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Abstract

The overall rate of functioning of a set of free sequential enzymes of the Michaelis–Menten type involved in a metabolic pathway
has been computed as a function of the concentration of the initial substrate under steady-state conditions. Curves monotonically
increasing up to a saturation plateau have been obtained in all cases. The shape of these curves is sometimes, but not usually, close
to that of a hyperbola. Cases exist in which the overall rate of reaction becomes quasi proportional to the concentration of initial
substrate almost up to the saturation plateau, which never occurs with individual enzymes. Increasing the number of enzymes
sequentially involved in a metabolic pathway does not seem to generate any particularly original behaviour compared with that of
two-enzyme systems. To cite this article: G. Legent et al., C. R. Biologies 329 (2006).
© 2006 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Comportement cinétique en conditions stationnaires de systèmes bi- ou multienzymatiques constitués d’enzymes libres
intervenant séquentiellement dans une voie métabolique. La vitesse globale de fonctionnement d’un ensemble d’enzymes mi-
chaéliennes impliquées séquentiellement dans une voie métabolique a été calculée en fonction de la concentration du substrat
initial en conditions stationnaires. Des courbes monotones croissantes jusqu’à un plateau de saturation ont toujours été obtenues.
Ces courbes ont parfois, mais rarement, une forme proche de celle d’une hyperbole. Il arrive que la vitesse globale de réaction
devienne quasi proportionnelle à la concentration du substrat initial pratiquement jusqu’au plateau de saturation, ce qui ne se pro-
duit pas lorsqu’une seule enzyme intervient. Il ne semble pas qu’augmenter le nombre d’enzymes différentes impliquées dans la
transformation du substrat initial en produit final génère des comportements originaux par rapport aux systèmes à deux enzymes.
Pour citer cet article : G. Legent et al., C. R. Biologies 329 (2006).
© 2006 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Proteins involved in metabolic pathways are often
distributed non-randomly as multimolecular assemblies
that may range from quasi-static, multi-enzyme com-
plexes to transient, dynamic protein associations [1–6].
A functioning-dependent structure (FDS) is such an en-
zyme complex that forms and maintains itself as a re-
sult of its action in accomplishing a task [7]. Moreover,
in the case of an extremely simplified model system,
we have inferred that such FDSs may display unex-
pected kinetic properties under steady-state conditions
[7]. Before endeavouring to build a complete theory of
FDS functioning under realistic conditions, it was nec-
essary to study the behaviour of free (i.e. non-engaged
in a FDS) enzymes involved sequentially in a metabolic
pathway. This is the aim of the present contribution, in
which the calculations have been made according to the
classical approach of enzyme kinetics [8].

2. The model of free sequential enzymes

A model of free sequential enzymes of the Michaelis–
Menten type is represented in Fig. 1, in the case of a
two-enzyme system catalysing the transformation of an
initial substrate S1 into a final product S3. This model
system is made of two reaction circuits, where the first
and second circuits correspond to the activity of the first
and second enzyme, E1 and E2, respectively. Clearly, it
would be easy to model three-, four-, . . . , n-enzyme sys-
tems by adding a third, fourth, . . . , nth reaction circuit
corresponding to enzymes E3,E4, . . . ,En, respectively
(not shown).

Fig. 1. The model of free sequential enzymes in the case of a
two-enzyme system. The first enzyme, E1, binds to the initial sub-
strate, S1, to form the enzyme–substrate complex, E1S1. Within this
complex, E1 transforms S1 into its product, S2, resulting in the trans-
formation of E1S1 into E1S2, and then E1S2 liberates S2, thus re-
generating E1. In similar manner, the second enzyme E2 binds S2;
transforms S2 into S3 and finally liberates the final product, S3. hif
and hir are the forward and reverse rate-constants; their numbering,
i, has been chosen in such a way as to be consistent with that for the
FDSs (in preparation). Note that h1f, h2f, h3f and h4f are expressed
in mol−1 s−1 m3, whereas all the other rate constants are expressed
in s−1.
3. Numerical simulations in the case of a
two-enzyme system

The numerical simulations have consisted of study-
ing the dependence of the rate, v, of the overall reaction
of transformation of S1 into S3, on the concentration of
S1 for various values of the forward and reverse rate
constants, hif and hir (see Fig. 1). In practise, we have
used dimensionless expressions of all the variables and
parameters. For the definition of these dimensionless
quantities, see Appendix A. Independent steady-state
equations have been obtained by writing down the mass
balance of the species involved, i.e.

(1)
de1/dτ = k1r·e1s1 + k2r·e1s2 − (k1f·s1 + k2f·s2)·e1 = 0

(2)

de2/dτ = k3r·e2s2 + k4r·e2s3

− (k3f·s2 + k4f·s3)·e2 = 0

(3)

ds2/dτ = k2r·e1s2 + k3r·e2s2

− (k2f·e1 + k3f·e2)·s2 = 0

(4)e1 + e1s1 = e1t

(5)e2 + e2s2 = e2t

In these equations, kif, kir, τ , e1, e2, s1, s2, s3, e1s1,
e1s2, e2s2 and e2s3 are the dimensionless expressions of
the forward and reverse rate constants, hif and hir, of
the time, t , and of the concentrations of E1, E2, S1, S2,
S3, E1S1, E1S2, E2S2, and E2S3.

To write down the steady-state conditions of func-
tioning of the system, we have assumed that external
mechanisms supply S1 and remove S3 as and when they
are consumed and produced, respectively, such that S1 is
maintained at a constant concentration (s1 = constant)
and S3 at a zero concentration (s3 = 0). Under such
steady-state conditions, v is measured indifferently by
the rate of consumption of S1 or the rate of production
of S3, i.e. for the dimensionless expression of v:

(6)v = k1f·e1·s1 − k1r·e1s1 = k4r·e2s3 − k4f·e2·s3

Moreover, two relationships have to be taken into ac-
count between the rate constants. One is imposed by
how the dimensionless quantities have been defined (see
Appendix A, Eq. (A.9)),

(7)k1r ≡ 1

and the other is a consequence of the principle of de-
tailed balance, i.e.:

(8)k1f·k2r·k3f·k4r·k9f·k10f/k1r·k2f·k3r·k4f·k9r·k10r = K

in which K is the equilibrium constant of the overall
reaction of S1 into S3.
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Fig. 2. Examples of computed curves in the case of a two-enzyme system with s3 = 0. (A) Curves represented in the system of coordinates {s1, v}.
The parameter values are e1t = e2t = 0.5, K = 100, k1f = 10, k2r = k3f = 100, k9f = k10f = k3r = k4r = k9r = k10r = 1, k1r ≡ 1 (Eq. (7)), k4f
calculated according to Eq. (8), and k2f = 10 (curve a), 5 (curve b), 1 (curve c), 0.1 (curve d) and 0.01 (curve e). The straight, dashed line is the
tangent at origin of curve (e). The curve in dotted line is the hyperbola with the same tangent at origin and the same plateau as curve (e). (B) Same
data as in (A), expressed in the system of coordinates {v/s , v}.
1
The numerical simulations of the dependence of v

on s1 (with s3 = 0) for a variety of values of the rate
constants have been carried out using the MAPLE soft-
ware to solve the algebraic system (Eqs. (1) to (5)).
We have always found, as expected from the calculation
of the first derivative of v (not shown), that the {s1, v}
curves were increasing monotonically up to a saturation
plateau (see examples in Fig. 2A). Moreover, in these
numerical simulations, we have never found any curve
exhibiting one or several inflexion points. Sometimes,
the shape of the curves was close to that of a hyper-
bola as shown by the fact that the corresponding curves
in the system of coordinates {v/s1, v} (Fig. 2B) were
close to straight lines (see curve b); however, most of-
ten this was not the case (see especially curves d and e).
When adjusting straight lines to the computed curves in
Fig. 2A, in the range of s1 values from 0 to the abscissa,
sint, of the point of intersection of the tangent at origin
with the saturation plateau of each curve (see Eq. (B.5)
in Appendix B for the determination of sint), the values
of the regression coefficient, r2, of these linear adjust-
ments were 0.9608, 0.9682, 0.9843, 0.9991, and 0.9999
for curves (a) to (e), i.e. for k2f-values varying from 10
(curve a) to 0.01 (curve e). This means that decreas-
ing the value of k2f tends to render the reaction rate,
v, proportional to the concentration of initial substrate,
s1; moreover, with a k2f value as low as 0.01, it appears
that proportionality remains valid (curve e practically
undistinguishable from its tangent at origin) almost up
to the saturation plateau. It is also visible in the figure
that the linear approximation thus observed at a low k2f
value extends far beyond the quasi-linear zone that is
known to exist at the beginning (s1 close to zero) of
a hyperbolic {s1, v} curve (compare curve (e) with the
hyperbolic curve drawn in dotted line in Fig. 2A).

Increasing k1f/k1r or k4f/k4r and/or decreasing
k3f/k3r have the same effect as decreasing k2f/k2r, i.e.
this tends to favour the proportional response of v as a
function of s1. Increasing k10f/k10r tends to increase the
value of the saturation plateau. In our present approach,
the equilibrium constant, K , of the overall reaction of
transformation of S1 into S3 is involved only in the cal-
culation of k4f from the other rate constants (Eq. (8));
since we have imposed s3 = 0, the value of k4f, and
consequently that of K , has no effect on the result of
the numerical simulations.

4. Numerical simulations in the case of an
n-enzyme system

As an example of an n-enzyme system, we have stud-
ied the case of a system made of four free enzymes. We
have always found {s1, v} curves (i) monotonically in-
creasing up to a saturation plateau and (ii) sometimes
exhibiting an extended region where v was proportional
to s1. On total, the results were never qualitatively very
different from those observed with two-enzyme sys-
tems.

5. Discussion and conclusion

With a system of two free sequential enzymes of
the Michaelis–Menten type in a metabolic pathway, we
have always observed in our numerical simulations that
the {s1, v} curves were monotonically increasing up to a
saturation plateau. Depending on the values of the rate
constants, the curve shape varied from quasi-hyperbolic
to extremely non-hyperbolic, including cases in which
v became quasi proportional to s1 almost up to the sat-
uration plateau (which never occurs with individual en-
zymes). Choices of values of the rate constants either
increasing the efficiency of enzyme E1 in the transfor-
mation of S1 to S2 (high values of k1f/k1r and low
values of k2f/k2r) or decreasing the efficiency of en-
zyme E2 in the transformation of S2 to S3 (low values of
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k3f/k3r and high values of k4f/k4r) favoured the appear-
ance of this quasi-proportional response. The behaviour
of four-enzyme systems was qualitatively not very dif-
ferent from that of two-enzyme systems.
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Appendix A. Definition of dimensionless quantities
in the case of a two-enzyme system

Dimensionless quantities have been defined by nor-
malising all concentrations (with [X] = concentration
of X) to the sum of the total concentrations of E1 and
E2, [E1t]+ [E2t], and all time values to 1/h1r. As a con-
sequence, the molar fractions of enzymes E1 and E2 are:

e1t = [E1t]/
([E1t] + [E2t]

)

(A.1)e2t = [E2t]/
([E1t] + [E2t]

)
, with e1t + e2t = 1

the dimensionless concentrations of all the substances
involved are

s1 = [S1]/
([E1t] + [E2t]

)

s2 = [S2]/
([E1t] + [E2t]

)

(A.2)s3 = [S3]/
([E1t] + [E2t]

)

e1 = [E1]/
([E1t] + [E2t ]

)

(A.3)e2 = [E2]/
([E1t] + [E2t ]

)

e1s1 = [E1S1]/
([E1t] + [E2t]

)

(A.4)e1s2 = [E1S2]/
([E1t] + [E2t ]

)

e2s2 = [E2S2]/
([E1t] + [E2t]

)

(A.5)e2s3 = [E2S3]/
([E1t] + [E2t]

)

the dimensionless expression, τ , of time, t , is

(A.6)τ = t ·h1r

The dimensionless expression of constants h1f to h4f is:

k1f = (h1f/h1r)·
([E1t] + [E2t ]

)

k2f = (h2f/h1r)·
([E1t] + [E2t]

)

k3f = (h3f/h1r)·
([E1t] + [E2t]

)

and

(A.7)k4f = (h4f/h1r)·
([E1t] + [E2t]

)

while the dimensionless expression of h9f, h10f and all
the reverse constants hir are

k9f = h9f/h1r, k10f = h10f/h1r and

(A.8)kir = hir/h1r
with, obviously,

(A.9)k1r = h1r/h1r ≡ 1

Appendix B

The steady-state rate of transformation of S1 into S3
at saturation, vmax (s1 = ∞), and the slope at origin,
v′(0) (s1 = 0), can be derived from Eqs. (1) to (5). De-
fine Q by:

(B.1)

Q = k4r·k10f·(k2r + k9f + k9r)·e2t

− k2r·k9f·(k4r + k10f + k10r)·e1t

If Q < 0, then

(B.2)vmax = k4r·k10f·e2t/(k4r + k10f + k10r)

If Q > 0, then

(B.3)vmax = k2r·k9f·e1t/(k2r + k9f + k9r)

and it is easily checked that the two vmax values are
identical to each other when Q = 0. Moreover, the slope
at origin is written:

v′(0) = k1f·k2r·k3f·k4r ·k9f ·k10f ·e1t·e2t

/
(
k1r·k2f·k9r·(k3r·k4r + k3r·k10r + k4r·k10f)·e1t

(B.4)+ k3f·k4r·k10f·(k1r·k2r + k1r·k9r + k2r·k9f)·e2t

)

Eventually, the concentration of initial substrate, sint,
which corresponds to the intercept of the tangent at ori-
gin with the saturation plateau, is written as:

(B.5)sint = vmax/v
′(0)
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