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Abstract

Local analysis of trajectories of dynamical systems near an attractive periodic orbit displays the notion of asymptotic phase
and isochrons. These notions are quite useful in applications to biosciences. In this note, we give an expression for the first
approximation of equations of isochrons in the setting of perturbations of polynomial Hamiltonian systems. This method can be
generalized to perturbations of systems that have a polynomial integral factor (like the Lotka–Volterra equation). To cite this article:
J. Demongeot, J.-P. Françoise, C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approximation pour les cycles limites et leurs isochrones. Pour analyser le comportement des trajectoires au voisinage des
orbites périodiques attractives, les notions de phase asymptotique et d’isochrone apparaissent naturellement. Mais c’est leur im-
portance dans les applications, en particulier dans les sciences de la vie (biologie, physiologie, pharmacocinétique, ...), qui a le
plus fortement motivé leur étude. L’objet de cette note est de donner, dans le cadre des pertubations de systèmes hamiltoniens
polynomiaux, une approximation au premier ordre pour les équations des isochrones. Cette méthode peut ensuite s’étendre à
des perturbations de systèmes qui ont un facteur intégrant polynomial (comme l’équation de Lotka–Volterra). Pour citer cet ar-
ticle : J. Demongeot, J.-P. Françoise, C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The interest for isochrons of limit cycles appeared
first in relation with mathematics of biosciences. Their

* Corresponding author.
E-mail address: jpf@ecr.jussieu.fr (J.-P. Françoise).
1631-0691/$ – see front matter © 2006 Académie des sciences. Published b
doi:10.1016/j.crvi.2006.05.005
use was particularly emphazised by Winfree [1] and
latter appeared repeatedly in many classical references
related with biological rhythms [2–5]. Under the influ-
ence of Winfree’s articles, Guckenheimer [6] identified
the isochrons with the stable manifold of a point on an
attractive hyperbolic limit cycle. Another proof of their
existence and a discussion of the case of non-hyperbolic
limit cycles appeared in [7]. M. Sabatini [8,9] proved
y Elsevier Masson SAS. All rights reserved.
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that the existence of isochron sections for a limit cycle
of a vector field X is equivalent to the existence of a vec-
tor field Y such that the bracket [X,Y ] is proportional
to Y . More recently, the need for finding a closed for-
mula for isochrons was frequently formulated in view
of applications. In this article, we focus on a perturba-
tive situation where the system is a perturbation of a
polynomial Hamiltonian system:

ẋ = ∂H

∂y
+ εf (x, y, ε)

ẏ = −∂H

∂x
+ εg(x, y, ε).

We provide a closed form to the first-order approxima-
tion in ε for an equation of the limit cycles and for their
isochrons. The essential idea is to use a one-parameter
family of integrating factors. This method has been first
used to compute the successive derivatives of return
maps [10] and periods [11]. A more general and ab-
stract setting has been recently proposed in [12]. This
general mathematical setting uses iterated integrals and
Leray residue. In this note, we stick to the first order of
approximation and use only ramified integrals that are
not iterated.

2. Definition of isochrons and of asymptotic phase

Existence of isochrons can be deduced from [13].
Let γ : [0, T ] → Rn, γ : t �→ γ (t) be an attractive hy-
perbolic periodic orbit and let Σ be a section transverse
to the flow. First-return mapping writes:

P :x �→ x1 = A · x + D(x)

with a = ‖A‖ < 1. Denote xn, the successive intersec-
tion points of the orbit with the transverse section. Let τ

be the time of first return to the transverse section along
the orbit passing by x. Denote τ1 = τ(x), . . . , τn =
τn−1 + τ(xn). Function τ(x) is at least of class C1,
hence from x small enough, there is a constant L such
that:∣∣τ(xn−1) − T

∣∣ � L‖x‖ � Lan−1‖x‖
The series of general term [(τn − nT ) − (τn−1 − (n −
1)T )] is normally convergent and thus the sequence
τn − nT is convergent. The limit

t0(x) = lim
n→∞(τn − nT )

is called the asymptotic phase of the point x. Isochrons
are defined by the equations:
{
x| t0(x) = c.

}

3. One-parameter family of integrating factor and
approximation to limit cycle

Given a one-form ω, a function H and a transverse
section Σ , consider the continuous family of regular
ovals H = c, which fills up a domain homeomorphic
to an annulus denoted A.

Define the ramified primitive f1(P ) :A − Σ → R

of ω:

f1(P ) =
P∮

P0(t)

ω

where the integral is taken along the solution H(x,y) =
H(P ) = t of the Hamiltonian flow between the first in-
tersection point P0(t) of the solution with the transverse
section and the point P .

Define the polynomial D by

dω = D(x,y)dx ∧ dy

Given a polynomial H , there always exists a polynomial
m(H) that belongs to the Jacobian ideal of H (cf. [12]).
There is a 1-form, unique up to a multiple of dH , ω̃,
such that:

m(H)dx ∧ dy = ω̃ ∧ dH

and take:

ω1 = D(x,y)
ω̃

m(H)

Define finally the function g1 as:

g1 =
∮

ω1

We have thus obtained that any polynomial one-form
ω can be written

ω = g1 dH + df1

with ramified functions f1 and g1. The function f1 is
kind of primitive of the form ω along the level lines
of H . The function −g1 is a primitive of the Leray
derivative of ω, and this can be conveniently denoted
dg1 = − dω

dH
.

This construction yields (recursively) a construction
of a 1-parameter family of integrating factor (cf. [12]).
We stick here to the first-order approximation, which
displays

(1 − εg1)(dH + εω) = d(H + εf1) + O
(
ε2)

This approximation provides an approximation to an
equation of an eventual limit cycle as:

H + εf1 = c
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Note that f1 is ramified, but (up to O(ε2)) the ramified
part of f1 vanishes identically on the limit cycle. Thus
this formal construction usually yields a tractable ex-
pression for this approximation, as it will appear more
clearly in the foregoing example.

4. Van der Pol oscillator

Consider the van der Pol oscillator:

ẋ = y

ẏ = −x + εF (x)y

where F(x) = x2 − 1. The case of Liénard equations
where F can be any polynomial can be treated com-
pletely similarly.

The associated foliation of the plane can be defined
by the 1-form dH + εω, ω = −F(x)y dx. We obtain in
that case:

f1 =
[
(x2 + y2)2

8
− (x2 + y2)

2

]
Arctan

(
y

x

)

+ xy3

8
− x3y

8
+ xy

2

This is a ramified function but the limit cycle sits (up to
terms of order O(ε)) near the circle[
(x2 + y2)2

8
− (x2 + y2)

2

]
= 0

Hence the first approximation to the equation for the
limit cycle that we obtain is of the form:

x2 + y2

2
+ ε

[
xy3

8
− x3y

8
+ xy

2

]
= c

5. Isochronous forms to a vector field

Assume that X0 is a Hamiltonian planar vector field,

iX0 dx ∧ dy = dH

Assume furthermore that H is polynomial and that for
c0 � c � c1, the level line H−1(c) contains an oval γc

(closed smooth compact curve). The ovals γc are peri-
odic orbits of X0 of period Tc.

Definition 1. A 1-form ω0 is said to be isochronous to
X0 if ω0(X0) = 1, or equivalently dH ∧ ω0 = dx ∧ dy.

For instance, if H = 1
2 (x2 + y2), then we can choose

ω0 = dθ = d Arctan y
x

. In general, for any polynomial
H , there is a polynomial m(H) that belongs to the Ja-
cobian ideal of H . This yields two polynomials p and q
such that we can choose:

ω0 = [p dx + q dy]/m(H)

A polynomial H is said to be quasi-homogeneous if
there are three integers d , m and n such that:

H = d

m

∂H

∂x
+ d

n

∂H

∂y

In that case, a possible choice is:

ω0 =
[

d

m
dy − d

n
dx

]
/H

Consider now a 1-parameter perturbation:

ωε = dH + εω

and the associated vector field Xε defined by

iXε dx ∧ dy = ωε

The following notion was first discussed in [11].

Definition 2. A 1-form ω0 + εω1 is 1-isochronous to
ωε if:

(dH + εω) ∧ (ω0 + εω1) = [
1 + O

(
ε2)]dx ∧ dy.

Construction of a 1-isochronous form proceeds in the
same way as above. The unknown form ω1 must satisfy:

ω ∧ ω0 + dH ∧ ω1 = 0

and this 1-form can be formally defined as the Leray
residue:

ω1 = −ω ∧ ω0

dH

A transversal section to the flow of a vector field near
a limit cycle is a section such that the first return time
is constant. Guckenheimer pointed out the fact that the
isochrons are permuted by the flow. Isochronous sec-
tions and isochrons are not exactly the same notions.
For instance, in the case of the Hamiltonian flow, there
is no limit cycle (and hence no isochrons), despite the
fact that there may be isochronous sections if the Hamil-
tonian flow is isochronous. But if there is an hyperbolic
attractive limit cycle and if there is an isochronous sec-
tion, then it is of course an isochron. Our method dis-
plays an approximation for an isochronous section. If
we denote:

fε =
∮

(ω0 + εω1)

the ramified primitive of the 1-isochronous form, then
an approximated equation for an isochronous section is:

fε = c
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6. Isochrons for the van der Pol system

In the case of the van der Pol system, we obtain that:

ω0 = dθ

and

ω1 = (r2 cos2 θ − 1) sin θ cos θ dθ

An approximated equation for isochrons is thus ob-
tained as:

θ + ε

[
r2

(
cos4

4
− 1

)
+ 1

2
sin2 θ

]
= c
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