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Abstract

A major challenge for bioinformatics and theoretical biology is to build and analyse a unified model of biological knowledge
resulting from high-throughput experiment data. Former work analyzed heterogeneous data (protein–protein interactions, genetic
regulation, metabolism, synexpression) by modelling them by graphs. These models are unable to represent the qualitative dy-
namics of the reactions or to model the n-ary interactions. Here, MIB, the Model of Interactions in Biology, a bipartite model of
biological networks, is introduced, and its use for topological analysis of the heterogeneous network is presented. Heterogeneous
loops and links between synexpression pattern and underlying molecular mechanisms are proposed. To cite this article: S. Smidtas
et al., C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modèle de réseaux d’interactions biologiques. Un défi important pour la bioinformatique et la biologie théorique est de
construire un modèle unifié qui intégre de nombreuses connaissances biologiques, issues notamment d’expériences haut débit, et
qui permette leur analyse. Des travaux antérieurs ont analysé des données hétérogènes (interactions protéiques, régulation géné-
tique, métabolisme, synexpression), en les modélisant par des graphes. Toutefois, ces modèles ne sont capables, ni de représenter
la dynamique qualitative des réactions biochimiques, ni de modéliser les interactions n-aires. Un modèle bipartite des réseaux
hétérogènes MIB (modèle d’interactions biologiques), est présenté et illustré par les résultats d’analyse des boucles régulatoires
hétérogènes ainsi que des mécanismes moléculaires sous-jacents à la synexpression des gènes. Pour citer cet article : S. Smidtas
et al., C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The last few years have seen the advent of high-
throughput technologies to analyze various properties
of the transcriptome and proteome of several organ-
isms. The congruency of these different data sources,
or lack thereof, can shed light on the mechanisms that
govern cellular function. A central challenge for bioin-
formatics research is to develop a unified framework for
combining the multiple sources of functional genomics
information, thus obtaining a robust and integrated view
of the underlying biological phenomena.

Since the complete DNA sequence of S. cerevisiae
became available in 1996 [1], a variety of large-scale,
high-throughput experimental studies have provided
partial, potentially complementary insights into the
structure of the yeast regulatory network and, indirectly,
into its dynamics.

A major challenge of the post genomic research is
to understand how cellular phenomena arise from the
interaction of genes, proteins and metabolites. Inves-
tigations into the structure of these molecular interac-
tion networks include studies on their global topolog-
ical properties [2,3], such as connectivity distribution
[4] or scale-free nature [5] have been performed. The
local properties such as clustering proteins within the
network into functional subnets using combinations of
attributes and local connectivity properties to uncover a
higher level of network organization [4,6–9] were also
studied on each homogeneous network separately.

Several studies [8,10,11] have already tried to ag-
gregate many types of data, mostly extending the ap-
proach of [31], based on the research of under- or over-
expressed static graph motifs, only in order to under-
stand the topological properties of biological graphs.

In previous work, gene expression data in Saccha-
romyces cerevisiae have already been combined with
gene ontology-derived predictions [8] and phenotypic
experiments [12]. Recent studies assembled an inte-
grated S. cerevisiae network, in which nodes repre-
sent genes (or their protein products) and differently
coloured links represent five types of biological inter-
actions: protein–protein interaction, genetic interaction,
transcriptional regulation, sequence homology, and ex-
pression correlation [10,11].

However, most of these studies rely on the graph-
theoretic approach, which fails to represent n-ary re-
lations between biological objects, for example in
metabolic networks or complexes, as well as qualitative
dynamics of the interaction: for example, the distinc-
tion between activation and inhibition, production and
consumption.
In this work, we present a bipartite graph model
of heterogeneous biological network that comprises di-
rected transcriptional regulation, protein–protein inter-
action, the complexes, the metabolic networks, syn-
thetic lethality experiments and micro-array expression
results.

This type of models allows searching for complex
heterogeneous network motifs with qualitative dynam-
ics and biologically relevant properties.

Based on this model, the S. cerevisiae dataset was
represented as a global database including the afore-
mentioned data types.

2. The MIB model

The main model-constructing principle that we used
is made to apprehend the organization of the com-
plex system that constitutes the cell with its distributed
control (see Fig. 1). Here we proposed a qualitative
modelling framework, Model of Interactions in Biology
(MIB), a bipartite graph model of heterogeneous biolog-
ical network. MIB is designed to fill the gap between, on
the one hand, existing techniques for quantitative mod-
elling of biological systems [13–16], and, on the other
hand, techniques for analysis of the network structure
mostly based on graph theory [2,3,5]. Our approach is
largely inspired by the Structured Analysis and Design
Technique [17].

A biological system can be seen as an emergent
[18] phenomenon of the chemical reactions set, includ-
ing protein–protein interaction (PPI) and transcriptional
regulation interactions (TRI). This set may be modelled
by a composite reactions network and it should satisfy
the following constraints:

• to include information about chemical species and
chemical reactions of the biological system;

• to consider biological interactions that are not bi-
nary, like in the case of a complex of several pro-
teins;

• to distinguish between undirected and directed
(positive or negative) interactions of species;

• the representation should be simple enough to allow
the study of global structural properties of the net-
work and the search for sub-networks in the com-
posite network.

Thus, the set of biochemical reactions composing the
biological system is represented in MIB as a network
that comprises nodes, either entities (chemical species)
or transformations (chemical reactions), and links be-
tween nodes, divided in four roles: consumed, produced,
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Fig. 1. Representation of biological systems seen as a set of chemical reactions. The top layer represents the most general view of the hierarchy.
The bottom layer is the most detailed view of the system structure. Two intermediate layers are presented, showing the topological or functional
structure of the system. On the left side (top down), the artistic view of a cell with chromosomes is shown, followed by the gene regulatory
network scheme, the translation and ribosomal machinery layer and interacting molecules and atoms layer (captures of the artistic MIB movie:
http://sergi5.com/bio/MIB). On the right side (top down), the artistic view of the biological system is modelled in MIB. The first layer box represents
the cell that contains membrane and cytoplasm (second layer). Zooming out the cytoplasm (third layer), gene expression, involving a transcriptional
factor, is represented. At the bottom layer, the transcriptional factor is magnified into a complex made of two proteins, and gene expression is

symbolized by the transient TF/DNA complex.
activates, inhibits. The same chemical species may have
different properties and participate in different reactions
depending on intracellular localization. In this case,
such a species may be represented by more than one en-
tity in the MIB model. The next paragraph presents the
formal definition of the MIB model.

Definition 1 (MIB model). The MIB network N is a tu-
ple ({X,Y },E) where:

• X is a set of entities x = (n, l, t) where n is a name,
l is a localization, and t is a type of the entity;

• Y is a set of transformations y = (n, s, t) where n

is a name, s is a speed (kinetic rate) and t is a type
(e.g., inversible or not, protein–protein or DNA–
protein, etc.) of the transformation;

• E is a set of links (x, y, r) or (y, x, r) where x ∈ X

is an entity and y ∈ Y is a transformation and r is
one of four possible roles (production, consump-
tion, activation, and inhibition) of an entity x in a
transformation y.

Kinetic rates can be dependent on the biological context.
The above definition does not make any restriction on it.

The MIB network ({X,Y },E) can be represented
graphically as a bipartite graph (as shown in Fig. 2)
where elliptic nodes represent entities X and rectangu-
lar ones represent transformations Y . Nodes are labelled
with the attributes of related entities and transforma-
tions. Edges of this graph represent links E between
an entity and a transformation. There are four arrow
types to express four possible roles of an entity in a
transformation: production (� → ©) or consumption
(© → �) of an entity by a transformation and activa-
tion (© ↔ �) or inhibition (© � � ) of a transforma-
tion by an entity.

In the following paragraphs, two examples of MIB
model of common biochemical reactions will be pre-
sented. The first example is catalytic. The second is
stoichiometric.

Example 1 (Transcriptional regulation). One of the im-
portant properties of the reaction transcriptional regu-
lation is that the participating species are not consumed
(this type of reaction can be also called gene expres-
sion regulation). This type of reaction (the expression
of Gal3 protein) is shown in Fig. 2A. The GAL3 gene
and transcriptional factor Gal4p are needed for the reac-
tion (they activate it), but are not consumed [19].

More generally speaking, the information trans-
fer reaction represents the production of a biological
macromolecule using the informational template (DNA
for transcription or RNA for translation reaction). The
template is not consumed in such a reaction.

Example 2 (Association reaction). In Fig. 2B, the com-
plexation of Gal3 and Gal80 proteins and of galactose

http://sergi5.com/bio/MIB


948 S. Smidtas et al. / C. R. Biologies 329 (2006) 945–952
Fig. 2. Examples of representation of a biological system. A. In yeast, Gal4p is the transcriptional factor that regulates the GAL3 gene. B. Gal3p,

Gal80p and galactose constitute a complex.
is represented [19]. This is an example of a chemical re-
action that can not be represented with a simple graph
because it involves three different entities. It may be la-
belled with the kinetic rate. The association reactions
are generally reversible, and the corresponding reverse
transformation could also exist and encoded in a distinct
reaction.

The topology of the MIB or its parts can be described
by motifs, thus characterizing the number of reactions,
species and roles of the species in the system.

Definition 2 (Motif of MIB and its occurrence). A motif
M on MIB is a tuple {(XM,YM),EM} where:

• XM is a set of entities;
• YM is a set of transformations;
• EM is a set of links between entities and transfor-

mations of the motif.

An occurrence of a motif M in the MIB model N =
{(XN,YN),EN } is a sub network O = {(XO ⊂ XN,

YO ⊂ YN),EO ⊂ EN } and two bijections BX :XO →
XM and BY :YO → YM can be established between
nodes of both graphs such that, if xM = BX(xO), lxM

∈
lxO

, txM
∈ txO

and yM = BY (yO), syO
∈ syM

, tyO
∈ tyM

,
then ∀(xM,yM, rM) ∈ EM ∃r ′

M : ∃(xO, yO, r ′
M) ∈ EO ∧

∃(xM,yM, r ′
M) ∈ EM .

A motif can have several occurrences in the network,
in which case they are distinguished by their labels.
Fig. 3 represents the MIB motifs used to represent every
type of biological data included into the database. Motif
A illustrates a transcriptional factor that inhibits (or ac-
tivates) the expression of a protein. Reactions involving
two proteins that form a complex were represented by
motifs D, and PPIs by motif B. Two more transforma-
tions represent indirect and even unknown mechanisms:
synexpression data (correlated expression of a couple
of proteins) are represented by motif E, and synthetic
lethality by motif C. So long-distance and short-distance
interactions can be mixed during the analysis as we
studied for synexpression and its molecular mechanism
(Fig. 5).
Fig. 3. Motifs used for biological data representation in MIB. A. Two
motifs representing TRIs: inhibition (top) and activation (bottom) of
the production of the entity (macromolecule) (right) by another entity
(transcription factor) (left). B. A motif representing physical inter-
action: two entities activate a transformation (PPI). C. The synthetic
lethality is represented by a motif with two entities inhibiting a trans-
formation ‘Leth’ (for lethality phenotype). D. A motif representing
association transformation (top) that consumes two entities and pro-
duces a complex C. The reverse transformation (dissociation) is repre-
sented in the bottom of the panel. E. The synexpression of a couple of
entities is represented by a motif with two transformations in which
they are produced (top) and consumed (bottom) together. F. A mo-
tif representing a metabolic reaction. Two entities are consumed by a
transformation, one entity activates it and two entities are produced.

Finally, a metabolic reaction catalysed by an enzyme
is illustrated by motif F, where two reactants are con-
sumed, two other molecules are produced, and one en-
zyme is needed by the transformation.

3. Application to the heterogeneous network of
S. cerevisiae

Modelled data, coming from various sources, were
integrated in the Biological Interaction Browser (BIB)
(http://www.genoscope.cns.fr/biopathways/bib/). We in-
tegrated the following datasets: protein–protein interac-
tion (PPI) data, generated using high-throughput vari-
ants of the yeast two-hybrid method to identify binary
interactions [20,21] or using techniques to isolate multi-
protein complexes based on mass-spectrometry such as
HMS-PCI [22], TAP [23] and compilation from the lit-
erature [24]. The data include also direct transcriptional
interactions (TRI) compiled from the literature [25] and
from ChIP-Chip experiments [26]. The synexpression
results come from microarrays experiments [27] rep-
resenting pairs of genes with a correlated expression.

http://www.genoscope.cns.fr/biopathways/bib/
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Table 1
Number of feedback loops as a function of loop size (column 1): loops
including only TRIs (column 2), TRIs and one PPI (column 3), TRIs
and two PPIs that are not adjacent (column 3)

Loop size TRIs + 0 PPI TRIs + 1 PPI TRIs + 2 PPIs

2 5 17 –
3 4 32 –
4 5 71 125
5 4 144 529
6 9 222 1372
7 6 390 3140
8 12 740 8464
9 22 1197 14 863

10 41 1987 30 444

The synthetic lethality results [27] represent pairs of
yeast genes whose joint disruption is lethal. Finally, the
metabolic network data were taken from Biocyc [28] us-
ing Cyclone [35]. The complete network contains 6513
proteins, 1440 complexes, two phenotypes. The interac-
tions include 7455 cases of DNA–protein interactions,
8531 protein–protein interactions, 16496 synexpres-
sions, 886 synthetic lethality cases. Feedback loops and
synexpression patterns were searched in this entire het-
erogeneous network.

3.1. Feedback loops

Feedback loops are a basic example of a static motif,
from which dynamical properties such as homeostasis
and differentiation can be inferred. The dynamical be-
haviour of regulatory loops has been studied by several
authors using a variety of techniques [16], mostly in
the context of transcriptional networks and abstract net-
works of regulatory influences. Here, we searched for
the first time for feedback loops that include both TRI
and PPI.

Before studying heterogeneous motifs, TRI-only
loops were searched. One hundred and eight TRI-only
feedback loops were found in the entire network, with
lengths ranging from 2 to 10 (see Table 1, columns 1
and 2).

Then, one TRI at a time was replaced by a PPI.
Fig. 4 shows feedback loops, each comprising four en-
tities (circles) and the following sets of transformations
(squares): TRI only (A), 3 TRIs + 1PPI (B) and 2TRIs
+ 2 PPIs (C). For example, the motif (B) illustrates a
feedback loop made of four entities, one PPI and three
TRIs. All TRIs are oriented in the same direction and
can represent either an activation (double arrows) or an
inhibition (squared arrows).

We compared the number of TRI-only loops with the
number of loops where a TRI had been replaced by a
PPI (Table 1, columns 2 and 3). Depending on the loop
Fig. 4. Feedback-loop motifs made of TRIs only (A), with one PPI
(B) or with 2 PPIs (C). Each motif contains four transformations (rec-
tangular shapes), four entities (circles), and possible roles of entities
in transformations are represented by arcs.

size, 3–50 times more loops with one PPI were found.
If two non-adjacent TRIs are replaced by two PPIs, the
number of loops increases up to three orders of mag-
nitude, depending on the loop size (Table 1, columns 2
and 4). Thus, adding a second PPI in a motif that already
included one PPI increases the number of matching sub-
nets from 2 to 15 times.

3.2. Micro-arrays

Synexpression may involve various underlying mole-
cular mechanisms, thus being a biological result at an
intermediate level between molecular physical mecha-
nisms and phenotypes (see Fig. 1). To evaluate the cor-
relation between the molecular knowledge integrated in
the BIB and synexpression data, we searched for possi-
ble mechanisms accounting for each synexpressed cou-
ple of genes.

We used BIB to find the correlation between the
micro-array data on the synexpression of gene pairs,
and the biochemical reactions in which these two genes
participate. Thus, a molecular mechanism underlying
the synexpression of two genes, based on the PPI and
TRI graphs, could be proposed. These molecular mech-
anisms, symbolized by candidate motifs, are presented
in Fig. 5, together with the number of observed occur-
rences of each motif type. To determine which motifs
are under- or over-represented, the ratio of motif occur-
rences with and without synexpression was calculated
for six candidate mechanisms (last column in Fig. 5).

We looked for modules comprising one gene that
regulates the transcription of another gene (Fig. 5B, left)
and where the two genes are synexpressed (Fig. 5B,
right). Six occurrences of such a module were found
with synexpression, and 7412 occurrences were ob-
served without synexpression, which makes the differ-
ence of 1200 times. A more complex motif would in-
clude one (Fig. 5C, right) or two (Fig. 5F, right) addi-
tional genes between the two initial ones. Such motifs
were found 19 and 27 times, respectively, with a ratio
of 500 and 1000 times less compared to the same motif
without synexpression.
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Fig. 5. Correlation between synexpression data and underlying biochemical mechanisms. Six motifs were proposed to be candidates for the syn-
expression mechanisms (A–F, left). For each motif, the number of occurrences in the BIB database is indicated on the side. The motifs combining
the regulatory mechanism and the synexpression data (A–F, right) were searched, and the number of encountered occurrences of such subnets is
indicated. The last column shows the ratio between occurrences of each motif without or with synexpression condition.
Fig. 6. Shortest path length distribution between all synexpressed pairs
of proteins (dashed line) versus all possible pairs of proteins (plain
line). The shortest paths of length 1 to 4 have been searched. The
value of 5 on the x-axis indicates that no shorter path than five has
been found.

A different candidate motif that accounts for synex-
pression of two genes could involve a third gene that
regulates these two genes (Fig. 5D, right). This motif is
found 1539 times in yeast, 270 times less than without
synexpression constraint. It is interesting to see that the
inverse situation, when two synexpressed genes regu-
late a third one (Fig. 5E, right) is much less frequent (28
cases, 790 times less than without synexpression). As
for the synexpression motif A, it was strongly under-
represented (6 cases, 11 000 times underrepresented),
meaning that synexpressed genes are seldom participat-
ing in a PPI.

For further analysis of the link between synexpres-
sion phenotype and the physical interaction network
structure, we analyzed the shortest path-length distrib-
ution between synexpressed genes compared to that of
any pair of genes. The results are shown in Fig. 6. There
is little difference between the two distributions, except
for long paths (� 5 steps). The average path length be-
tween two synexpressed genes is significantly different
from that between random pairs of genes for long paths
only, in contrast with previous results [12].

4. Discussion

Most studies involving heterogeneous networks thus
far have focused either on network topology, either
local or global. However, most important biological
processes such as signal transduction, cell-fate regu-
lation, transcription and translation involve more than
four but much fewer than hundreds of proteins. MIB is
slightly more complex than a simple graph representa-
tion, but has greater expressiveness. One of the great
advantages of this approach is that this model enables
various static and dynamic analysis. It directly repre-
sents n-ary relations that are essential for the repre-
sentation of complexes and of metabolic reactions. The
added expressiveness is also related to the assumption
that each modelled transformation occurring in the bi-
ological system may be broken down into elementary
parts [29]. Our model is more abstract than the one
proposed in [30], so we can deal with different types
of biological objects and processes uniformly. MIB en-
ables the semi-automatic translation in other modelling
formalisms such as, for example, Petri Nets, Ordinary
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Fig. 7. A MIB motif (with a specified dynamics; top) allows searching for both TRI only subnets (left) and mixed TRI/Metabolism/PPI subnets
(right). This is illustrated here with a feedback loop.
Differential Equations, or Pi-calculus (Yartseva et al.,
in prep.). The BIB tool adapts some of the algorithms
available for graphs (e.g., motif search) to the case of
bipartite graphs. It can be used to analyse how vari-
ous data types complement each other in the full het-
erogeneous network. As most biologically interesting
features concern the dynamics of biological functions
implemented by molecules, reactions or pathways, bi-
ologically meaningful queries are better expressed at
the level of functions and the objects that support these
functions. A simple graph representation does not al-
low this type of query formulation. Fig. 7 provides an
example of how the MIB formalism allows to search
for instances of a function, independently of the precise
‘implementation’ of this function in a cell. Both subnet-
works at the bottom of Fig. 7 can fulfil the specified
dynamics depicted by the motif at the top. The sub-
network on the left is implemented by TRIs only, and
the one on the right by one TRI, one metabolic reaction
(transport) and one physical interaction (binding).

TRI only feedback loops have already been studied
[25]. In the present study, we searched for such loops
in larger datasets, and therefore we found more loops in
the larger size range. We also provide a new perspective
on these feedback loops studies by relaxing previous
constraints [31] to allow PPI anywhere in the loops.
Some of the modules found are well known, such as the
Ste12–Fus3 feedback circuit [32], others are unknown.

The analysis of synexpression data relations between
1625 pairs of genes allowed us to propose for each pair a
biologically relevant circuit with a parsimonious topol-
ogy. This result illustrates how an interaction of higher-
level order than biochemical reactions may be modelled
in MIB, thus enabling the study of the whole set of yeast
interactions.

We have found that the paths between synexpressed
genes were longer than for random pairs of proteins
(see Fig. 6). We will further investigate synexpressed
gene paths. However, the situation is opposite for tran-
scriptional factors: the paths between pairs of them are
shorter than between random pairs of proteins [33]. This
difference could mean that the genes that are not close
in the biological interaction network need to be synex-
pressed in order to synchronize their biological activity.
Our explanation is in line with the results on just-in-time
assembly regulation of various complexes [34].

All the interactions integrated in the model come
from experimental results, but the context in which a
given interaction effectively takes place is not known
and may vary among experiments. Therefore, the vali-
dation step consists in finding the conditions in which
the modules are functional, either by calling on an ex-
pert, or if prior knowledge is unavailable, by bench
experimentation, as has been done in the case of the
galactose feedback loop [18].

These preliminary studies represent a proof of con-
cept for the MIB as a useful tool for future investigations
involving regulation, protein interactions, and metabolic
networks together with higher-level types of interac-
tions, like synthetic lethality or synexpression.
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