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Abstract

We consider some mathematical issues raised by the modelling of gene networks. The expression of genes is gov
complex set of regulations, which is often described symbolically by interaction graphs. These are finite oriented grap
vertices are the genes involved in the biological system of interest and arrows describe their interactions: a positive (resp
arrow from a gene to another represents an activation (resp. inhibition) of the expression of the latter gene by some prod
former. Once such an interaction graph has been established, there remains the difficult task to decide which dynamical pr
the gene network can be inferred from it, in the absence of precise quantitative data about their regulation. There mathema
among others, can be of some help. In this paper we discuss a rule proposed by Thomas according to which the possib
network to have several stationary states implies the existence of a positive circuit in the corresponding interaction graph.
that, when properly formulated in rigorous terms, this rule becomes a theorem valid for several different types of forma
of gene networks. This result is already known for models of differential [C. Soulé, Graphic requirements for multistati
ComPlexUs 1 (2003) 123–133] or Boolean [E. Rémy, P. Ruet, D. Thieffry, Graphic requirements for multistability and at
cycles in a boolean dynamical framework, 2005, Preprint] type. We show here that a stronger version of it holds in the di
setup when the decay of protein concentrations is taken into account. This allows us to verify also the validity of Thoma
the context of piecewise-linear models. We then discuss open problems.To cite this article: C. Soulé, C. R. Biologies 329 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Approches mathématiques de la régulation des gènes et de la différenciation. Nous abordons certaines questions ma
matiques posées par la modélisation des réseaux de gènes. L’expression des gènes est contrôlée par un ensemble
régulations, qu’on décrit souvent symboliquement par un graphe d’interactions. Il s’agit d’un graphe fini orienté, dont les
sont les gènes du système biologique considéré et dont les arêtes décrivent leurs interactions : une arête positive (res
d’un gène vers un autre représente une activation (resp. une inhibition) de l’expression de ce dernier gène par un produit d
Une fois que l’on a établi un tel graphe d’interactions, il reste une tâche difficile, qui est de deviner quelles propriétés dyn
du réseau de gènes en résultent, et ce en l’absence de données quantitatives précises sur leur régulation. C’est là qu
mathématiques peuvent, entre autres, être utiles. Dans cet article, nous nous intéressons à une règle proposée par R. T
laquelle, si un réseau de gènes peut présenter plusieurs états stationnaires, le graphe d’interactions correspondant doit
circuit positif. Nous montrons que, après que cette règle a été rigoureusement formulée, elle devient un théorème valabl
sieurs classes de modèles des réseaux de gènes. Un tel résultat était déjà connu pour les modèles différentiels [C. So
requirements for multistationarity, ComPlexUs 1 (2003) 123–133] et booléens [E. Rémy, P. Ruet, D. Thieffry, Graphic
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version
protéines.
eaux. Nous
ments for multistability and attractive cycles in a boolean dynamical framework, 2005, Preprint]. Nous prouvons ici qu’une
plus forte de ce théorème est valable dans le cadre différentiel si l’on tient compte du déclin des concentrations des
Ce résultat permet de montrer que la règle de Thomas est aussi valable pour les modèles de type linéaires par morc
présentons également plusieurs questions ouvertes.Pour citer cet article : C. Soulé, C. R. Biologies 329 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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différentiel ; Inclusion différentielle linéaire par morceaux
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1. Introduction

In living organisms, many proteins are transcript
factors: they can bind to DNA and regulate the tr
scription of specific genes, i.e. the synthesis of R
from coding regions of chromosomal DNA. This re
ulation of transcription is a very complex mechanis
which can involve up to dozens of genes, and other
tors as well. Furthermore, regulation occurs during
full process of gene expression. In all cases, one
say that a geneA activates (resp. inhibits) a geneB
when A produces a protein that has a positive (re
negative) effect on the expression of geneB. If several
genes are involved in a given biological system, t
form a gene network from which one can draw anin-
teraction graph G. In mathematical terms,G is a finite
oriented graph, the edges of which are endowed
a sign: the vertices are the genes, and a positive (
negative) edge fromj to i means thatj activates (resp
inhibits) i. Note that a gene can activate or inhibit itse
i.e.G can have edges that end where they start. Fur
more, depending on the concentrations of the prot
in the system, the effect ofj on i can be positive, neg
ative, or absent. In other words,G is a function of the
concentrations.

In general, very little is known about the streng
of the interactions between genes. One is thus fa
with the following difficult problem: which dynamica
properties of a gene network can be inferred from
topology of its interaction graph (despite the lack
quantitative information)? Several methods have b
used to tackle this question. One of them is numer
simulation, which requires choosing kinetic parame
in a realistic way. Another method is to study the s
tistical properties of gene networks, by comparing th
interaction graphs with random ones. One can also t
decompose a given graph into submodules of biolog
significance. Finally, some authors have focused t
attention on special motifs, i.e. subgraphs with sim
.

topology, for instance, those involving few vertices t
are overrepresented in gene networks[1].

In this paper we shall studycircuits. A circuit C in
an interaction graphG is a sequencee1, . . . , ek of edges
such that the end point ofei , i = 1, . . . , k−1 (resp.ek) is
the origin ofei+1 (resp.e1), each vertex ofG occurring
at most once inC. The sign of a circuit is the produ
of the signs of its edges. When gene regulation was
covered, it was soon noticed that circuits (or ‘feedb
loops’) are often present in gene networks (or at lea
mixed networks, with interactions between genes, p
teins and metabolites), and that their biological role
pends on their sign. For instance, ifG = C consists of a
single positive circuit, the network can have two pos
ble stable stationary states. For instance, whenG looks
as follows:

A B

where —| denotes a negative edge, common sense
gests that eitherA or B will win the competition andB
(resp.A) will be shut off. Now, according to an idea
Delbrück[2], the possibility for a gene network to ha
several stationary states is one possible mechanism
biological differentiation.

However, when the interaction graphG contains a
positive circuitC, there is no reason to expect thatC

will govern the dynamic behaviour of the underlyi
network; this depends on the strength of the inte
tions. Thomas[3] had the idea to turn the stateme
another way: positive circuits are necessary if not s
ficient for multistationarity. He proposed the followin

Thomas’ rule: Assume a gene network has several
degenerate stationary states. Then its interaction gr
contains, somewhere in phase space, a positive circ.

Here, the expression “somewhere in phase sp
refers to the fact, mentioned earlier, that the concen
tions of proteins have to be given for the graph to
defined.

This rule of Thomas, if true, can be quite use
for geneticists. For instance, if one knows that a gi
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biological system can differentiate, one will be led
search for a positive circuit relating the genes involv
It is therefore worthwhile to decide how general this r
is. One way to check it is the following. First, describ
gene network in a formal mathematical way (a mod
Then, within this formalism, make sense of all t
terms figuring in Thomas’ rule (non-degenerate stati
ary state, interaction graph, phase space...). Tho
rule then becomes, in this context, a precise mathem
cal statement (a conjecture), which one can try to pr
(or to contradict) logically.

For instance, Thomas and Kaufman phrased Thom
rule [3] as a precise mathematical conjecture by us
a differential model of gene networks[4]. This conjec-
ture was proved under additional assumptions in[5–7],
and in general in[8]. Later, Thomas’ rule was checke
for Boolean models[9]. Many more models of gen
networks have been proposed (see[10] for a thorough
survey). In this paper, we shall show that Thomas’ r
is true for five different types of models of gene n
works: the Boolean, differential, differential with deca
piecewise-linear and multivalued discrete models.
course, knowing that the rule is true for one type
models does not imply automatically that it is true
another one. Still, our arguments will exhibit intere
ing connections between several ways of modell
When the spontaneous decay of all proteins is ta
into account, Thomas’ rule happens to be more rob
and this allows us to study the piecewise-linear c
by approximation. And, in some cases, the piecew
linear models can in turn be described in discrete ter
We conclude the paper by discussing open proble
Among them is whether Thomas’ rule remains valid
other biological networks, or when the stochastic na
of gene regulation is taken into account.

2. Boolean models

Let n � 1 be an integer andΩ = {0,1}n, the set of
strings ofn letters in the alphabet{0,1}. Consider a map

F = (Fi) :Ω → Ω

The pair (Ω,F ) is usually called a Boolean networ
[According to Kaufmann[11], we can view the dat
(Ω,F ) as a model for the dynamic of a network ofn

genes. A pointx = (xi) ∈ Ω describes a state of the ne
work: xi = 1 (resp.xi = 0) when the genei is active
(resp. inactive). The mapF describes the evolution o
this network: if it is in statex at a given timet , it will
be in stateF(x) at timet + 1.]

To everyx in Ω we attach an interaction graphG(x)

which is described as follows. Fixj ∈ {1, . . . , n} and let
’

’

y ∈ Ω be defined by:

yj = 1− xj and yk = xk if k �= j

Given i ∈ {1, . . . , n}, there is an edge fromj to i when
F(y)i �= F(x)i . This edge is positive ifxj = F(x)i and
it is negative otherwise. [To illustrate this definition, a
sume thatxj = 1, i.e. genej is active inx and inactive
in y. If F(x)i = xj = 1 andF(y)i = 0, we can say tha
by inhibiting j in x, we have inhibitedi in F(x). In
other words,j is an activator ofi in the statex, and we
have a positive edge fromj to i in the graphG(x).]

A stationary state of the network is a fixed point
F , i.e. a pointx ∈ Ω such thatF(x) = x. Part (2) of
the following theorem says that Thomas’ rule is true
Boolean models.

Theorem 1.

(1) [10] Assume that none of the graphsG(x), x ∈ Ω ,
contains a circuit. ThenF has a unique fixed poin

(2) [12] Assume thatF has several fixed points. The
there existsx ∈ Ω such thatG(x) contains a posi-
tive circuit.

3. Differential models

Let n � 1 be an integer andΩ = Rn the standard
real vector space of dimensionn. Consider a differentia
map:

F = (Fi) :Ω → Ω

and the system of differential equations:

(1)
dx

dt
= F(x)

wherex : R → Rn is any differential path inΩ . [Ac-
cording to Thomas and Kaufman[4], this is a model for
a network ofn genes. For everyi = 1, . . . , n, the num-
berxi(t) is the concentration of the proteini at timet .
Eq.(1) says that the variation ofxi(t) is a function of all
the concentrationsxj (t), j = 1, . . . , n.]

Given x ∈ Ω , we define an interaction graphG(x)

as follows. Its set of vertices is{1, . . . , n} and there is
a positive (resp. negative) edge fromj to i when the
partial derivative∂Fi

∂xj
(x) is positive (resp. negative). [T

illustrate this, assume∂Fi

∂xj
(x) > 0. If we increase the

concentration of proteinj in statex, the numberFi(x)

will increase, and the production ofi will accelerate. In
other words,j is an activation ofi in statex.]

From (1), we see that a stationary state of the n
work is a zero ofF , i.e. x ∈ Ω such thatF(x) = 0.
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This zero is called non-degenerate when the determi
det( ∂Fi

∂xj
(x)) of the Jacobian matrix atx is different from

zero. Thomas’ rule is true for differentiable models.

Theorem 2 [8]. Assume thatF has at least two non
degenerate zeroes. Then there existsx ∈ Ω such that
G(x) contains a positive circuit.

For previous results, see[5–7].

4. Differentiable models with decay

Since concentrations cannot be negative, one w
like to get a version ofTheorem 2whereF(x) is only
defined for thosex = (xi) such thatxi � 0, i = 1, . . . , n.
But it turns out that it is not true as stated with this
striction[8 (§3.5)]. However, a more realistic modellin
of gene networks consists in taking into account that
concentration of every protein is submitted to a sp
taneous decay, due to degradation and to the grow
cells. We are thus led to the following model.

For every i = 1, . . . , n let Ωi ⊂ R be a real in-
terval (i.e. Ωi = [ai, bi], ]ai, bi], [ai, bi[ or ]ai, bi[,
with −∞ � ai and bi � +∞). On the productΩ =∏

i Ωi ⊂ Rn, consider a differentiable map

F = (Fi) :Ω → Rn

and the system of differential equations

(2)
dxi

dt
= Fi(x) − γixi, i = 1, . . . , n

whereγ1 > 0, . . . , γn > 0 are fixed constants [the degr
dation rates].

For everyx ∈ Ω , let G(x) be the interaction grap
defined from the signs of the partial derivatives∂Fi

∂xj
(x)

as in §2 above.

Theorem 3. Assume that there exists two pointsx �= y

in Ω such that∣∣Fi(x) − γixi − Fi(y) + γiyi

∣∣ < γi |xi − yi |
for all indices i such thatxi �= yi . Then there exists
point z in Ω such thatG(z) contains a positive circuit.

Remarks.

(1) A stationary state is a pointx ∈ Ω such that, for all
i = 1, . . . , n,

Fi(x) − γixi = 0

If x �= y are two stationary states of (x) we have, for
all i = 1, . . . , n
t Fi(x) − γixi = Fi(y) − γiyi = 0

therefore the hypotheses ofTheorem 3are satisfied
In other words, Thomas’ rule is again true, for ar
trary Ω , when we take the spontaneous decay
proteins into account. It is also more ‘robust’, sin
it remains valid for two statesx �= y that are almos
stationary.

(2) In the conclusion ofTheorem 3, we can assume th
zi = xi wheneverxi = yi . To see that, letI be the
set of indicesi such thatxi = yi , and applyTheo-
rem 3to the restriction of the functionsFi , i /∈ I , to
the linear subspace of thosez ∈ Rn such thatzi = xi

wheni ∈ I . A similar remark can be made inTheo-
rems 1, 2 and 4.

5. Piecewise-linear models

Let Ω = ∏
i Ωi be as in §4. Another model for gen

networks[13–15]is given by the system of equations

dxi

dt
= Fi(x) − γixi

whereγi > 0 and each functionFi is a polynomial com-
bination of step functions.

More precisely, for every real numberθ , define the
step functions(x, θ) from R to subsets ofR by:

s(x, θ) =
{

1 if x > θ

]0,1[ if x = θ

0 if x < θ

For everyj = 1, . . . , n, choose finitely many distinc
real thresholdsθk

j in the interior ofΩj , k = 1, . . . ,mj .

For eachi = 1, . . . , n, fix a real polynomialPi(T
k
j ) in∑n

j=1 mj variables and, for everyx in Ω , let:

(3)Fi(x) = Pi

(
s
(
xj , θ

k
j

))
By definition, Fi(x) is a subset ofR, reduced to a

single point ifxj �= θk
j for all j andk.

Now we consider the system of piecewise linear
ferential inclusions:

(4)
dxi

dt
∈ Fi(x) − γixi, i = 1, . . . , n

for some fixed real constantsγ1 > 0, . . . , γn > 0.
A stationary state of(4) is a pointx in Ω such that

0 lies in (Fi(x) − γixi ). For everyx in Ω , we define
an interaction graphG(x) as follows. Its set of ver
tices is{1, . . . , n} and there is a positive (resp. negativ
edge fromj to i whenxj = θk

j is a threshold and th

value of the partial derivative∂Pi/∂T k
j is positive (resp

negative) at the some point in the set (s(xa, θ
b
a )). Note
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that in the case considered in[16] the interaction graph
of §1 of op. cit. is the superposition of all the grap
G(x), x ∈ Ω .

Theorem 4. Assume that(4) has several stationar
states. Then there existsx ∈ Ω such thatG(x) contains
a positive circuit.

6. Discrete models

In [16] (Theorem 1) and[17] (Theorem 2), it is
shown that the stationary states of some piecewise li
models can be described by fixed points of a mapΩ →
Ω , whereΩ is a product ofn finite setsΩ1, . . . ,Ωn,
with Ωi of order ni + 1, whereni is the number of
threshold values of the variablexi . Theorem 4gives
therefore a proof that Thomas’ rule holds for the fix
points of these discrete models.

For example, assume thatΩi = {0,1} for all i = 1,

. . . , n and letF = (Fi) :Ω → Ω be any map as inThe-
orem 1above. Consider the system of piecewise-lin
differential equations:

(5)
dxi

dt
= F̃i(x) − xi, i = 1, . . . , n

where F̃i is defined below andx lies in the open se
Ω̃ ⊂ Rn consisting of those(xi) such thatxi �= 0 for
all i. Let:

d : Ω̃ → Ω

be the map defined by

d(x)i = (
1+ sign(xi)

)
/2

We let

F̃i(x) =
{

1 if Fi(d(x)) = 1
−1 if Fi(d(x)) = 0

andF̃ = (F̃i) : Ω̃ → Rn. Notice that, for everyx ∈ Ω̃ :

d
(
F̃ (x)

) = F
(
d(x)

)
Assume that the system(5) satisfies the hypotheses
[16] §1, i.e., for everyi, the functionF̃ is written as a
positive combination of sums and products of the fu
tionssj (x), j = 1, . . . , n, wheresj (x) is equal either to
s(xj ,0) or to 1− s(xj ,0).

Then one can check that, for everyx ∈ Ω̃ , if y lies
in the closure inRn of the component of̃Ω contain-
ing x, the interaction graphG(y) defined fromF̃ as in
§4 is contained in the interaction graphG(d(x)) of §1.
Furthermore, according toTheorem 1 [16], if d(x) is a
fixed point ofF , the pointx ∈ Ω̃ is an ‘asymptotically
stable’ steady state of(5). FromTheorem 4, we thus get
a new (and quite indirect!) proof ofTheorem 1(2)under
the above hypothesis. It would remain to decide wh
discrete models, and in particular which Boolean m
els, can be obtained from the piecewise-linear mo
considered in[16,17].

7. Concluding remarks

The results above give support to the validity
Thomas’ rule. They do not ‘prove’ any kind of ‘biolog
cal law’, since they depend on the quality of the mod
we used for describing gene networks, and these
clearly, gross simplifications of the biological reali
For instance, we did not consider the role of chroma
conformation in the regulation of transcription. Neith
did we include any discussion of the alternate splic
phenomenon. Therefore, it might be worth checking
rule in new and more refined setups. Let us mentio
few possible extensions of the results presented her

Gene networks do not appear in isolation. They
usually coupled with other biological networks, like t
metabolic networks, and those involving interactio
between proteins. People have tried to describe t
mixed networks in a single picture (see for example[18]
or [19]), but this is not so easy, since edges in these
larged graphs do not have the same meaning as in
case of gene regulation. On the other hand, one sh
notice that an enlarged mixed network may well cont
a positive circuit that is not visible in any smaller pu
one, as soon as its vertices are of different natures.

Thomas’ rule is of course valid for any system th
can be modelled by one of the five methods descr
above. However, one has to be careful that the in
action graphs defined in these models by means
mathematical recipe need not have an obvious intu
meaning. In particular, they might not be simply
lated to the usual way of representing these system
noted in[20], Remark 5)), and a positive circuit nee
not be visible in the traditional graphic representati
For instance, let us consider a chemical system c
taining, among others, two compoundsX and Y , and
a reversible reaction:

X Y

The concentrations[X] and[Y ] obey the usual laws o
chemical reactions, which look like:

d[X]/dt = a[Y ] + other terms

d[Y ]/dt = b[X] + other terms

wherea andb are positive (products of a reaction ra
with some concentrations). These equations are a
cial case of(1). If we compute the partial derivatives
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in Section2, we see that the corresponding interact
graph contains the motif

X Y

which is a positive circuit. Thus, any reversible react
gives rise to a positive circuit (although it does not i
ply any kind of active chemical regulation). This type
situation has been considered in[21,22], where the au
thors gave examples of what they called “differentiat
with no positive feedbacks”. These arenot counterex-
amples to Thomas’ rule, since the corresponding in
action graphs do contain a positive circuit.

Another way to pursue our discussion would be
take into account the location of the proteins. Since
famous work of Turing in the 1950s, many models
development have considered diffusion phenomen
might be worth noting, though, that the scenario of s
tial differentiation proposed by Turing and its followe
requires that at least one of the chemicals be a
activator. In that sense, there is still a positive circ
involved, and if we delete the diffusion terms in Tu
ing’s equations we get back to the situation describe
Theorem 1. I do not know if diffusion in space can lea
to differentiation in the absence of any positive circ
in the appropriate interaction graph.

A third direction is the following. All the model
presented above are deterministic. Now, many re
works on gene expression insist on the importanc
stochastic effects. These are manifest in the variatio
expression levels from one cell to another. This for
us to view the binding of a protein to DNA, and th
whole gene regulation, as a stochastic event. In[23],
Gillespie proposed to represent the elementary ch
ical reactions in a gene network as a discrete ju
Markov process, and, when there are enough copie
each protein, to approximate the chemical master e
tion by Fokker–Planck stochastic differential equatio
It would be very interesting to decide if a variant
Thomas’ rule still remains true in such a context. It
known that introducing stochasticity in a determinis
model allows for occasional switching between diff
ent stationary states (and such switches have bee
served experimentally, see[24] for a survey). But can
Gillespie’s model lead to completely new scenarios
differentiation (violating Thomas’ rule)?

Finally, one can also seek upper bounds for the n
ber of possible stationary states in a gene network[11].
Such a bound is obtained in[25] when gene network
are modelled by means of IN and OR networks. S
ilar upper bounds cannot be valid for an equation
(1), since, obviously, the number of stationary sta
depends on the complexity of the functionF (e.g.,
f

-

its degree whenF is algebraic). For a general result
the complexity of gene networks, we refer to[26].
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Appendix A. Proof of Theorem 3

We proceed by contradiction and assume that n
of the graphsG(z), z ∈ Ω , contains a positive circui
Then, according to[8] (Lemma 2i), all the principal mi
nors of the Jacobian matrix of(−Fi) at every pointz
are nonnegative. Fix a constantε > 0. By [8] (4), we
conclude that all the principal minors of the Jacob
matrix of (−Fi(x) + εxi) are positive inΩ . By the
univalence theorem of Gale–Nikaido ([27,28 (p. 20a)]),
this implies that the map(−Fi(x)+εxi) is aP -function
onΩ , i.e., whenx �= y are two points inΩ , there exists
k ∈ {1, . . . , n} such that:

(xk − yk)
(−Fk(x) + εxk + Fk(y) − εyk

)
> 0

Since this is true for allε > 0, there must exist k suc
thatxk �= yk and:

(xk − yk)
(−Fk(x) + Fk(y)

)
� 0

This means thatxk �= yk and

(xk − yk)
(
Fk(x) − γkxk − Fk(y) + γkyk

)
� γk(xk − yk)

2

hence∣∣Fk(x) − γkxk − Fk(y) + γkyk

∣∣ � γk|xk − yk|
This contradicts our hypothesis and provesTheorem 3.

Appendix B. Proof of Theorem 4

Following a suggestion of J.-L. Giavitto, we use
argument of approximation. For everyθ ∈ R and every
integerm � 0, choose a differentiable functionsm(x, θ)

on R such thatsm(x, θ) = s(x, θ) when |x − θ | � 1
m

,
sm(x, θ) is strictly increasing when |x −θ |< 1

m
, and,

givenx ∈ R andu ∈ s(x, θ), for everyε > 0, there exists
m0 such that, ifm � m0, there isξ ∈ R with:

|ξ − x| < ε

and
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∣∣sm(ξ, θ) − u
∣∣ < ε

Assumex ∈ Ω . It follows from (3) that, for everyu ∈
F(x) and everyε > 0, there existsξ ∈ Ω such that, for
all i = 1, . . . , n:

|ξi − xi | < ε

and∣∣Fi(ξ,m) − ui

∣∣ < ε

where the functionsFi(·,m) are defined by the formula

Fi(ξ,m) = Pi

(
sm

(
xj , θ

k
j

))
Assume now that the system(4) has two non-

degenerate stationary statesx �= y in Ω . The asser
tion 0 ∈ (Fi(x) − γixi) means thatui ∈ Fi(x), where
ui = γixi . Similarly, vi ∈ Fi(y) with vi = γiyi . For
everyε > 0, andm big enough, chooseξ andη in Ω

such that, for alli = 1, . . . , n:

|ξi − xi | < ε, |ηi − yi | < ε,∣∣Fi(ξ,m) − ui

∣∣ < ε, and
∣∣Fi(η,m) − vi

∣∣ < ε

From these inequalities we conclude that:∣∣Fi(ξ,m) − γiξi − Fi(η,m) + γiηi

∣∣
< |ui − γiξi − vi + γiηi | + 2ε < 2γiε + 2ε

On the other hand, sinceγi > 0, whenxi �= yi we can
chooseε small enough so that

2γiε + 2ε < γi |ξi − ηi |
It follows that (Fi(·,m)) satisfies the assumption

Theorem 3, hence its interaction graph contains a p
itive circuit somewhere in phase space. It remains
notice that, for everyz ∈ Ω , when m is big enough,
the interaction graph of (Fi(.,m)) atz is the same as th
one ofF at some point inΩ .
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