n.]

Given x € 2, we define an interaction grapfi(x)
as follows. Its set of vertices igl, ..., n} and there is
a positive (resp. negative) edge fropinto i when the
partial derivativegxij’j (x) is positive (resp. negative). [To
illustrate this, assuméxij'j(x) > 0. If we increase the
concentration of protein in statex, the numberF; (x)
will increase, and the production dfwvill accelerate. In
other words,j is an activation of in statex.]

From (1), we see that a stationary state of the net-
work is a zero ofF, i.e. x € £ such thatF(x) = 0.
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This zero is called non-degenerate when the determinant
det(gTFj’ﬂ (x)) of the Jacobian matrix atis different from
zero. Thomas' rule is true for differentiable models.
Theorem 2 [8]. Assume thaf has at least two non-
degenerate zeroes. Then there exists £2 such that

G (x) contains a positive circuit.

For previous results, s¢&—7].
4. Differentiable modelswith decay

Since concentrations cannot be negative, one would
like to get a version offheorem 2where F (x) is only
defined for those = (x;) suchthat; >0,i=1,...,n.

But it turns out that it is not true as stated with this re-
striction[8 (83.5)] However, a more realistic modelling

of gene networks consists in taking into account that the
concentration of every protein is submitted to a spon-
taneous decay, due to degradation and to the growth of
cells. We are thus led to the following model.

For everyi =1,...,n let £2; C R be a real in-
terval (i.e. $2; = [a;, b1, a;, b;], [a;, bi[ or la;, bi[,
with —oco < @; and b; < +00). On the product2 =
[1; $2: C R", consider a differentiable map

F=(F):2 > R"

and the system of differential equations

d)C‘
d—lei(x)—yix,-, i=1,...,n (2)
t
wherey1 > 0, ..., ¥, > 0 are fixed constants [the degra-

dation rates].
For everyx € £2, let G(x) be the interaction graph
defined from the signs of the partial derivati@g, (x)

as in & above.

Theorem 3. Assume that there exists two pointst y
in £2 such that

|Fi(x) — yixi — F; () + vivi| < vilxi — vil
for all indicesi such thatx; # y;. Then there exists a
pointz in £2 such thatG(z) contains a positive circuit.
Remarks.
(1) A stationary state is a pointe £2 such that, for all
i=1...,n,
Fi(x) —yix; =0

If x # y are two stationary states ofwe have, for
ali=1...,n

C. Soulé / C. R. Biologies 329 (2006) 13-20

Fi(x) —yixi=F;(y) —yiyi =0

therefore the hypothesesDiieorem 3are satisfied.

In other words, Thomas'’ rule is again true, for arbi-
trary £2, when we take the spontaneous decay of
proteins into account. It is also more ‘robust’, since
it remains valid for two states # y that are almost
stationary.

In the conclusion of heorem 3we can assume that
zi = x; wheneverx; = y;. To see that, lef be the
set of indices such thatx; = y;, and applyTheo-
rem 3to the restriction of the functiong;, i ¢ I, to
the linear subspace of those R" such that; = x;
wheni € I. A similar remark can be made rheo-
rems1,2and4

)

5. Piecewise-linear models

Let 2 =[], £2; be as in 8. Another model for gene
networks[13—15]is given by the system of equations
dxi

dr

wherey; > 0 and each functio#; is a polynomial com-
bination of step functions.

More precisely, for every real numbeér define the
step functions (x, 6) from R to subsets oR by:

=FX) —yix;

1 if x>0
s(x,0)=1310,1 ifx=0
0 ifx <0

Foreveryj =1,...,n, choose finitely many distinct
real threshold@}‘ in the interior of 2;, k=1,...,m;.

For eachi =1,...,n, fix a real ponnomiaIP,-(T;‘) in
Z;lemj variables and, for every in £2, let:

Fi(x) = Pi(s(x;,6%)) 3

By definition, F;(x) is a subset oR, reduced to a
single point ifx; # 9;‘ for all j andk.

Now we consider the system of piecewise linear dif-
ferential inclusions:

d .
e Fi(x)—yixi, i=1,... (4)

dr

for some fixed real constantg > 0, ..., y, > 0.
A stationary state of4) is a pointx in £2 such that

0 lies in (F;(x) — y;ix;). For everyx in £2, we define

an interaction graplG(x) as follows. Its set of ver-

ticesis{1,...,n} and there is a positive (resp. negative)

edge fromj to i whenx; = 9;? is a threshold and the

value of the partial derivativeP; /9 T]f‘ is positive (resp.

negative) at the some point in the setq,, #”)). Note

,n
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that in the case considered]it6] the interaction graph
of 81 of op. cit. is the superposition of all the graphs
Gx),xef2.

Theorem 4. Assume thatf4) has several stationary
states. Then there existss 2 such thatG (x) contains
a positive circuit.

6. Discrete models

In [16] (Theorem 1) and17] (Theorem 2), it is
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a new (and quite indirect!) proof dheorem 1(2under

the above hypothesis. It would remain to decide which
discrete models, and in particular which Boolean mod-
els, can be obtained from the piecewise-linear models
considered if16,17]

7. Concluding remarks
The results above give support to the validity of

Thomas’ rule. They do not ‘prove’ any kind of ‘biologi-
cal law’, since they depend on the quality of the models

shown that the stationary states of some piecewise linearwe used for describing gene networks, and these are,

models can be described by fixed points of a map>

£2, where$2 is a product ofn finite sets$2y, ..., £2,,,
with £2; of ordern; + 1, wheren; is the number of
threshold values of the variablg. Theorem 4gives
therefore a proof that Thomas’ rule holds for the fixed
points of these discrete models.

For example, assume th&; = {0, 1} for all i =1,
...,nandletF = (F;): 2 — £2 be any map as ifthe-
orem labove. Consider the system of piecewise-linear
differential equations:

%zfi(x)—xi, i=1... (5)
whereFi is defined below and lies in the open set
2 C R consisting of thoséx;) such thatx; = 0 for

all i. Let:

,n

d:2—Q

be the map defined by
d(x); = (1+sign(x)) /2
We let

1 fRdx)=1
—1 ifFdx)=0

andF = (F;): 2 — R". Notice that, for everyt € 2:

ﬁ}(x)={

d(F(x)) = F(d())

Assume that the syste(®) satisfies the hypotheses of
[16] §1, i.e., for evenyi, the functionF is written as a
positive combination of sums and products of the func-
tionss;(x), j=1,...,n, wheres;(x) is equal either to
s(xj,0) orto1—s(x;,0). ~

Then one can check that, for every £, if y lies
in the closure inR" of the component of2 contain-
ing x, the interaction graplé(y) defined fromF as in
84 is contained in the interaction gragh(d(x)) of 81.
Furthermore, according theorem 1 [16]if d(x) is a
fixed point of F, the pointx € £ is an ‘asymptotically
stable’ steady state ¢5). FromTheorem 4we thus get

clearly, gross simplifications of the biological reality.
For instance, we did not consider the role of chromatin
conformation in the regulation of transcription. Neither
did we include any discussion of the alternate splicing
phenomenon. Therefore, it might be worth checking this
rule in new and more refined setups. Let us mention a
few possible extensions of the results presented here.
Gene networks do not appear in isolation. They are
usually coupled with other biological networks, like the
metabolic networks, and those involving interactions
between proteins. People have tried to describe these
mixed networks in a single picture (see for exanifi
or [19]), but this is not so easy, since edges in these en-
larged graphs do not have the same meaning as in the
case of gene regulation. On the other hand, one should
notice that an enlarged mixed network may well contain
a positive circuit that is not visible in any smaller pure
one, as soon as its vertices are of different natures.
Thomas’ rule is of course valid for any system that
can be modelled by one of the five methods described
above. However, one has to be careful that the inter-
action graphs defined in these models by means of a
mathematical recipe need not have an obvious intuitive
meaning. In particular, they might not be simply re-
lated to the usual way of representing these systems (as
noted in[20], Remark 5)), and a positive circuit needs
not be visible in the traditional graphic representation.
For instance, let us consider a chemical system con-
taining, among others, two compoun@sandY, and
a reversible reaction:

X Y

The concentrationgX] and[Y] obey the usual laws of
chemical reactions, which look like:

d(X]/dt =a[Y]+ other terms
d(Y]/dt = b[X] + other terms

wherea andb are positive (products of a reaction rate
with some concentrations). These equations are a spe-
cial case of1). If we compute the partial derivatives as
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in Section2, we see that the corresponding interaction its degree wher¥ is algebraic). For a general result on

graph contains the motif the complexity of gene networks, we refer{26].
L
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with no positive feedbacks”. These amet counterex-
amples to Thomas' rule, since the corresponding inter-
action graphs do contain a positive circuit.

Another way to pursue our discussion would be to
take into account the location of the proteins. Since the
famous work of Turing in the 1950s, many models of
development have considered diffusion phenomena. It
might be worth noting, though, that the scenario of spa-
tial differentiation proposed by Turing and its followers
requires that at least one of the chemicals be a self-
activator. In that sense, there is still a positive circuit
involved, and if we delete the diffusion terms in Tur-
ing’s equations we get back to the situation described in ) o )
Tt?eoreqm 1ldo not?(now if diffusion in space can lead ong2, i.e., whenx # y a.re two points inf2, there exists
to differentiation in the absence of any positive circuit ke{l,...,n} suchthat
in the appropriate interaction graph. (o — yi) (= Fe(x) + exi + F(y) — 8yk) -0

A third direction is the following. All the models
presented above are deterministic. Now, many recent
works on gene expression insist on the importance of
stochas?ic effects. These are manifest in the vgriation of (x; — i) (= Fe(x) + Fe(»)) > 0
expression levels from one cell to another. This forces
us to view the binding of a protein to DNA, and the
whole gene regulation, as a stochastic event2B], Gk — o) (Fe(x) — v — Fe(y) + vy
Gillespie proposed to represent the elementary chem- 2
ical reactions in a gene network as a discrete jump Z V(X = Ye)

Markov process, and, when there are enough copies ofhence

each protein, to approximate the chemical master equa-

tion by Fokker—Planck stochastic differential equations. | Fe(x) — vixx — Fe(9) + vive| = vielxe — el

It would be very interesting to decide if a variant of This contradicts our hypothesis and pro¥é®orem 3
Thomas’ rule still remains true in such a context. It is

known that introducing stochasticity in a deterministic

model allows for occasional switching between differ- Appendix B. Proof of Theorem 4

ent stationary states (and such switches have been ob-

served experimentally, sé@4] for a survey). But can Following a suggestion of J.-L. Giavitto, we use an
Gillespie’s model lead to completely new scenarios of argument of approximation. For evefyc R and every
differentiation (violating Thomas’ rule)? integerm > 0, choose a differentiable functiep (x, 6)

Finally, one can also seek upper bounds for the num- ©n R such thats, (x, 0) = s(x,0) when|x — 6| > %
ber of possible stationary states in a gene netibtk sm(x, 0) is strictly increasing whemnx|—6 |< % and,
Such a bound is obtained [@5] when gene networks  givenx € Randu € s(x, 8), for everye > 0, there exists
are modelled by means of IN and OR networks. Sim- mg such that, ifm > mo, there ist € R with:
ilar upper bounds cannot be valid for an equation like
(1), since, obviously, the number of stationary states &
depends on the complexity of the functidn (e.g., and

Appendix A. Proof of Theorem 3

We proceed by contradiction and assume that none
of the graphsG(z), z € §2, contains a positive circuit.
Then, according t{8] (Lemma 2i), all the principal mi-
nors of the Jacobian matrix @ F;) at every pointz
are nonnegative. Fix a constant- 0. By [8] (4), we
conclude that all the principal minors of the Jacobian
matrix of (—F;(x) + ex;) are positive inf2. By the
univalence theorem of Gale—Nikaid@{,28 (p. 20a)),
this implies that the map- F; (x) +¢x;) is a P-function

Since this is true for alk > 0, there must exist k such
thatxy # yx and:

This means that; # y; and

—x|<e
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lsm(£.0) —u| <&

Sl 0)4

6-— 6
m

Assumex € £2. It follows from (3) that, for everyu €
F(x) and every > 0, there exist§ € 2 such that, for
alli=1,...,n:

& —xil <€

and

|Fi(,m) —ui| <&

where the functiong; (-, m) are defined by the formula:

Fi€.m) = Pi(sm (7. 65))

Assume now that the systerfd) has two non-
degenerate stationary states# y in 2. The asser-
tion 0 e (F;(x) — y;x;) means thai; € F;(x), where
u; = y;ix;. Similarly, v; € F;(y) with v; = y;y;. For
everye > 0, andm big enough, choosé andn in £2
suchthat, forali =1,...,n:

& — xi| <&, Ini —yil <e,

|E(§,m) —ui| <eg, and |F,-(r;,m) —vi| <e

From these inequalities we conclude that:

|F; (€, m) — yi& — Fi(n, m) + yin;|
<lui — vi& —vi +yini| +2e <2y + 2¢

On the other hand, sincg > 0, whenx; # y; we can
chooses small enough so that

2yie + 2 < yil& — n;l

It follows that (F; (-, m)) satisfies the assumption of
Theorem 3 hence its interaction graph contains a pos-
itive circuit somewhere in phase space. It remains to
notice that, for every € 2, whenm is big enough,
the interaction graph off; (., m)) atz is the same as the
one of F at some point in2.
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