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Abstract

In this paper, we build up an individual-based model (IBM) that describes the aggregative behavior in phytoplankton. The
processes in play at the individual level (an individual = a phytoplankton cell) are: a random dispersal, a displacement due to the
net effect of cells present in a suitable neighborhood (spatial interactions) and a branching (cell division and death). The IBM model
provides a virtual world where phytoplankton cells appear to form clusters. Using this model, we explore the spatial structure of
phytoplankton and present some numerical simulations that help the understanding of the aggregation phenomenon. To cite this
article: N. El Saadi, A. Bah, C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Phytoplankton is a generic name for photosynthesiz-
ing microscopic organisms that inhabit the upper sunlit
layer (euphotic zone) of almost all oceans and bodies
of freshwater. They are agents for ‘primary production’
and the incorporation of carbon from the environment
into living organisms, a process that sustains the aquatic
food web [1].

More recent work has demonstrated the existence
and potential importance of the formation of larger phy-
toplankton particles by aggregation [2–4]. However, the
mechanisms governing aggregate formation have been
poorly understood.
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There has been extensive application of coagulation
theory to describe aggregation of marine particles [5]
and specifically phytoplankton aggregation [6,7]. Ag-
gregation by physical coagulation requires that primary
particles collide by some physical processes and stick
together upon collision. Brownian motion, differences
in sinking velocities and fluid shear may all cause pri-
mary particles to collide.

However, studies of marine aggregates at small
scales have emphasized the biological mechanisms of
their formation. That is, although planktonic organisms
can be thought of as particles, the richness of biological
responses makes the nature of their interactions more
complex than the simple physical ones described by
coagulation theory. Indeed, some planktonic species (al-
gae, bacteria and dinoflagellates that are motile species
of phytoplankton) have chemosensory abilities [8–10],
that is, they can sense the chemical field generated by
y Elsevier SAS. All rights reserved.
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the presence of other cells. The dinoflagellates and more
generally motile algae are known to leak organic mat-
ter such as amino-acids and sugar into solution [11] and
this leakage creates zones around individual cells called
‘phycospheres’, where extracellular products exist in
enhanced concentrations over the background [12]. The
chemosensory responses allow dinoflagellates and al-
gae that are present in a suitable neighborhood to find
the leaky cells and to stay near them, forming aggre-
gates. There has been no quantitative study of the nature
of chemosensory interactions between dinoflagellates,
even although chemosensory behavior in dinoflagel-
lates may have importance in their search for food and
for chemical defense [8–10,13–15]. Indeed, recent stud-
ies of micro-organisms have revealed diverse complex
social behavior in dinoflagellates, such as cooperation
in foraging and defense [9,16,17]. For instance, Pfies-
teria dinoflagellates act as ambush predators, synchro-
nously releasing toxins to kill all fish over many square
kilometres, after which the dinoflagellates feed on the
carcasses. On an other hand, many studies suggest that
there will be a density at which dinoflagellates matabo-
lites (for instance, an altruist production of toxins DMS
(dimethyl sulfide)) will inhibit grazing and provide a
protective feedback loop.

Based on the ideas of small scale biological mech-
anisms for aggregates formation, El Saadi and Arino
[18,19] have investigated a Lagrangian model which
provides an explanation of the aggregation behavior
in phytoplankton in terms of attraction mechanisms
among cells due to the chemosensory behavior, random
branching (birth and death), in addition to individual
random dispersals described by independent Brown-
ian motions. The aim of such modelling was to catch
the main features of the individual dynamics at small
scales which are responsible at a larger scale for a more
complex behavior that leads to the formation of ag-
gregating patterns. An Eulerian description has been
rigorously derived as a continuum limit [18,19] by us-
ing the approach in [20] based on martingale properties
of a sequence of approximating interacting branching-
diffusion processes. The Eulerian model of phytoplank-
ton aggregation is described by the following nonlinear
stochastic partial differential equation defined in space
of vector measures:

(1)dYt = D�Yt dt − ∇ · [Yt (Fa ∗ Yt )
]

dt + dMt

where Yt is a measure describing the spatial distrib-
ution of phytoplankton cells at time t . The diffusion
term in (1) takes into account the spatial spread of the
phytoplankton cells with the coefficient of diffusion D,
while the advection term describes the interaction mech-
anisms among particles via the velocity Fa ∗ Yt . The
latter has the form of convolution [21–23], with Fa the
attractive force. Mt is a continuous orthogonal martin-
gale measure with covariance measure μYs(dx)ds (in
the sense of Walsh [24]), where μ is the rate of branch-
ing. We can think of Mt as white noise (in the sense
of Walsh) representing the random inbalance between
births and deaths due to space, that is, binary division
puts always parent and progeny at the same position
while death occurs anywhere. This asymmetry is rep-
resented in the term Mt .

In [25], it has been shown that if the branching phe-
nomenon is not present in the phytoplankton story, Yt

(for every t > 0) is absolutely continuous with respect
to the Lebesgue measure on R, and hence, admits a
density f (t, x) which satisfies the integro-differential
advection–diffusion equation:

∂f (t, x)

∂t
= D

∂2

∂x2
f (t, x)

(2)− ∂

∂x

[
f (t, x)

(
Fa ∗ f (t, .)

)
(x)

]
.

This equation has been analyzed mathematically in [25]
and furthermore, authors have proved the existence of
nonuniform stationary solutions. The biologically sig-
nificance of this asymptotic result is that nonlinear inter-
actions between phytoplankton cells at small scales can
produce aggregating patterns in water at large scales.

This paper is a contribution in exploring phytoplank-
ton aggregation behaviors using an IBM approach. The
IBM’s models have known an important development in
the 1990s stimulated by the availability of powerful per-
sonal computers [26–28]. The article written by Huston
et al. [29] is the most frequently quoted. These authors
argue that the development of this approach is due to
the need to take into account the individual because of
his genetic uniqueness and, secondly, the fact that each
individual is situated and his interactions are local. We
recall that the principle of an IBM consists in following
each individual of a collection, assuming they move or
some of their characteristics change during a time step,
due to a number of influences such as individual behav-
ior, interactions of individuals with one another, inter-
actions of individuals with a resource distribution [30].
So in this work, we propose to build a numerical IBM
(Individual-Based Model) version arising from the La-
grangian model of phytoplankton in [18,19] and present
the simulations results showing the behavior of the sys-
tem of stochastic differential equations in [18,19]. Our
goal is twofold: first, to visualize the formation of clus-
ters, and second, to measure and compare influences of
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the different processes involved at the cell level on ap-
pearing of aggregation patterns.

The paper is organized as follows: in Section 2, we
describe the Lagrangian aggregation model of phyto-
plankton built in [18,19]. Section 3 is devoted to the
simulator description and in Section 4, we present the
different scenarios to be tested. Section 5 summarizes
the simulations results. These correspond to the follow-
ing issues: (1) the Clark–Evans Index; (2) the spatial
and temporal distribution of phytoplankton cells; (3) the
effect of diffusion; and (4) the effect of perception. Sec-
tion 5 offers a discussion of the results and finally, we
give some conclusions in Section 6.

2. Lagrangian aggregation model

We recall that the Lagrangian model of phytoplank-
ton aggregation in [18,19] is built up as follows:

2.1. Spatial motion

We consider N phytoplankton cells (N is a positive
integer), each of them having at some time a certain po-
sition. Let (Xi

N(t))1�i�N be the family of positions for
the N cells.

The spatial motion of phytoplankton cells is de-
scribed via the following system of stochastic differen-
tial equations:

dXi
N(t) = F

[(
Xl

N(t)
)

1�l�N

](
Xi

N(t)
)

dt + √
2D dBi(t)

(3)i = 1, . . . ,N

where (Bi(t)), i = 1, . . . ,N , are independent Brownian
motions. The dispersion term expresses the diffusion of
phytoplankton cells in water, which is similar to molec-
ular diffusion [31,32] and D is the diffusion coefficient.
The drift term F in (3) describes the interactions be-
tween the ith cell and the other cells in the system.

2.2. Spatial interactions

To describe interactions between phytoplankton par-
ticles, we propose the ideas involving non-uniformity of
the concentration fields around organisms and consider
phytoplankton cells having chemosensory abilities (di-
noflagellates, algae) and hence some knowledge about
their neighbors. However, each cell has a limited knowl-
edge of the spatial distribution of its neighbors because
it cannot detect small concentration differences over its
length [31,33,34].

Taking into account these biological considerations,
we assume that aggregation forces act over a specific
range of sensitivity and thus we model pair interactions
as follows:

– The presence of a cell in position y induces on a
cell in position x an attractive force that depends
on the distance between the two cells and which is
determined by:

(4)K(x,y) = 1

N
Fa(x − y)

where

Fa(z) = − z

‖z‖
(−‖z‖2 + (r0 + r1)‖z‖ − r0r1

)

(5)× 1]r0,r1[
(‖z‖)

(r0 and r1 are the non negative reals that delimit the
range of sensitivity in phytoplankton).
The normalization factor 1/N in (4) corresponds
to associating the mass 1/N to each phytoplank-
ton cell [23,35]. Fa(x − y) leads to the attraction
of the cell in position x to that in y. The quantity
(−‖x − y‖2 + (r0 + r1)‖x − y‖ − r0r1) gives the
magnitude of Fa(x − y) as a function of the dis-
tance ‖x − y‖. The direction of Fa(x − y) is given
by the unitary director vector −(x − y)/(‖x − y‖).
The cell in position x is not attracted to that in y if
‖x − y‖ � r0, because in the closest vicinity of y is
the largest concentration of the substances released
by the cell in y. It has been reported that large con-
centrations of products such as amino acids, organic
compounds and sugar inhibit the chemosensory be-
havior in dinoflagellates and motile algae [8];

– The drift F [(Xl
N(t))1�l�N ](Xi

N(t)) is the superpo-
sition of all cells effects of the system on the ith
cell. It is given by:

F
[(

Xl
N(t)

)
1�l�N

](
Xi

N(t)
)

=
N∑

j=1,j �=i

K
(
Xi

N(t),X
j
N(t)

)
.

2.3. Branching

The cells branch. The most common mean of repro-
duction in phytoplankton is asexual cell division (mito-
sis). This process splits the organism into two identical
copies. So, we assume that each cell can die, divide into
two or remain unchanged with equal probabilities. If the
phytoplankton cell splits, the two new cells begin their
life at the branching point. They move following Eq. (3)
until the time they themselves branch and so on. A cell
division can occur once every day.
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Fig. 1. The interface of the simulator.

3. The simulator

We now present the IBM arising from the Lagrangian
model introduced in the previous section, that is its com-
puter simulation model.

The simulator we conceived is a tool of experiments
intended to represent virtually individual aggregating
behavior. It is implemented in the object-oriented lan-
guage Smalltalk using the Visual Works Environment.
The model of this simulator is based on the discrete
version of the system of stochastic differential equa-
tions (3) with K replaced by (4). Time evolves in a
discrete way by steps �t . The initial condition (t = 0) is
prepared by placing randomly and independently N par-
ticles. Each time step consists of two stages: (1) branch-
ing (random birth and death); (2) spatial motion. At the
first stage, each particle splits into two or dies or remains
unchanged with equal probabilities. If it splits, the new
particle is placed on top of the parent; if it dies, it is re-
moved from the system. In stage 2, the ith particle is
displaced to a new position:

Xi(t + �t)

= Xi(t) + 1

N(t)

N(t)∑

j=1,j �=i

Fa
(
Xi(t) − Xj(t)

)
�t

+ Θi

√
2D�t

where N(t) is the population size at time t and
(Θi)1�i�N(t) are independent and identically distrib-
uted Standard Gaussian random variables.

The simulator is provided with an interface to per-
form action-to-visualize the aggregation behavior
(Fig. 1). It consists on three components:

(i) the parameter window (on the left) that allows the
user the set up of the global variables;
(ii) the situation window (at the center of the interface)
that represents positions of individuals;

(iii) the indicator window (on the right) that allows to
visualize evolution of differents indicators of ag-
gregation.

The simulator offers the possibility of visualizing
the dynamics of phytoplankton cells in 1D (vertically
or horizontally) and in 2D. It permits one to under-
take simulations in two situations: the model including
branching mechanisms (model I) and the model with-
out branching (model II) (that is, the population size
remains fixed). It has also been performed in order to
quantify the evolution of different indicators of aggre-
gation (Clark–Evans Index, the dispersion index and the
surdispersion index) [36]. The last analyzes and char-
acterizes the spatial structure of the particle pictures
shown by the simulator.

For a purely qualitative aim, we present some parti-
cle pictures describing the reproduction and temporal-
spatial spread of phytoplankton communities in 1D
(Fig. 2) and 2D (Fig. 3).

In this work, we restrict ourselves to the 1D numer-
ical results obtained by using the Clark–Evans Index
defined as:

CEI = rA

rE

where rA = (
∑N

i=1 ri)/N is the mean of the distances to
the nearest neighbor (ri is the distance in any specified
units from individual i to its nearest neighbor) and rE
is the mean distance to nearest neighbor expected in an
infinitely large random distribution of density λ.

It has been shown (see [37]) that:

rE = 1

λ
in 1D

and

rE = 1

2
√

λ
in 2D.

The density λ is expressed as the number of individu-
als per unit area. The unit of measurement used in the
calculation of λ must be the same as that used in mea-
suring the ri (i = 1, . . . ,N). The ratio of the observed
mean distance rA to the expected mean distance serves
as the measure of departure from randomness. The use
of this indicator is very simple. It gives a very simplistic
view of the spatial structure, namely, CEI = 1 if the spa-
tial structure is random, CEI > 1 if the spatial structure
is regular and CEI < 1 if it is aggregated. Under con-
ditions of maximum aggregation, CEI = 0 since all of
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Fig. 2. A time-evolution result for the Lagrangian model in 1D.

Fig. 3. A time-evolution result for the Lagrangian model in 2D.
the individuals occupy the same locus and the distance
to nearest neighbor is therefore 0.

Our approach in using this indicator has a double
goal: on the one hand, we intend to explore the spa-
tial structure of the particle pictures stemmed from both
model I and model II, and on the other hand, to mea-
sure and compare influences of the different processes
in play (random dispersion, chemosensory interactions
and branching) on the aggregating patterns.

4. Scenarios tested

The Lagrangian model in Section 2 gives an explana-
tion of the phytoplankton aggregating behavior in terms
of a diffusion with velocity D, attractive forces acting in
a perception zone delimited by r0 and r1 and a branch-
ing with a fixed rate.

We are therefore going to explore several scenarios
corresponding to different values of D and r1. The val-
ues of D are chosen to correspond at three different
orders of magnitude that cover possible values of phyto-
plankton diffusion quoted in the literature. These values
are (D = 0.001 µm2/s, 0.01 µm2/s, 0.1 µm2/s). For r1,
we consider different arbitrary possible values that are
well suited to the choice of r0 (r1 = 1, 10, 20 µm). We
fixed r0 = 0.1 µm an arbitrary value chosen very small
in comparison to the values of r1 (r0 � r1) [30].

Although many preliminary experiments have shown
no variability in the outputs, we perform five runs of the
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Table 1
Table of scenarios

D\r1 1 (µm2) 10 (µm2) 20 (µm2)

0.001 (µm2/s) S1 S2 S3
0.01 (µm2/s) S4 S5 S6
0.1 (µm2/s) S7 S8 S9

Fig. 4. The CEI’s evolution in time for model I.

simulation for each scenario to damp out any random-
ness embodied in the simulator. Hence, each simulation
result presented in the next section is an average of five
repetitions. Furthermore, these preliminary experiments
have also shown that T = 1000�t for model II and
T = 100�t for model I are sufficient long time to reach
stable aggregative structures, with a time step �t = 1 s.
To connect these simulations with reality, we let �t cor-
respond to 1 day in reality, since a cell division holds
once every day.

The nine scenarios summarized in Table 1 are ex-
plored in the two cases:

(1) model I (the interacting branching model);
(2) model II (the interacting model without branching).

5. Simulations results

We present the simulations results obtained for an
initial population size N = 300, with a random ini-
tial distribution. A difference appears between results
coming from models I and II. Moreover, in the case of
model II, some differences due to the variation of the
parameters D and r1 are observed between the scenar-
ios.

5.1. Result 1 (Clark–Evans Index)

A difference in the evolution of the Clark–Evans In-
dex (CEI) between models I and II is shown in Figs. 4
and 5.

For model I, the CEI is close to 0 in all the scenar-
ios, which indicates a strong aggregation. The values
Fig. 5. The CEI’s evolution in time for model II.

Fig. 6. The initial spatial distribution.

Fig. 7. The spatial distribution of model I at time T = 100.

greater than 0 observed earlier the date T = 7 s are due
to the randomness of the initial distribution. In the case
of model II, the CEI is greater than 0 in all the sce-
narios, which corresponds to a less good aggregating
behavior. The best aggregation in this case is observed
in scenario 2, while instability is observed in scenario 9.

5.2. Result 2 (spatial and temporal distribution)

Both of models I and II in Figs. 7 and 8 show clusters
formation from a random initial distribution (Fig. 6).
Not only in the figure of model II, the clusters have
larger diameter and small sizes, but also the peaks of
the density profile observed in the figure of model I are
higher: the aggregation phenomenon is stronger in the
case of an interacting model with branching.
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Fig. 8. The spatial distribution of model II at time T = 1000.

Fig. 9. The CEI variation in time when r1 = 1 (model I).

Fig. 10. The CEI variation in time when r1 = 10 (model I).

5.3. Result 3 (effect of diffusion)

Experiments in Figs. 9 to 11 show that for model I,
the CEI is not affected by a variation of D. However,
in the case of model II (Figs. 12 to 14), there are some
differences in the evolution of the CEI. Aggregation is
better for a weak diffusion coefficient and instability oc-
curs for largest values of D.

5.4. Result 4 (effect of the perception zone)

As shown in Figs. 15 to 17, the CEI is not affected by
a variation of the perception radius length, in the case of
model I. For model II (Figs. 18 to 20), differences are
observed in the CEI evolution. The best aggregation is
Fig. 11. The CEI variation in time when r1 = 20 (model I).

Fig. 12. The CEI variation in time when r1 = 1 (model II).

Fig. 13. The CEI variation in time when r1 = 10 (model II).

Fig. 14. The CEI variation in time when r1 = 20 (model II).
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Fig. 15. The CEI variation in time when D = 0.001 (model I).

Fig. 16. The CEI variation in time when D = 0.01 (model I).

Fig. 17. The CEI variation in time when D = 0.1 (model I).

observed for r1 = 10 and a great number of fluctuations
appears at largest value of r1.

6. Discussion

All the simulations results presented earlier make ob-
vious the aggregating phenomenon in phytoplankton.
Indeed, the CEI is always less than 1 in both of models I
and II, that is, clusters do not form only when parti-
cles (phytoplankton cells) diffuse, interact spatially and
branch, but even when the branching process is ignored.
This last result confirms our asymptotic analytic result
in [25] on the emergence of aggregating patterns at large
Fig. 18. The CEI variation in time when D = 0.001 (model II).

Fig. 19. The CEI variation in time when D = 0.01 (model II).

Fig. 20. The CEI variation in time when D = 0.1 (model II).

scale from a particle system with nonlinear interactions
at small scales.

However, a difference is noticed between the inter-
acting model with branching and that without branch-
ing. Aggregation is stronger and more visible when
branching mechanisms are taken into account. From a
biological view, this is due to the spatial aspects cou-
pled to the branching mechanism. Indeed, there is a
fundamental difference between the locations of birth
and death: deaths occur anywhere but births always oc-
cur adjacent to living organisms. The accumulation of
these small-scale density fluctuations produce the pal-
pable nonuniformities detected in Figs. 2 and 3.
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Diffusion and sensory distances have both a role on
the aggregating behavior but this role remains negligi-
ble comparatively to the branching effect. It is clear this
is due to the small values of the diffusion coefficient
for phytoplankton (D < 1) and to the different lengths
of the perception radius chosen for r1. Some simula-
tions (which we do not present here) show that greater
values of D and r1 (for example, D beyond 5 and r1
beyond 30) lead to particle pictures very different of
those presented in this paper. Effects of the diffusion
and/or the sensory distance on the quality of the ag-
gregation behavior are better observed when branching
mechanisms are ignored. In the latter, simulations show
a transition from a random distribution to an organized
structure with formation of weak clusters characterized
by their larger radius and lower sizes, in contrast with
the clusters occurring when branching; and the best sit-
uation for aggregation in this case is when diffusion is
weak and the radius of perception is average. Instability
in the spatial structure often occurs for the interacting
model without branching. We think that this observa-
tion can give some intuitive insight on the stability of
the steady-state solution in [25].

7. Conclusions

In this paper, an IBM approach was undertaken in the
study of the aggregation process in phytoplankton. We
have conceived and simulated the IBM discrete version
corresponding to the mathematical Eulerian model in
[18,19]. Simulations results show the formation of clus-
ters, qualitatively by visualizing the aggregation phe-
nomenon and quantitatively by using an aggregation
indicator: the Clark–Evans Index.

The main result of this work is that branching has an
eminent role in the phytoplankton aggregation process.
We point out that Young in his paper [38], has shown
that a population of independent random-walking or-
ganisms, reproducing by binary division and dying at
constant rates, aggregates and clusters form out of spa-
tially homogeneous initial condition without environ-
mental variability, kinesis or taxis. He stressed the fact
that the clustering mechanism can be driven only by
reproduction and death (branching), provided the dif-
fusion is not too strong relative to the reproduction
rate. Here in this work, we rediscover Young’s result
of [38,39], although our population is spatially depen-
dent. Indeed, simulations results stemmed from our
IBM model have shown the formation of very weak
clusters when only diffusion and interactions are in-
volved in the model, while the clustering mechanism
becomes more important and visible when branching
is taken into account. Consequently, the IBM approach
presented in this paper, confirms that the mathemati-
cal Eulerian model (1) investigated in [18,19] is really
an aggregation model and establishes the importance of
branching on the aggregation phenomenon relative to
nonlinear interactions and diffusion.

On another hand, many qualitative and quantitative
results on the spatial distribution, sizes and positions of
aggregates in space and time could be provided by our
IBM model.
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