
C. R. Biologies 329 (2006) 137–147

http://france.elsevier.com/direct/CRASS3/

Biological modelling / Biomodélisation

Adaptive properties of living beings: Proposal
for a generic mechanism.

(Self-Programming Machines III)

Jean-Paul Moulin

Département d’information et de recherche médicale, Centre hospitalier interdépartemental de Clermont-de-l’Oise, 2, rue des Finets,
60607 Clermont-de-l’Oise cedex, France

Received 7 December 2004; accepted after revision 6 December 2005

Available online 18 January 2006

Presented by Michel Thellier

Abstract

Living systems are capable to have appropriate responses to unpredictable environment. This kind of self-organization seems
to operate as a self-programming machine, i.e. an organization able to modify itself. Until now the models of self-organization
of living beings proposed are functions solutions of differential systems or transition functions of automata. These functions are
fixed and these models are therefore unable to modify their organization. On the other hand, computer science propose a lot of
models having the properties of adaptive systems of living beings, but all these models depend on the comparison between a goal
and the results and ingenious choices of parameters by programmers, whereas there are no programmer’s intention nor choice
in the living systems. From two best known examples of adaptive systems of living beings, nervous system and immune system
that have in common that the external signals modify the rewriting of their organization and therefore work as self-organizing
machines, we devised machines with a finite set of inputs, based upon a recurrence, are able to rewrite their organization (Self-
programming machines or msp) whenever external conditions vary and have striking properties of adaptation. Msp have similar
properties whatever the operation defining the recurrence maybe. These results bring us to make the following statement: adaptive
properties of living systems can be explained by their ability to rewrite their organization whenever external conditions vary under
the only assumption that the rewriting mechanism be a deterministic constant recurrence in a finite state set. To cite this article:
J.-P. Moulin, C. R. Biologies 329 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Adaptive systems; Self-programming machines; Self-organizing machines; Self-reproducing machines; Ultra stable systems
1. Introduction

According to recent definitions [1], self-organization
is a basic emergent behaviour. Plants and animals as-
semble and regulate themselves independent of any hi-
erarchy for planning or management.

E-mail address: j-paul.moulin@chi-clermont.fr (J.-P. Moulin).
1631-0691/$ – see front matter 2005 Académie des sciences. Published b
doi:10.1016/j.crvi.2005.12.002
Emergence describes the way unpredictable patterns
arise from innumerable interactions between indepen-
dent parts.

Let us quote some historical main publications about
this topic:

– feedback loops described in Cybernetics [2,3] which
give one of the first models of the living beings’
organization. Wiener himself [4] makes the paral-
y Elsevier SAS. All rights reserved.

http://france.elsevier.com/direct/CRASS3/
mailto:j-paul.moulin@chi-clermont.fr
http://dx.doi.org/10.1016/j.crvi.2005.12.002

138 J.-P. Moulin / C. R. Biologies 329 (2006) 137–147
lelism between the cerebellar tremor and an unad-
justed retroactive loop;

– the works [5,6] studying the entropy of self-orga-
nizing systems. Prigogine defined dissipative struc-
tures systems which continuously export entropy in
order to maintain their organization [7];

– modelling the organization of living systems by dy-
namical systems. René Thom proposes catastrophe
theory [8] as a model of embryological differen-
tiation. This model uses continuous differentiable
dynamical systems;

– automata theory that allows us to very easily rep-
resent interactions between parts of systems. Von
Neumann self-reproducing automata [9] is the main
example of machines building themselves. Stu-
art Kaufman models genetic regulatory networks
with networks of combinatorial Boolean automata
[10,11];

– Von Foerster and later Henri Atlan [12] try to ex-
plain the self-organizing properties of the living
beings by the paradigm of the complexity by the
noise;

– Maturana, Varela [13] and Zeleny [14] develop
the concepts of the closure property of all the au-
tonomous systems and autopoiesis.

Yet Ashby [15] argues that self-organization cannot
be the result of a function because this function ought to
be the result of self-organization and so forth.

On the other hand, computer science proposes to this
date a lot of models to design adaptive systems, but all
these models depend on the comparison between a goal
and the results and ingenious choices of parameters by
programmers, whereas there are no programmer’s inten-
tion nor choice in the living systems. Let us mention
some examples:

– for the simulated annealing model, choice of para-
meters: initial temperature, how many iterations are
performed and how much the temperature is decre-
mented at each step [16–18];

– in neural networks, back propagation of the differ-
ence between the target value and the output is used
for learning the target [19,20];

– in evolutionary programming, each individual in the
population receives a measure of its fitness to the
environment [21,22];

– the adaptive filter, using the least mean-square algo-
rithm, which is the most widely used adaptive filter-
ing algorithm, measures the difference between the
output of the adaptive filter and the output of the
unknown system [23,24].
One cannot simulate with all these previous models
the adaptive properties of the nervous system and the
immune system such as those found in the following
examples:

(1) if we cut the opposite muscles of a monkey and re-
attach them in a crossed position of one eyeball [25]
or of the limb [26], after some weeks, the eyeballs
again move together and the movements of the limb
are co-ordinated;

(2) in an experiment of rats switching between two dif-
ferent environments (morph square and morph cir-
cle), it was shown that neurons states got stabilized
into two different configurations [27];

(3) B cells can distinguish the change of a single amino
acid in the epitope of an antigen [28] and elaborate
new antibodies directed against the new epitope.

Nervous system and immune system are different
[29]. The immune system comprises different types of
cells and there are no equivalents of the Hodgkin, Hux-
ley equations giving a model of the neuron [30,31].

Yet these systems have in common the property to be
able to rewrite their organization whenever the external
conditions vary.

All present theories of synaptic learning refer to the
general rule introduced by the Canadian psychologist
Donald Hebb in 1949 [32]. He postulated that repeated
activation of one neuron [33] by another, across a par-
ticular synapse, increases its strength.

B cells make specific immuno globulins during their
differentiation by recombination, splicing and removal
of V, D and J gene segments [34].

These systems having ‘the rewriting property’ op-
erate as self-organizing machines, which self-organize
by modifying their internal functions, i.e. self-program-
ming machines.

This problem was raised in genetics: “Molecular bi-
ology itself must acknowledge that there is a fundamen-
tal difficulty, since it is obliged to admit that the famous
‘genetic program’ is a ‘program which programs itself’
or a program which needs the result of its reading and
execution so as to be read and executed” [35].

So through this very fast review of literature, we see
that there are fundamental difference between the clas-
sical model approach and self-programming machines.
Table 1 summarizes these differences.

We will define, in this paper, an Adaptive System as
a system that changes its behaviour in response to its
environment, by varying its own parameters or even, in
our case, its own structure: it thus retains information
about the environment in a form that can influence its fu-

J.-P. Moulin / C. R. Biologies 329 (2006) 137–147 139
Table 1
Differences between the classical model approach and self-programming machines

Model Self-programming machines

Implementation Is a fixed function solution of differential system
or a transition function of automata network

Is an organization modified by environmental
data

Properties of the organization Distribution of transient and cycles length.
Diameter of attraction basins

Only one trajectory can be studied since the tra-
jectory modifies the organization as it goes.
Fixed points are pervasive

Properties of the cycle Each point of a cycle is gone through only once The self-programming machine can go through a
point more than once during a cycle (in case of
n-cycle) since the internal function will be differ-
ent on the next occurrence

Probability to stabilize into a fixed point
when the input set increases

Less probable [36] Very probable
ture behaviour [37]. However, an Adaptive System does
not have a stated or implicit goal or objective, and thus
does not aim at improving its performance. Yet, adap-
tation results in a seemingly goal-directed behaviour, if
the environment repeats patterns of inputs.

We will show that the mechanism proposed here and
the adaptive systems of living beings share similar prop-
erties:

– all functions that compare results to a goal (feed-
back, gradient, fitness to the environment, etc.) and
all parameters choices are not to be allowed;

– initial states and functions are randomly chosen at
the beginning and once and for all;

– ability to stabilize into a fixed point if the environ-
ment is fixed, this stabilization being more probable
when the input set size increases or the machines
are interconnected;

– ability to find another stabilization (ultra stability)
[38] if the conditions vary, in case of small pertur-
bations or intentional massive breakdowns;

– ability to run in parallel, each machine having its
local clocks, not studied in this paper.

2. Self-programming machines. Description and
functioning

We define here self-programming machine formal-
ism and show the properties of their dynamics.

2.1. Components

Let be given:

– Z , with p prime,

pZ
– PA = {fα,α ∈ {0, . . . , pp −1} | fα : Z

pZ
�→ Z

pZ
}, the

set of polynomials which map Z

pZ
into itself, |PA| =

pp ,
– ∗ :PA × PA �→ PA,
– CP = {C : Z

pZ
× Z

pZ
�→ PA}, a set of functions that

map Z

pZ
× Z

pZ
into PA,

– an index α ∈ N.

2.2. Definition and functioning

Definition. A self-programming machine (or msp) is a
sextuplet (Inp,F,Out, S, δ,R) where:

(1) Inp is the set of inputs of msp: Inp = Z

pZ
× Z

pZ
,

(2) F = {F | F : Inp �→ Out},
(3) Out is the set of outputs of msp: Out ⊆ Z

pZ
× Z

pZ
,

(4) S is the set of internal states of msp: S = PA × Inp,
(5) δ :S �→ S is the transition function of msp (change

state), Sα = (fα, (eα, sα))
δ→ Sα+1 = (fα+1, (eα+1,

sα+1)),
(6) (Cα)α∈N, a family of functions defined by a recur-

sion R.

Functioning: Msp performs the following operations
(Fig. 1):

(1)inpα = (eα, sα), eα, sα ∈ Z

pZ

(2)Cα(inpα) = fα

(1) and (2) define the state Sα = (Cα(inpα), inpα) =
(fα, inpα)

(3)sα+1 = fα(eα) = eα+1

(4)outα = (eα+1, sα+1) = (
fα(eα), fα(eα)

) = inpα+1

140 J.-P. Moulin / C. R. Biologies 329 (2006) 137–147
Fig. 1.

Fig. 2.

(4) defines

(5)Fα(inpα) = outα = inpα+1

(6)Cα(inpα+1) = fα+1

The equalities (5) and (6) define the transition func-
tion:

δ(fα, inpα) = (
Cα(inpα+1),Fα(inpα)

)
(7)= (fα+1, inpα+1)

The recursion R :Cα �→ Cα+1 is defined by:

(8)
Cα+1(input)

(9)
=

{
Cα(Fα(input)) ∗ fα if input = inpα

Cα(input) if input �= inpα

A machine msp is thus entirely characterized by the di-
mensionality of its input space p and its operator ∗.

From (5) and (6) and (8), we obtain (Fig. 2):

Cα+1(inpα) = Cα

(
Fα(inpα)

) ∗ fα = Cα(inpα+1) ∗ fα

(10)= fα+1 ∗ fα

2.3. Initialization and trajectory

Initial conditions of a machine msp (p,∗) are given
by initial inputs inp0 and initial function C0:

Initialization. inp0 = (e0, s0) and C0 are chosen at ran-
dom at the beginning and once for all from two laws
of probability defined respectively by its sample spaces
Inp = Z

pZ
× Z

pZ
for inp0 and PA for C0 and its uniform

distributions:

℘
({α}) = 1

p2
, α ∈ Z

pZ
× Z

pZ

℘
({f }) = 1

pp
, f ∈ PA

Trajectory. The trajectory of msp corresponds to suc-
cessive points (inpα,outα) ∈ I × O the machine goes
through, starts at (inp0,out0) and will be denoted:

Trajectory = {
(inp0,out0), . . . , (inpα,outα),

(inpα+1,outα+1), . . .
}

Theorem 1. A self-programming machine is a deter-
ministic device, and the cardinality of state set is finite.
Therefore such a machine necessarily converges.

Definitions. A msp converges whenever a point of its
trajectory (inpτ+n,outτ+n) is identical to a previous one
(inpτ ,oupτ). It then indefinitely goes through a limit cy-
cle or n-cycle composed of the n points:

(inpτ ,outτ), (inpτ+1,outτ+1), . . . ,

(inpτ+n−1,outτ+n−1).

Thus dynamics of msp is characterized by the tran-
sient length τ and the length n of the limit cycle (i.e. its
period).

2.4. Connection to external processes g and h:
Machine msp1 and msp2

In order to show the msp adaptive properties:
(1) the msp is connected (Fig. 3) to a combinatorial

automaton defined by some external function g ∈ PA.
Let us call this machine msp1.

1. The equality (3) eα+1 = sα+1 defining the msp is re-
placed by e′

α+1 = g(s′
α+1) for the msp1.

Let us study under which conditions a msp that we
call m′

spis identical to msp1, i.e. conditions under which
a msp1 is a self-programming machine msp.

The equality (2) Cα(inpα) = fα defining msp is re-
placed by C ′

α(inpα) = g ◦ fα for the m′
sp.

The equality (6) Cα(inpα+1) = fα+1 by C ′
α(inpα+1)

= g ◦ fα+1.
The equality (10) Cα+1(inpα) = Cα(Fα(inpα)) ∗

fα = fα+1 ∗ fα by C ′
α+1(inpα) = C ′

α(Fα(inpα)) ∗ (g ◦
fα) = C ′

α(inpα+1) ∗ (g ◦ fα) = (g ◦ fα+1) ∗ (g ◦ fα).

J.-P. Moulin / C. R. Biologies 329 (2006) 137–147 141
Fig. 3.

Fig. 4.

Operation ‘◦’ is left distributive with ‘∗’, so we can
write:

(11)C ′
α+1(inpα) = g ◦ (fα+1 ∗ fα)

In this case:

Theorem 2. m′
sp and msp1 are identical and hence have

the same trajectory.

2. Msp1 is connected (Fig. 4) to another combinatorial
automaton defined by any external function h ∈ PA ×
PA. Let us call this machine msp2.

The equality (4) inpα = outα−1 defining the msp is
replaced by inp′′

α = h(out′′α−1) for the msp2.
Let us study under which conditions a msp1 that we

call m′′
sp identical to msp2:

Then the equality (2): C ′
α(inpα) = g ◦ fα defining

msp1 is replaced by C ′′
α ◦ h(outα−1) = g ◦ fα for the

machine m′′
sp, the equality (6): C ′

α(inpα+1) = g ◦ fα+1
is replaced by C ′′

α ◦ h(outα) = g ◦ fα+1, and the equal-
ity (11) C ′

α+1(inpα) = g ◦ (fα+1 ∗ fα) is replaced by
C ′′

α+1 ◦ h(outα−1) = g ◦ (fα+1 ∗ fα).
The function h is injective. In this case:

Theorem 3. m′′
sp and msp2 are identical and hence have

the same trajectory.
From now on, we will only study msp2 and we call
msp this machine.

3. Cyclic groups

Let us suppose a msp is going through a n-cycle
points of which are: {(inpα,outα)}α∈I , I = {τ, τ + 1,

. . . , τ + n − 1}.

Cyclic group of the states (GS)

From the equality (7), we can write Sα = (fα, inpα),
α ∈ I , δ(Sα) = (Sα+1), therefore ∃s such as

δ ◦ · · · ◦ ∂︸ ︷︷ ︸
s times

(Sα) = (Sα)

and (∂,◦) generates a cyclic group GS order of which
is s.

Cyclic group of the n-cycles (Gn)

The function g being fixed at the beginning, one
point (inpα,outα) of the cycle is only defined by the
function fα: (inpα,outα) = ((eα, fα(eα)), (g ◦ fα(eα),

fα(eα)). If we have a s-cycle for (Sα)α∈I , we obtain an
n-cycle for ((inpα,outα))α∈I with n � s (hence n | s).

It therefore depends uniquely on the membership of
fα to the equivalence class of polynomials having the
same image for the value eα . Therefore the order n of
Gn is a divisor of s.

4. Conditions of n-cycles

4.1. Linear operator

Definition. In the case of a linear operator ∗, equality
(9) becomes: Cα+1(inpα) = fα+1 ∗ fα = λfα+1 + µfα .
For the sake of simplicity, we will simplify this to
Cα+1(inpα) = λfα+1 +fα , which not does influence the
distribution of n-cycles or transient length.

λ ∈ Z

pZ
− {0}

Cα+1(inpα) = λCα(inpα+1) + Cα(inpα) = λfα+1 + fα

Let m be the number (m � n) of different in-
put values of the n-cycle. The matrix correspond-
ing to transition from state (fτ+v, inpτ+v) to state

142 J.-P. Moulin / C. R. Biologies 329 (2006) 137–147
(fτ+v+1, inpτ+v+1) is the (m × m) matrix:

1 . . . 0 0 . . . 0
.

0 . . . 1 λ

0 . . . 0 1 . . . 0
.

0 . . . 0 0 . . . 1

fτ

. . .

fτ+v

fτ+v+1
. . .

fτ+m−1

(12)=

fτ

. . .

fτ+v + λfτ+v+1
fτ+v+1

. . .

fτ+m−1

The n transitions of the n-cycle give a product [P] of n

matrices such as:

[P]

fτ (eτ)

. . .

fτ+v(eτ+v)

. . .

fτ+m−1(eτ+m−1)

 =

fτ+n(eτ)

. . .

fτ+n+v(eτ+v)

. . .

fτ+n+m−1(eτ+m−1)

(13)=

fτ (eτ)

. . .

fτ+v(eτ+v)

. . .

fτ+m−1(eτ+m−1)

Equality (13) implies that the conditions for a msp to
go through a n-cycle, defined as some vector [fα(eα),

α ∈ {τ, . . . , τ + m − 1}], is that this vector is an eigen-
vector associated to eigenvalue 1 of [P].

Inversely, if we have a product of n (m × m) matri-
ces [P] = Pn.Pn−1. · · · .P2.P1 where [P] has eigenvalue
1 and Pi are matrices such as in the left-hand side of
Eq. (12), then we can find a linear msp such as these
matrices are transition matrices of msp and mspc goes
through a n-cycle corresponding to the 1-eigenvector
and to the n transition matrices Pi .

Theorem 4. A msp with linear operator goes through
a n-cycle [fα(eα), α ∈ {τ, . . . , τ + m − 1}] if 1 is an
eigenvalue of [P] and [fα(eα), α ∈ {τ, . . . , τ +m− 1}]
its associated eigenvector.

4.2. Polynomial operator

In preliminary unpublished work [39], we have stud-
ied the case: Cα+1(inpα) = fα+1 ◦ fα , where ◦ is the
composition of functions, thus corresponding to the case
where ∗ = ◦. We found that, in this case, trajectories al-
ways ended in fixed points. We have introduced before
the linear case, we now introduce a more general poly-
nomial case.
Definition. A polynomial operator ∗ is defined, for
some polynomial f ∈ PA, by:

(14)Cα+1(inpα) = fα+1 ∗ fα

Cα+1(inpα) = Cα(inpα) + f ◦ Cα(inpα+1)

(15)f ∈ PA

(16)Cα+1(inpα) = fα + f ◦ fα+1

We do not have theoretical results in that case and
can only give simulations results for such msp: all the-
oretical results presented in the following Sections 5
and 6 only apply to linear machines. Yet, simulations
show very similar results for both linear and polynomial
operators (see results in §6.1).

5. Association of machines

5.1. Association with a combinatorial automaton

5.1.1. Definition
A combinatorial automaton defined by a function

pα∈N ∈ PA is modified by a msp (Fig. 5).
The functioning of this machine (mspc) differs from

a msp uniquely by the equality (3) replaced by sα =
pα(eα) with pα = pα−1 + fα−1.

In this paper, we consider for simplicity that the
functions h and g are identity functions (which implies
eα+1 = sα and inpα+1 = outα) and the operation ‘∗’
is linear. Apparently, in general case, we cannot obtain
theoretical results.

5.1.2. Conditions of n-cycle
Theorem 5. A mspc goes through a n-cycle if ∀i, j ∈
I = {τ, . . . , τ + n − 1}

– (fi)(ej) = 0
– pi(ei) �= pj (ej)

Fig. 5.

J.-P. Moulin / C. R. Biologies 329 (2006) 137–147 143
Let us suppose this machine goes through a n-cycle,
i.e. α � τ .

We have:

∀i ∈ {0, . . . , n − 1},
pα+i (eα+i) = pα+n+i (eα+n+i)

(17)= pα+2n+i (eα+2n+i) = · · ·
We make the demonstration for i = 0.

Let P be the matrix defined by the equality (13), let
Li be the line vector such as Li.P is the line vector
equal to the ith line of P , let V the column vector ele-
ments of which are fα(eα), fα+1(eα), . . . , fα+n−1(eα),
from the equality (17):

pα(eα) = pα+n(eα) gives

pα(eα) = pα(eα) + [L1 · P].V
pα(eα) = pα+2n(eα) gives

pα(eα) = pα(eα) + [
L1 · P 2 + L1 · P]

.V

. . .

pα(eα) = pα+n2(eα) gives

pα(eα) = pα(eα)

+ [
L1 · P n−1 + · · · + L1 · P 2 + L1 · P]

.V

which implies

(18)
(L1 ·P) ·V = (L1 ·P 2) ·V = · · · = (L1 ·P n−1) ·V = 0

These n equalities give the following homogenous
system:

L1 · P
L1 · P 2

. . .

L1 · P n−1

V = 0

One obtains by recurrence:

L1 · P
L1 · P 2

. . .

L1 · P n−1

(19)=

1 0 0 0 0 . . .

1 λ 0 0 0 . . .

1 2λ λ2 0 0 . . .

1 3λ 3λ2 λ3 0 . . .

.

1
(
n−1

1

)
λ

(
n−1

2

)
λ2 λn−1

the determinant of which is equal to
∏n−1

i=0 λi = λn(n−1)/2

�= 0, therefore the only solution of this system is the
trivial solution: fα(eα) = fα+1(eα) = · · · = fα+n−1(eα)

= 0.
Repeating the same reasoning for i = 1, . . . , n − 1,
the determinant of the system is equal to ±λn(n−1)/2 �= 0
and we obtain

(20)(fi)(ej) = 0

The equalities (fi)(ej) = 0 and the equality eα+1 =
[pα−1 + fα−1](eα) implies that

(21)∀i, j � τ, pi(ei) �= pj (ej)

The equality pi(ei) = pj (ej) would imply a cycle of
length n′ < n contrary to the hypothesis (21).

In addition,

(22)p(eτ+n−1) = eτ+n = eτ

5.1.3. Distribution of τ and n

Let be given identical machines mspc differing uni-
quely by their initial conditions.

Remark. If ℘({e}) = 1
p

, e ∈ Z

pZ
, a sequence with el-

ements chosen at random ((eα, eα), (eα+1, eα+1), . . . ,

(eα+n−1, eα+n−1)) can be a trajectory of some mspc if
all the values ei∈α,...,α+n−1 are different: Pα−1 and eα

being given, we have only to choose a function fα−1
that satisfies the equality fα−1(eα) = eα+1 − Pα−1(eα).
We make the same reasoning for the following points of
the sequence.

But, if two points in the sequence are equal (for ex-
ample, (eα, eα) and (eα+l , eα+l)), if the value eα+l+1 is
such that eα+l+1 �= Pα+l (eα) + [fα + λfα+1](eα), the
sequence cannot be the trajectory of a mspc.

The probability that an arbitrary sequence has all its
values different is:

p − 1

p

p − 2

p
· · · p − n

p
= (p − 1)!

(p − n − 1)!
1

pn
,

if n is fixed, this probability tends towards 1 when p →
∞, therefore an arbitrary sequence chosen at random is
almost always a trajectory of a mspc if p � n.

Lemma. ℘[fi(ej) = x] = 1
p

.

The following matrix given in Fig. 6 establishes a
one-to-one correspondence between the coefficients of
polynomial f ∈ PA and the values of this polynomial.

The determinant of this matrix is a Vandermonde de-
terminant equal to (p − 1)!(p − 2)! · · ·2!1! and different
from 0 since p is prime.

The number of functions f ∈ PA is pp , each func-
tion has p coefficients, the number of coefficients of the

144 J.-P. Moulin / C. R. Biologies 329 (2006) 137–147

0 0 0 . . . 0 1
1 1 1 . . . 1 1

2p−1 2p−2 2p−3 . . . 21 20

.

(p − 2)p−1 (p − 2)p−2 (p − 2)p−3 . . . (p − 2)1 (p − 2)0

(p − 1)p−1 (p − 1)p−2 (p − 1)p−3 . . . (p − 1)1 (p − 1)0

ap−1
ap−2
ap−3
. . .

a1
a0

 =

f (0)

f (1)

f (2)

. . .

f (p − 2)

f (p − 1)

Fig. 6.
functions of PA is pp+1 and ∀x ∈ Z

pZ
, pp coefficients

are equal to x.
The fact that pp coefficients are equal to x and the

correspondence one to one between the coefficients of
polynomials PA and the values of these polynomials im-
ply that it exists pp pairs (i, j) such as fi(ej) = x.

Therefore, if the random variable fi and ej have re-
spectively its sample space equal to PA and Z

pZ
, and

have uniform distributions:

℘
[
fi(ej) = x

] = pp

pp+1
= 1

p
.

In the following, we try to find a way to calculate
the probability of the event that a mspc goes through
a n-cycle. For that, we should work on the space of
all the possible trajectories of mspc differing by its ini-
tial conditions, but it is not a finite space. To get rid
of this problem, for fixed n and p � n, we consider
just the set Tn of all the n-sequence of elements Tn =
{((e1, e1), . . . , (en, en)) | ei ∈ Z

pZ
} which is a finite set.

In this space, we are looking for the n-cycles. I mean
to find a mspc that goes through these n-elements like a
n-cycle. From now on, for n fixed and p � n, as shows
our remark, we consider that all elements of Tn are on a
trajectory of a mspc which allows us to give the follow-
ing results:

Let us consider the sequence which elements are
chosen at random ((eα, eα), (eα+1, eα+1), . . . , (eα+n−1,

eα+n−1)). This sequence corresponds to a n-cycle of
mspc if the three events fi(ej) = 0 (20), p(ei) �= p(ej)

(21) and p(eτ+n−1) = eτ (22) occur:

℘
[
fα(eα) = 0

] = 1

p
implies

℘
[
fi(ej) = 0

] = 1

pn2 , i, j ∈ I, |I | = n.

We have demonstrated that [35]:

℘
[[

p(ei) �= p(ej)
]

and
[
p(eτ+n−1) = eτ

]]
= p!

(n − p)! .
n

pn+1

The probability that a point in the trajectory of this
machine belongs to a n-cycle is the probability that a
point belongs to a cycle is:

℘[En-cycle] = 1

n

[
1

pn2

]
.

[
p!

(n − p)! .
n

pn+1

]

= ℘[E1-cycle] + ℘[E2-cycle]
+ ℘[E2-cycle] + · · ·

= 1

p2
+ p − 1

4p6
+ (p − 1)(p − 2)

9p12
+ · · ·

Now, let us evaluate the probability for a point to be
a transient point.

Theorem 6. Under the assumption that the point is in
the trajectory of some machine, then obviously:

℘[transient-point] 1 − 1

p2

and the probability a mspc converges after τ transient
points (the (τ + 1)th point is on a cycle) is ℘(τ) (1 −
1
p2)τ 1

p2 .

τ is a geometric random variable that has expected
value E(τ) = p2 and variance

E(τ 2) − [
E(τ)

]2 = 2p4 − p2

The fast convergence of mspc explains the concor-
dance between the computations and the simulations
(Tables 3 and 4).

Because of the remark in §5.1.3, notice that for m

small enough so that we can find m− 1 different points,
these m − 1 points together with one mth point will be
on a trajectory of some mspc machine. Our assumption
is thus very light.

5.2. Association with another msp

Fig. 7a and b shows the two ways of binding together
two msp.

In this paper, we focus on a sequential updating
scheme: machines change states one at a time. Other
updating regimes (parallel, asynchronous) could also be
studied but will not be reported here.

The method to demonstrate the equivalence between
one msp and a network of n msp consists in replacing
each term defining one msp by a n-tuplet.

J.-P. Moulin / C. R. Biologies 329 (2006) 137–147 145
(a)

(b)

Fig. 7.

For example, in the case of Fig. 7a (Fig. 7b would be
similar), equations can be rewritten as:

(23)inpnα = (inpα, inp′
α) = (

(eα, sα), (sα, eα)
)

(24)C nα(inpα) = (
Cα(inpα),C ′

α(inp′
α)

) = (fα, f ′
α)

(25)outnα = ((
f ′

α(sα), fα(eα)
)
,
(
fα(eα), f ′

α(sα)
))

(26)inpnα+1 = (
h(inpα), h′(inp′

α)
)

(27)C nα+1(inpnα+1) = (fα+1 ∗ fα,f ′
α+1 ∗ f ′

α)

which shows the equivalence.

6. Results

We now present the results of simulations we have
run for msp machines, linear and polynomial. Each re-
sult is obtained by 32 000 simulations of the same ma-
chine with different initial conditions chosen at random.
|Input| = p2. For each value of p, the machine is cho-
sen at random, i.e. parameter λ for the linear case and
polynomial f ∈ PA are chosen at random.

6.1. Msp with operation ‘∗’ linear and polynomial

The similarity between msp with operations ‘∗’ lin-
ear and polynomial is striking: we show in Table 2 re-
sults of simulations, both for the linear and polynomial
cases, indicating that both linear and polynomial cases
seem to be in agreement with the theoretical value.
Table 2
Results of simulations for linear and polynomial cases

|Input| ‘∗’ linear ‘∗’ polynomial

% n-cycle
n �= 1

Expected
value of τ

% n-cycle
n �= 1

Expected
value of τ

9 3.28 8.28 3.01 11.82
25 2.63 85.50 1.84 32.92
49 0.55 188.99 0.21 149.46

121 0.052 299.98 0.056 302.34

Fig. 8.

Fig. 9.

6.2. Msp associated with a combinatorial automaton

6.2.1. Transient length
Each figure (Figs. 8–11) compares simulations

(points) and computation (theoretical value) from ℘(τ)

 (1 − 1
p2)τ 1

p2 (smooth curve) for a given value of
|Input| and for 32 000 simulations, τ is on the X axis,
the number of initial conditions on the Y axis.

In Table 3, we compare the mean and variance of τ

for different values of |Input|:

6.2.2. Frequency of cycles of length n
Table 4 shows the results of simulations and com-

parison to the theoretical result obtained in §6.1 for
p1 = ℘(E1-cycle),p2 = ℘(E2-cycle). The results show
that fixed points (1-cycles) are the most common cycles,
and increasingly so with increasing p. Again simulation

146 J.-P. Moulin / C. R. Biologies 329 (2006) 137–147
Table 3
Mean and variance of τ for different values of |Input|
|Input| Expected value of τ : E(τ) Variance of τ : E(τ2) − [E(τ)]2

Simulations
(linear)

Theoretical
value

Simulations
(polynomial)

Simulations
(linear)

Theoretical
value

Simulations
(polynomial)

9 9.5 9 8.2 68.8 72 57.5
25 26.6 25 32.9 621.3 600 183.3
49 51.8 49 60.7 2467.6 2352 1214.72

121 125.2 121 132.4 14 974.1 14 520 5528.4

Table 4
Results of simulations and comparison to the theoretical result for p1 = ℘(E1-cycle), p2 = ℘(E2-cycle)

T |Input| = 9 |Input| = 25 |Input| = 49 |Input| = 121

Nb of 1-cycles 31,310 31,809 31,916 31,977
Nb of 2-cycles 686 191 84 23
Nb of 3-cycles 4 0 0 0
Frequency of n-cycle n > 1 2.15% 0.59% 0.26% 0.07%
p1/p2 (simulation) 45.6 166.5 379.9 1390.3
p1/p2 (theoretical value) 40.5 156.2 400.1 1464.1
Fig. 10.

Fig. 11.

results are in agreement with the expected theoretical
value.

7. Conclusion

We have shown in the two well-known examples of
adaptive systems in living beings, the nervous system
and the immune system that they share a common prop-
erty: External signals modify the rewriting of their or-
ganization and therefore work as stimuli to modify the
‘program’ of the system.

To get better understanding of this very common fea-
ture in the living beings, we have devised the concept of
Self-programming machines or msp.

These machines have a finite set of inputs, are based
on a recurrence and are able to rewrite their internal
organization whenever external conditions vary. They
have striking adaptation properties:

– they stabilize almost exclusively into 1-cycles;
– the proportion of 1-cycles to all possible n-cycles

goes to 1 as the number of inputs increases (i.e.
1-cycles are almost certain);

– they have similar properties whatever the operation
defining the recurrence may be (linear or polyno-
mial);

– they will stabilize again in case of small pertur-
bations or intentional massive breakdowns and
have proportion of 1-cycles to all possible n-cycles
closer to 1 when they are connected in networks.

These results bring us to make the following state-
ment: adaptive properties of living systems can be ex-
plained by their ability to rewrite their internal organi-
zation whenever external conditions vary under the only
assumption that the rewriting mechanism be a determin-
istic constant recurrence in a finite state set.

J.-P. Moulin / C. R. Biologies 329 (2006) 137–147 147
References

[1] C. Meyer, Living machines, The New Facts of Life, Wired Mag-
azine, February 2004.

[2] H. Von Foerster, Cybernetics in circular causal and feedback
mechanisms, in: H. Von Foerster, M. Mead, H. Teuber, L.J. Macy
(Eds.), Biological and Social Systems, Transactions of the Sixth
Conference, 24–25 March 1949, Josiah Macy Jr. Fundation, New
York, 1949, p. 1.

[3] D. Stanley Jones, K. Stanley Jones, The Kybernetics of Natural
Systems, Pergamon Press, Oxford, UK, 1960.

[4] N. Wiener, Cybernetics, Hermann, Paris, 1948.
[5] P. Glanssdorf, I. Prigogine, Structures, Stabilité et Fluctuations,

Masson, Paris, 1971.
[6] M. Eigen, Self-organization of matter and evolution of biological

macromolecules, Die Naturwissenschaft 58 (1971) 463–520.
[7] G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium

Systems (From Dissipative Structures to Order Through Fluc-
tuations), John Wiley and Sons, New York, 1977.

[8] R. Thom, Catastrophe Theory, its Present State and Future Per-
spectives, Dynamical Systems, Lecture Notes in Mathematics,
vol. 468, Springer-Verlag, Warwick, 1974.

[9] J. von Neumann, A.W. Burks, Theory of Self-Reproducing Au-
tomata, University of Illinois Press, Urbana, 1966.

[10] S. Kaufmann, Behavior of randomly constructed genetics nets,
in: C.H. Waddington (Ed.), Toward a Theoretical Biology, vol. 3,
Edinburgh University Press, Edinburgh, UK, 1970.

[11] S. Kaufmann, Metabolic stability and epigenesis, in: Randomly
Constructed Genetic Nets, Theor. Biol. 22 (1969).

[12] H. Atlan, L’Organisation biologique et la Théorie de l’informa-
tion, Hermann, Paris, 1970.

[13] F. Varela, Principles of Biological Autonomy, Elsevier/North-
Holland, New York/Oxford, 1979.

[14] M. Zeleny (Ed.), Autopoiesis, A Theory of Living Organization,
vol. 3, Elsevier/North-Holland, New York/Oxford, 1981.

[15] W.R. Ashby, Principles of self-organizing systems, in: Proc.
Western Joint Computer Conf., 1961, pp. 255–278.

[16] B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, in: Numerical
Recipes, Cambridge University Press, New York, 1986, pp. 326–
334.

[17] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simu-
lated annealing, Science 220 (4598) (1983) 671–680.

[18] S. Geman, D. Geman, Stochastic relaxation, Gibbs distribution
and the Bayesian restoration of images, IEEE Trans. PAMI 6
(1984) 721–741.

[19] D.D. Rumelhart, G.E. Hinton, R.J. William, R.J. Learning, Rep-
resentations by back-propagating errors, Nature 323 (1986) 533–
536.
[20] P. Gallinari, S. Thiria, F. Badran, F. Fogelman-Soulié, On the
relations between discriminant analysis and multilayer percep-
trons, Neural Networks 4 (1991) 349–360.

[21] L.J. Fogel, P.J. Angeline, D.B. Fogel, An evolutionary program-
ming approach to self-adaptation on finite states machines, Evol.
Program. (1995) 355–365.

[22] R. Forsyth, A Darwinian approach to pattern recognition, Kiber-
netes 10 (1981) 159–166.

[23] S. Haykin, Adaptive Filter Theory, third ed., Prentice-Hall, Neu-
rol. Zentralbl. 34 (1996) 338.

[24] A. Benvéniste, M. Goursay, G. Ruget, Robust identification of a
non-minimum phase system: Blind adjustement of a linear equal-
izer in data communications, IEEE Trans. Autom. Control 3
(1996) 385–399.

[25] A. Marina, Die Relationnen des Palaeencephalons sind nicht fix,
Neurol. Zentralbl. 34 (1915) 338.

[26] R.W. Sperry, Effects of crossing nerves to antagonistic limbs
muscles in the monkey, Arch. Neurol. Psychiatry 58 (1947) 542.

[27] T.J. Wills, C. Lever, F. Cacucci, N. Burgess, J. O’Keefe, Attractor
dynamics in the hippocampal representation of the local environ-
ment, Science 308 (5723) (2005) 873–876.

[28] H. Eisen, Immunology, Harperand Row, New York, 1980.
[29] D. Dasgupta, Artificial Neural Networks and Artificial Immune

Systems: Similarities and Differences, in: Proc. Int. Conf. on
Systems, Man and Cybernetics, Orlando, FL, USA, 12–15 Oc-
tober 1997.

[30] A. Perelson, G. Weisbuch, Immunology for physicists, Rev.
Mod. Phys. 69 (4) (1997).

[31] L. Hodgkin, A.F. Huxley, A quantitative description of mem-
brane current and its application to conduction and excitation in
nerve, J. Physiol. 117 (1952) 500–544.

[32] D.O. Hebb, The Organization of Behavior, A Neuro-Psycholog-
ical Theory, Wiley, New York, 1949.

[33] W.S. McCulloch, W. Pitts, in: A Logical Calculus of the Ideas
Immanent in Nervous Activity, in: Bulletin of Mathematical Bio-
physics, vol. 5, 1943, pp. 115–133.

[34] K. Abbas, A.H. Lichtman, Basic Immunology, Functions and
Disorders of the Immune System, Saunders imprint of Elsevier,
2004.

[35] P. Dumouchel, J.-P. Dupuy, in: Colloque de Cerisy, L’auto-
organisation, Seuil, Paris, 1983.

[36] J.-P. Moulin, Modifiable automata, Self-modifying automata,
Acta Biotheor. 40 (2/3) (1992) 195–204.

[37] Y. Bar-Yam, Dynamics of Complex Systems, Addison-Wesley,
1997.

[38] W.R. Ashby, Design for a Brain, Chapman and Hall, London,
1952.

[39] J.-P. Moulin, Self-Programming Machines I, Unpublished, 2000.

	Adaptive properties of living beings: Proposal for a generic mechanism.
	Introduction
	Self-programming machines. Description and functioning
	Components
	Definition and functioning
	Initialization and trajectory
	Connection to external processes g and h: Machine msp1 and msp2

	Cyclic groups
	Cyclic group of the states (GS)
	Cyclic group of the n-cycles (Gn)

	Conditions of n-cycles
	Linear operator
	Polynomial operator

	Association of machines
	Association with a combinatorial automaton
	Definition
	Conditions of n-cycle
	Distribution of tau and n

	Association with another msp

	Results
	Msp with operation `*' linear and polynomial
	Msp associated with a combinatorial automaton
	Transient length
	Frequency of cycles of length n

	Conclusion
	References

