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Abstract

Adipose tissue lipolysis is the catabolic process leading to the breakdown of triglycerides stored in fat cells and the release of
fatty acids and glycerol. Recent work has revealed that lipolysis is not a simple metabolic pathway stimulated by catecholamines
and inhibited by insulin. New discoveries on the regulation of lipolysis by endocrine and paracrine factors and on the proteins
involved in triglyceride hydrolysis have led to a reappraisal of the complexity of the various signal transduction pathways. The
steps involved in the dysregulation of lipolysis observed in obesity have partly been identified. To cite this article: D. Langin,
C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Contrôle de la libération des acides gras et du glycérol lors de la lipolyse adipocytaire. La lipolyse du tissu adipeux est
le processus catabolique par lequel l’hydrolyse des triglycérides stockés dans les adipocytes conduit à la libération de glycérol et
d’acides gras. Les travaux récents ont révélé que la lipolyse n’est pas une simple voie métabolique stimulée par les catécholamines
et inhibée par l’insuline. De nouvelles découvertes sur la régulation de la lipolyse par des facteurs endocrines ou paracrines et sur
les protéines impliquées dans l’hydrolyse des triglycérides ont conduit à une réévaluation de la complexité des différentes voies
de transduction. Les étapes clés responsables de la dérégulation de la lipolyse observée dans l’obésité ont en partie été identifiées.
Pour citer cet article : D. Langin, C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The major physiological role for white adipose tis-
sue (WAT) fat stores is to supply lipid energy when it
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is needed by other tissues. This is achieved by a highly
regulated pathway whereby the triglycerides stored in
the adipocyte are hydrolysed and fatty acids deliv-
ered to the plasma. Altered lipolysis could be an ele-
ment leading to obesity and interindividual variations in
WAT lipolysis are of importance for the rate of weight
loss. Conversely, excessive lipolytic rates, in conjunc-
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tion with impairment in fatty acid utilization by muscle
and liver, may be a major contributor to the metabolic
abnormalities found in subjects with upper body obe-
sity.

This review is composed of two sections. The first
section presents the endocrine and paracrine factors
controlling the stimulation of lipolysis and the related
signal transduction pathways. The second section is de-
voted to the molecular mechanisms of the hydrolysis
of triglycerides that involves lipases, plasma membrane
transporters, fatty acid binding proteins and proteins as-
sociated with the lipid droplet.

2. Endocrine and paracrine control of lipolysis

2.1. Catecholamines

Catecholamines are important regulators of fat cell
lipolysis in human WAT. The neurotransmitter, nora-
drenaline, and the hormone, adrenaline, regulate lipoly-
sis through lipolytic beta-adrenoceptors and antilipoly-
tic alpha2-adrenoceptors.

2.1.1. Beta-adrenoceptors
Activation of beta-adrenoceptors by catecholamines

leads to an increase of cAMP production by adenylylcy-
clase, which is followed by activation of protein kinase
A and hormone-sensitive lipase (HSL) (see Section 3.1).
In human fat cells, both beta1- and beta2-adrenergic
receptors are known to stimulate cAMP production
and lipolysis in vitro [1] and in vivo [2]. The beta3-
adrenergic receptor attracted a lot of interest [3]. It is
highly expressed in rodent WAT and brown adipose
tissue and, unlike the beta1- and beta2-adrenergic recep-
tors, is relatively specific to the tissues. Selective beta3-
adrenergic agonists elicit a marked lipolytic and thermo-
genic response in rodents and hence exert antiobesity
and antidiabetic effects [4]. The level of expression
and the contribution of the receptor to catecholamine-
induced lipolysis in human subcutaneous adipocytes
seems however limited [5]. Moreover, the pharma-
cology of the drugs is complex. One of the beta3-
adrenergic agonists, CGP 12177 [6], exerts its effect
through a so-called beta4-adrenergic receptor effect,
which turns, in fact, to be an atypical interaction of the
drug with beta1-adrenergic receptors [7–9]. Confirma-
tion of the lack of beta3-adrenergic effect in humans has
also been provided by in vivo studies. Beta3-adrenergic
agonists have shown moderate effects [10]. During
isoproterenol infusion, there was no evidence for a
beta3-adrenergic receptor-mediated increase in human
lipolysis, energy expenditure and lipid oxidation [11].
Similar conclusions were obtained using in situ micro-
dialysis [2]. Recent data on mice with gene knockout
of the three beta-adrenergic receptors raised the puz-
zling possibility that catecholamines stimulate lipolysis
at high concentrations through an as yet unidentified
Gs-coupled receptor distinct from the beta-adrenergic
receptors [12]. Interestingly, the pharmacological pro-
file of the residual lipolytic response in WAT of mice
without beta-adrenoceptors is somewhat similar to the
profile in human subcutaneous adipocytes. The nature
and the physiological role of this novel receptor remain
to be determined.

It is commonly accepted that the action of cate-
cholamines is impaired in obesity [13,14]. This defect
might be an early event since it has been observed in
obese adolescents [15]. Using in situ microdialysis, a
specific impairment in the capacity of beta2-adrenergic
agonists to promote lipolysis has been reported in the
subcutaneous abdominal adipose tissue of obese adoles-
cent girls [16]. Conversely, the beta1-adrenergic agonist
response is not impaired in obesity. A decreased ex-
pression of beta2-adrenoceptors has been reported in fat
cells from women with upper body obesity [17].

2.1.2. Alpha2-adrenoceptors
Catecholamines can exert an antilipolytic effect

through the stimulation of alpha2-adrenoceptors. Acti-
vation of the Gi-coupled receptors leads to a decrease
in intracellular cAMP level. The physiological sig-
nificance of alpha2-adrenergic responsiveness to cat-
echolamines has remained elusive for a long time. In
human subcutaneous fat cells where alpha2-adrenocep-
tors numerically predominate over beta-adrenoceptors,
adrenaline-dependent inhibition of lipolysis has been
described in vitro. Adrenaline and noradrenaline have a
higher affinity for alpha2- than for beta-adrenoceptors
suggesting the existence of a role for the alpha-adrener-
gic pathway in the control of lipolysis in humans [18].
An investigation into the role of this receptor in vivo was
achieved by a combination of calibrated exercise to acti-
vate the sympathetic nervous system, in situ microdialy-
sis to monitor lipolysis in subcutaneous WAT and use of
alpha2-adrenoceptor antagonists. A study in non-obese
subjects revealed that adrenaline partly controls lipoly-
sis in human subcutaneous WAT through activation of
antilipolytic alpha2-adrenoceptors [19]. Another study
was performed in exercising obese and lean men [20].
At rest and during exercise, plasma noradrenaline and
adrenaline concentrations were not different between
the two groups. The exercise-induced increase in extra-
cellular glycerol concentration that reflects local lipol-
ysis was weakly potentiated by an alpha2-adrenoceptor
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antagonist infusion in lean subjects, but was strongly
enhanced in the obese subjects and reached the concen-
trations found in lean subjects. Thus, the physiological
stimulation of adipocyte alpha2-adrenoceptors during
exercise-induced sympathetic nervous system activation
contributes to the blunted lipolysis observed in subcuta-
neous WAT of obese men. These microdialysis studies
are supported by earlier in vitro studies showing an in-
creased antilipolytic effect of alpha2-adrenoceptors in
obese men [21].

2.2. Natriuretic peptides

Until 2000, the major factors for the physiological
control of lipolysis in human WAT were catecholamines
and insulin. Our laboratory showed that natriuretic pep-
tides, i.e. atrial and brain natriuretic peptides, well-
known for their effects on the cardiovascular and renal
system, are also powerful lipolytic agents in vitro and in
vivo [22]. This lipolytic pathway is specific of primate
fat cells [23]. Natriuretic peptides act through a sig-
nal transduction distinct from catecholamines. Activa-
tion of natriuretic peptide receptor A, which possesses
intrinsic guanylyl cyclase activity, is followed by an in-
crease in the cGMP level and an activation of protein
kinase G, which induces phosphorylation and activation
of HSL [24]. The lipolysis induced by natriuretic pep-
tides is independent of the fat cell adrenergic and insulin
pathways [25,26]. Importantly, the natriuretic peptide
lipolytic pathway is involved in the lipid mobilization
observed during exercise [27]. Administration of a beta-
adrenergic antagonist potentiates the exercise-induced
increase in plasma atrial natriuretic peptide level. There-
fore, despite their antilipolytic effect, lipid mobilization
can occur during beta-adrenergic antagonist treatment.
During physiological increases in plasma atrial natri-
uretic peptide levels, the increased lipid mobilization
is associated to an increase in lipid utilization [28].
The unsuspected metabolic role of natriuretic peptides
was recently reviewed by Max Lafontan and collabora-
tors [29].

2.3. Other lipolytic pathways

Growth hormone stimulates lipolysis in human adi-
pocytes. Although growth hormone treatments in adults
reduce abdominal obesity and improve insulin sensi-
tivity as well as blood lipid profiles, the physiologi-
cal contribution of growth hormone to the control of
human WAT lipid mobilization has remained elusive.
Small physiological growth hormone pulses increase in-
terstitial glycerol concentrations in both femoral and
abdominal WAT [30]. Moreover, normal nocturnal rise
in plasma growth hormone concentrations also leads to
site-specific regulation of lipolysis in WAT [31]. Of pu-
tative pharmacological interest, C-terminal fragments of
human growth hormone have been shown to increase
human and rodent fat cell lipolysis in vitro. The mole-
cules induce lipid mobilization and oxidation as well
as weight loss after chronic administration in rodents
[32,33]. They do not interact with the growth hormone
receptor. The mechanism of action remains to be clari-
fied.

Tumour necrosis factor alpha is a macrophage prod-
uct, also released by fat cells, which is thought to signal
the loss of body weight through a decrease in WAT and
muscle mass. Stimulation of lipolysis by tumour necro-
sis factor alpha is not direct, since it becomes apparent
only after long-lasting exposure of human and rodent
adipocytes to the cytokine [34]. Tumour necrosis fac-
tor alpha could regulate lipolysis, in part, by decreasing
perilipin protein levels at the lipid droplet surface [35].
Blunting the endogenous inhibition of lipolysis through
Gi protein down-regulation is another possible mecha-
nism [36]. It has also been proposed that tumour necro-
sis factor alpha acting through the second messenger
C2-ceramide induces a downregulation of phosphodi-
esterase 3B, the enzyme catalyzing the degradation
of cAMP, and thereby stimulates lipolysis [37,38]. In
human fat cells, TNFalpha activates the three mam-
malian mitogen activated protein kinases in a distinct
time and concentration-dependent manner. TNFalpha-
induced lipolysis is mediated by p44/42 and Jun kinase
but not by the p38 kinase [39].

In humans, many lipolytic peptides active in ro-
dent fat cells (adrenocorticotropic hormone, alpha-
melanocyte stimulating hormone, lipotropin...) have no
effect. During the neonatal period, thyrotropin also
known as thyroid-stimulating hormone shows a lipoly-
tic effect at physiological concentrations that decreases
gradually during childhood [40]. Parathyroid hormone
has been reported to stimulate lipolysis in human fat
cells [41]. The effects of glucagon and glucagon-like
peptide-1 are not likely to be of physiological impor-
tance. Recently, a lipolytic effect of pituitary adenylate
cyclase-activating polypeptide 38 and vasoactive in-
testinal polypeptide has been described in rat adipocytes
[42,43]. These molecules act through a Gs-protein cou-
pled receptor VPAC1, which has equal affinity for both
compounds. At present, whether the neuropeptide and
the hormone are active on human adipocytes is still un-
known.

Cachexia-inducing tumours produce a lipid-mobili-
zing factor that causes a lipolytic stimulation. Zinc-
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alpha2-glycoprotein may be such a lipid-mobilizing fac-
tor. It is overexpressed in certain human malignant tu-
mours and has also been shown to be produced by
adipocytes [44]. Finally, nitric oxide and related redox
species have been proposed as potential regulators of
lipolysis in rodent and human fat cells [45,46]. The ef-
fect of nitric oxide appears complex and is not fully
understood (see Section 2.4.3).

2.4. Other antilipolytic pathways

There are two main categories of antilipolytic mole-
cules: agents acting on seven transmembrane domain
receptors coupled to Gi proteins and agents activating
receptors with tyrosine kinase activity. The major an-
tilipolytic Gi protein coupled receptors involve alpha2-
adrenergic receptors (see Section 2.1), nicotinic acid
receptors, prostaglandin E2 receptors, A1-adenosine-
receptors, and Y1 neuropeptide Y/peptide YY recep-
tors. Insulin and insulin growth factor 1 receptors are
the prototypical antilipolytic tyrosine kinase receptors.
Other mechanisms of antilipolysis have been described:
the nitric-oxide-dependent effect of the vasoactive pep-
tide adrenomedullin and the antilipolytic effect of AMP-
activated protein kinase.

2.4.1. Gi-coupled receptors
Nicotinic acid (niacin) has been the first extensively

used lipid-lowering agent. It is believed to exert its hy-
polipidemic action chiefly through inhibition of lipol-
ysis [47]. Despite the old recognition of its antilipoly-
tic properties, the receptor of nicotinic acid has been
identified only recently [48,49]. Two homologues of
the receptor have been described, which show very
high homology. The major difference is a 24-amino-
acid extension at the C-terminus. It appears that the
shorter homolog, named HM74A, is the high-affinity
receptor mediating the antilipolytic effect of nicotinic
acid in adipocytes [49,50]. The ketone body, (D)-beta-
hydrobutyrate, may be a natural ligand for the recep-
tor [51].

Prostaglandins, especially prostaglandin E2, show
a strong antilipolytic effect in fat cells [52]. The ef-
fect is mediated through EP3 receptors [53]. Endoge-
nous adenosine produces its antilipolytic effect through
adenosine A1 receptor. Adenosine is metabolized very
rapidly [54,55]. Nevertheless, substantial amounts of
adenosine are found in the interstitial fluid of WAT [56].
Stable adenosine A1 receptor agonists exert potent an-
tilipolytic effect in rat WAT depots [57]. Chronic treat-
ment results in a reduction of plasma free fatty acid and
triglyceride levels.
Neuropeptide Y is stored with noradrenaline in the
sympathetic nerve terminals. Neuropeptide Y and pep-
tide YY have been shown to exert a strong antilipolytic
effect in human and dog fat cells [58–60]. The recep-
tor that mediates the antilipolytic effect of the peptides
in human fat cells is the Y1 receptor, which shows a
higher affinity for peptide YY than for neuropeptide
Y [61]. Co-culture experiments revealed that sympa-
thetic neurons produce NPY which markedly blunts
lipolysis stimulated by beta-adrenergic agonists [62].
Moreover, an effect of the gut-produced PYY on fat
cells cannot be excluded.

2.4.2. Tyrosine kinase receptors
Fat mobilization is exquisitely sensitive to suppres-

sion by insulin [63]. Insulin is more efficient in inhibit-
ing lipolysis than glucose production. In the post-meal
situation, the major proportion of the decrease in free
fatty acid levels is brought about by insulin antilipolytic
effect. Insulin and insulin growth factor show antilipol-
ysis through activation of tyrosine kinase receptors, a
decrease in cAMP level, inactivation of protein kinase
A and reduced phosphorylation of HSL. The activation
cascade is rather complex [64]. When insulin binds to
its receptor, the receptor is activated by phosphorylation
on tyrosine residues, which causes tyrosine phosphory-
lation on intracellular substrates such as insulin receptor
substrates 1 and 2 and binding of the p85 regulatory
subunit of phosphatidyl inositol kinase-3. This bind-
ing stimulates the lipid-kinase activity of the enzyme
which results in phosphorylation of the phosphoinositol
at the D-3 position of the inositol ring. In addition, the
serine kinase activity of phosphatidyl inositol kinase-3
autophosphorylates both the p85 regulatory subunit and
the p110 catalytic subunit. This step is followed by pro-
tein kinase B/Akt phosphorylation and an activation of
phosphodiesterase 3B, the enzyme which catalyzes the
degradation of cAMP into 5′AMP [65].

2.4.3. Adrenomedullin signal transduction pathway
Adrenomedullin, a peptide secreted from entothe-

lial and vascular smooth muscle cells, has recently been
shown to be also produced by human adipocytes [66].
The peptide shows an inhibitory effect on lipoly-
sis induced by the beta-adrenergic agonist, isopre-
naline, but not by forskolin, a direct activator of adeny-
lyl cyclase, suggesting that the antilipolytic mech-
anism lies upstream of adenylyl cyclase activation.
Adrenomedullin activates a functional receptor com-
posed of the calcitonin-receptor-like receptor and a
receptor-activity-modifying protein. Nitric oxide is a
second messenger known to mediate several adrenome-
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dullin effects. In adipocytes, adrenomedullin stimulates
nitric oxide production, maybe through endothelial ni-
tric oxide synthase. Oxidative inactivation of the beta-
adrenergic agonist could explain the antilipolytic effect
mediated by adrenomedullin in vitro.

2.4.4. AMP-activated protein kinase
AMP-activated protein kinase is considered to act

as an intracellular sensor of energy. In stress condi-
tions that increase the AMP/ATP ratio such as hypoxia,
exercise and long-term starvation, AMP-activated pro-
tein kinase is activated to switch on catabolic pathways
that produce ATP and switch off anabolic pathways.
In adipocytes, activation of AMP-activated protein ki-
nase has been shown to decrease beta-adrenoceptor-
stimulated lipolysis [67,68]. The enzyme phosphory-
lates HSL, although it is not clear at present whether this
event explains the antilipolytic effect [69]. The physio-
logical importance of this antilipolytic pathway is not
fully understood.

3. Triglyceride hydrolysis

The hydrolysis of the triglycerides stored in the fat
cell is a complex phenomenon involving lipases, plasma
membrane transporters, fatty acid binding proteins and
proteins associated with the lipid droplet.

3.1. Lipases

In the fasting state, regulation of HSL has al-
ways been thought to be the key process controlling
the release of fatty acids from WAT. However, the
rate-limiting role of HSL in WAT lipolysis has been
challenged by the data from HSL knock out mice
[70–73]. Catecholamine-induced lipolysis is abrogated,
but residual basal lipolysis is observed in adipocytes
from HSL null mice. These data suggest the existence
of non HSL lipases in WAT. Recently, a novel lipase
termed adipose triglyceride lipase (ATGL), desnutrin
or iPLA2ζ has been identified [74–76]. Using antibod-
ies directed against ATGL, Zimmerman et al. suggest
that ATGL is responsible for 75% of the cytosolic acyl-
hyrolase activity in WAT of HSL deficient mice [74].
ATGL could therefore participate together with HSL in
WAT lipolysis. Using a highly specific HSL inhibitor,
the contribution of HSL and ATGL was recently re-
evaluated [77]. The following model for lipase activa-
tion can be proposed in human fat cells. ATGL and HSL
both possess the capacity to hydrolyse triglycerides in
vitro [74,78]. However, only HSL shows a significant
diglyceride lipase activity [79]. Although HSL has the
capacity to hydrolyze monoglycerides in vitro, mono-
glyceride lipase, which is not under hormonal control,
is required to obtain complete hydrolysis of monoglyc-
erides in vivo [80]. Triglycerides are hydrolyzed at a
lower rate than diglycerides indicating that the first step
of lipolysis is rate-limiting [81]. As discussed above
(see Sections 2.1 and 2.2), stimulation of the cate-
cholamine and natriuretic peptide pathways leads to an
increase in cAMP and cGMP levels, respectively [82].
Both protein kinases A and G phosphorylate and acti-
vate HSL at least in part through translocation of the
enzyme from the cytosol to the lipid droplet [24,83,84].
In line with the role of HSL in triglyceride hydrolysis
under stimulated conditions, ATGL is not phosphory-
lated by protein kinase A and does not appear to be
acutely regulated by isoprenaline [74]. Data on human
fat cells clearly demonstrate that the two major and in-
dependent activation pathways converge on HSL [77].
However, non-HSL lipases contribute to the hydrolysis
of triglycerides into diglycerides under basal conditions.
Although ATGL seems to play a predominant role in
basal lipolysis, it cannot be excluded that other WAT en-
zymes with the capacity to hydrolyze triglycerides such
as carboxylesterase 3 (or triacylglycerol hydrolase) play
a role [85].

A defect in HSL expression is likely to play a major
role in the impaired lipolysis observed in obese subjects
[86]. Indeed, the defect is also observed in first-degree
relatives of obese subjects and in adipocytes from obese
subjects differentiated in vitro [77,87]. Moreover, there
is a strong correlation between lipolytic capacity and
HSL expression in human subcutaneous fat cells [88].
The defect may constitute an early, possibly primary,
event in obesity, which protects against excessive FFA
release. Accordingly, HSL deficiency in mice causes
a reduction in plasma FFA levels and favours an an-
tiatherogenic lipid profile [70,71].

3.2. Non-enzymic lipid interacting proteins

Proper activation of lipolysis relies upon proteins
that are not directly involved in the catalytic process.
Adipocyte lipid binding protein or aP2 is an intra-
cellular fatty-acid-binding protein highly expressed in
adipocytes. It interacts with HSL N-terminal region and
increases the lipolytic activity of HSL through its abil-
ity to bind and sequester fatty acids and via specific
protein-protein interaction [89]. A pre-lipolysis com-
plex containing at least adipocyte-lipid-binding protein
and HSL exists [90]. The complex translocates to the
surface of the lipid droplet upon lipolytic stimulation.
Consistent with such a role for the fatty acid binding
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protein is the observation that knock-out mice exhibit
decreased lipolytic capacity [91–93].

Modification of the lipid droplet constitutes another
potential mechanism for the control of lipolysis. Per-
ilipins are proteins covering the large lipid droplets
in adipocytes [94]. In basal conditions, perilipin sup-
presses lipolysis by blocking access of the lipases to
the lipid droplet. Hormone-induced phosphorylation of
perilipin by protein kinase A and probably protein ki-
nase G facilitates the access of lipases to the droplet. As
expected from cellular studies, basal lipolysis is highly
elevated in perilipin null mice [95,96]. Moreover, HSL
translocation to the lipid droplets is impaired during
lipolysis in these mice, illustrating the importance of
perilipin in this process [97]. The lipid droplet contains
specific structural proteins as well as enzymes. Upon
lipolytic stimulation, there is a reorganization of the
droplet with recruitment of new proteins [98]. The role
of these lipid-associated proteins in the lipolytic process
awaits further studies.

The final step of the lipolytic process is the efflux
of fatty acid and glycerol from the adipocytes. Pas-
sive diffusion may explain part of the transport [99].
However, there are several facilitating proteins. Fatty
acid translocase/CD36 and fatty acid transport proteins
have been shown to mediate fatty acid uptake. Their
role in the efflux of the metabolites is poorly docu-
mented. Glycerol is transported by aquaporin 7 in fat
cells. Mice deficient in the glycerol transporter show
impaired glycerol release [100]. The mice develop obe-
sity when aging [101,102]. Fat cells without aquaporin 7
accumulate glycerol. Because of increased glycerol ki-
nase activity, there is a resulting increase in fatty acid
re-esterification and triglyceride accumulation that ex-
plain adipocyte hypertrophy.

4. Conclusion

The last decade has been marked by the discovery of
a number of mechanisms able to clarify the control of fat
mobilization (Fig. 1). To date, there are two hormonal
pathways, namely catecholamines and natriuretic pep-
tides, stimulating fat mobilization in humans. In con-
trast, there are numerous antilipolytic pathways that rely
on paracrine or endocrine factors. The characterization
of ATGL as an adipose tissue triglyceride lipase has
prompted a re-evaluation of the roles of the various en-
zymes in lipolysis. Non-enzymic components such as
perilipins and recently characterized transporters such
as aquaporin 7 appear also to be essential.

The reduced lipolysis commonly reported in subcu-
taneous WAT of obese subjects may involve defects at
Fig. 1. Schematic view of lipolysis in human adipose tissue. AC,
adenylyl cyclase; ALBP, adipocyte lipid binding protein; AMPK,
AMP-activated protein kinase; AR, adrenoceptor; ATGL, adipocyte
triglyceride lipase; FFA, free fatty acid; GC, guanylyl cyclase; Gi, in-
hibitory GTP-binding protein; Gs, stimulatory GTP-binding protein;
HSL, hormone-sensitive lipase; IRS, insulin receptor substrate; MGL,
monoglyceride lipase; PDE-3B, phosphodiesterase 3B; PI3-K, phos-
phatidylinositol-3-phosphate kinase; PKA, protein kinase A; PKB,
protein kinase B; PKG protein kinase G.

different steps of the transduction pathways. To date, the
best characterized defect is the decreased expression of
HSL. It is however still unclear whether altered lipol-
ysis promotes the development and/or stabilization of
obesity or is an early protective adaptation to limit ex-
cessive fatty acid release.
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