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Abstract

The breaking of the symmetry of bud growth in Bidens seedlings involves a sort of plant ‘memory’. An asymmetrical stimulus
(e.g., the pricking of one of the seedling cotyledons) stores a ‘symmetry-breaking’ signal within the plants (function STO). De-
pending on other stimuli received by the seedlings, the stored signal may remain silent or be recalled (RCL function) and take effect
in the seedling morphogenesis (asymmetry of the growth of the cotyledonary buds, with a statistical advantage to the bud at the
axil of the non-stimulated cotyledon). We show that this memory mechanism can be interpreted by a model taking into account a
genetic control exerted on a non-linear enzymatic system that is able to choose trajectories going to different attractors, depending
on the stimulation intensity. To cite this article: J. Demongeot et al., C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Mémorisation et rappel de signaux exogènes dans une plante : modélisation à l’aide d’une formulation (continue) dif-
férentielle. La rupture de la symétrie de croissance des bourgeons de plantules de Bidens met en jeu une sorte de « mémoire »
végétale. Un stimulus asymétrique (par exemple, l’application de quelques piqûres d’épingle à l’un des deux cotylédons de chaque
plantule) induit le stockage (fonction STO) d’un message de « rupture de symétrie » dans les plantules. Selon que les plantules re-
çoivent ou non d’autres stimuli, le message stocké peut rester inexprimé ou être rappelé (fonction RCL) et s’exprimer dans la mor-
phogenèse des plantules (asymétrie de la croissance des bourgeons cotylédonaires, avec un avantage statistique pour le bourgeon à
l’aisselle du cotylédon non stimulé). Nous montrons que ce mécanisme de mémoire peut être interprété à l’aide d’un modèle prenant
en compte le contrôle génétique exercé sur un système enzymatique non linéaire, capable de choisir des trajectoires conduisant à
différents attracteurs, en fonction de l’intensité du stimulus. Pour citer cet article : J. Demongeot et al., C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In a previous paper [1], we have modelled the stor-
age, recall and final effect of abiotic signals in seedlings
of Bidens pilosa L. by use of an asynchronous, logi-
cal (discrete) formulation [2]. This was especially useful
to determine toward which direction the system would
tend to move and its steady-state conditions of function-
ing. The present paper represents the differential (con-
tinuous) approach of the same problem. The aim is to
describe the system evolution by introducing a continu-
ous term coming from non-linear enzyme kinetics into
the equations of the dynamics of the seedling growth.

2. Summarizing the experimental data

See, e.g., Desbiez et al. [3–5] for original experimen-
tal data on the Bidens system and Thellier et al. [6] for
a review. Briefly, the Bidens seedlings exhibit a bilateral
symmetry with their two opposite cotyledons (cotyle-
don A on the left and cotyledon B on the right when
all the seedlings under study are oriented parallel to one
another), their actively growing apex (or terminal bud)
and their two cotyledonary buds (i.e. the buds at the
axil of the cotyledons). As long as the apex is present,
it inhibits the growth of the ‘cotyledonary buds’ (api-
cal dominance); however, after apex removal (seedling
‘decapitation’), the cotyledonary buds can start to grow.
Stimulating (for instance, pricking) one of the seedling
cotyledons (e.g., cotyledon A), i.e. delivering an asym-
metrical stimulus to each seedling, tends to alter the
symmetry of the growth of the ‘cotyledonary buds’.
More precisely, the stimulation of one of the seedling
cotyledons gives a statistical advantage to the axillary
bud of the opposite cotyledon (the ‘distal’ bud) relative
to the bud at the axil of the stimulated cotyledon (the
‘proximal’ bud). In a population of seedlings, this rel-
ative advantage of one bud upon the other can be mea-
sured by the use of a parameter, g, which corresponds to
the difference (normalised to the total number of plants)
between the number of plants where bud B starts grow-
ing before bud A and the number of plants where bud A
starts growing before bud B. For instance, g = 1 cor-
responds to the extreme asymmetrical response when
bud B is the first to start to grow in all plants, g = −1 to
the other extreme asymmetrical response when bud A
is the first to start to grow in all plants and g = 0 to the
symmetrical response in which there is an equal num-
ber of plants where it is bud A or bud B that is the first
to start to grow.

When cotyledon stimulation is carried out on non-
decapitated seedlings, this has no externally apparent
effect on plant morphogenesis; however, if the apical
bud is finally removed, the cotyledonary buds start to
grow with the same g-values as when cotyledon stim-
ulation is carried out simultaneously to seedling de-
capitation. A ‘symmetry-breaking signal’ (initiated by
cotyledon stimulation) thus is stored (‘STO’ function)
within the seedlings, without taking effect, during the
time lapse between cotyledon stimulation and seedling
decapitation. From many experiments, it was inferred
that this signal storage was an irreversible and an all-or-
nothing process. Now, depending on the conditions of
seedling decapitation and on the possible application of
a variety of other treatments, the g-values appeared to
be sometimes close to zero and sometimes significantly
different from zero, although all the seedlings had been
subjected to the same asymmetrical pricking treatment.
This means that, apart from their STO function, the
seedlings possess a recall (RCL) function that can be re-
versibly switched ‘on’ or ‘off’ and that the stored signal
can take effect (differential growth of the cotyledonary
buds) only when the RCL function is ‘on’. Typical exper-
imental data taken from the first two Tables in Thellier
et al. [6] are grouped in Table 1. By successively switch-
ing the recall function, ‘off’, then ‘on’, then ‘off’ again,
etc., the observed g-values were close to zero, signifi-
cantly above zero, close to zero again, etc. This shows
that the stored symmetry-breaking signal can be repeat-
edly solicited, which is strikingly similar to the storage
and evocation functions existing in animal and human
brain [7,8].

3. The differential modelling of the Bidens system

3.1. Statement of the problem

The interpretation given below is based upon the as-
sumption that the growth of any of the three buds of
each seedling (the apex and the two cotyledonary buds)
tends to further favour its own growth and to inhibit
the growth of the other two buds, as a consequence of
the synthesis by a growing bud of appropriate ‘growth
metabolites’ [9].

3.2. The differential symbolism

In the present differential formulation, we are going
to use specific symbols, which may be different from
those used in the previous asynchronous, logical formu-
lation [1]. In particular, here we are using the unique
symbol A (respectively B) in order to represent, both,
the left (respectively right) side of the seedlings (cotyle-
dons and cotyledonary buds) and the size (i.e. also the
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Table 1
Experimental results relative to bud growth asymmetry, following various sorts of pricking treatments, or combinations of pricking treatments, and
plant decapitation [6]

Ref. No. Pricking treatment Plant decapitation at g Bud growth asymmetry

1 non-pricked control onset of daylight 0.02 bud A ≈ bud B
2 4A onset of daylight 0.35 ± 0.2 bud B > bud A
3 4A midday 0.08 ± 0.15 bud A ≈ bud B
4 1A onset of daylight 0.01 bud A ≈ bud B
5 4B onset of daylight −0.35 bud A > bud B
6 1A(1h)4B onset of daylight 0.39 bud B > bud A
7 2A onset of daylight 0.06 bud A ≈ bud B
8 2A(1h)2A/2B onset of daylight 0.32 bud B > bud A
9 2A(1h)2A/2B(3h)2A/2B onset of daylight 0.05 bud A ≈ bud B

10 2A(1h)2A/2B(3h)2A/2B(5h)2A/2B onset of daylight 0.34 bud B > bud A

Meaning of symbols: xA, x pricks to cotyledon A; xA/xB, x pricks simultaneously to both cotyledons A and B; xA(yh)zB, x pricks to cotyledon A
followed, y hours later, by z pricks to cotyledon B; g defined in text; bud A ≈ bud B, no significant asymmetry; bud B > bud A, asymmetry in
favour of bud B; bud A > bud B, asymmetry in favour of bud A. The experiments were carried out under the so-called ‘standard’ conditions [6].

Fig. 1. The mnesic ‘opernet’ summarizing the regulation of the plant growth at two levels, the genetic control (Boolean part) and the epigenetic
metabolism (differential part). The arrows + (respectively −) correspond to an activation (respectively an inhibition) and the blue arrows correspond
to positive regulatory loops. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this
article.)
content in growth metabolites) of the cotyledonary buds.
We term ‘mnesic opernet’ (Fig. 1) the system obtained
by combining the genetic (operon) and epigenetic parts
(metabolic net) of the system ruling the growth of the
cotyledonary buds [6,8]. In Fig. 1, the genetic part of
the mnesic opernet has been modelled using a Boolean
system [1,8]: the variable PA (respectively PB), which
represents the pricking treatment (or any other asym-
metrical stress action having an effect similar to that
of pricking) on side A (respectively B) of the plant,
is equal to 1 or 0, according to whether the asym-
metrical treatment has been applied or not. The vari-
able SA (respectively SB) represents the discrete part of
the opernet. The genetic control system is symbolized
in Fig. 1 by SA (respectively SB) on the side A (re-
spectively B); moreover, we assume that S, as activated
by the stimulus P , inhibits the expression of a morpho-
genetic cotyledonary material, R, which is responsible
for the growth of both the apex and the cotyledonary
bud A (respectively B). More precisely, RA (respec-
tively RB) represents the concentration of R on side A
(respectively B) and we assume that this concentration
RA (respectively RB) is continuous and that the rate of
R modification, dRA/dt (respectively dRB/dt ) is ruled
by a differential system containing a 3-switch between
the continuous variables T (size of the terminal bud),
A and B (sizes of the cotyledonary buds). It may be re-
called that an n-switch is a fully connected system of
n elements with only negative interactions (inhibitions)
between one another, except for possible positive au-
tocatalytic terms. If there are no positive autocatalytic
terms, and when n is an odd number, the n-switch sys-
tem contains both positive and negative circuits; for in-
stance, a 3-switch system contains two negative circuits
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Fig. 2. Interaction graph G of the epigenetic part representing the
metabolic core of the growth system. The central regulation triangle
between T , A and B is an inhibitory 3-switch.

(each made of three elements) and three positive circuits
(each made of two elements). By contrast, all the cir-
cuits are positive when n is an even number. The study
of the kinetics of such 3-switch systems [10] has shown
that in most cases the asymptotic dynamical behaviour
of growth consists of favouring the growth of one ele-
ment of the n-switch and inhibiting the others.

Fig. 2 describes the interaction graph denoted G. The
connectivity coefficient of this graph (i.e. the number
of interaction arrows divided by the number of ver-
tices) K(G) = 16/5, the mean inhibition weight (i.e.
the proportion of inhibitory interactions, symbolised by
negative arrows, vs. the total number of interactions)
I (G) = 10/16, the number of positive circuits (i.e. the
number of closed pathways with an even number of in-
hibitions) P(G) = 5. Moreover, G is a connected graph
(i.e. there exists at least one pathway between each pair
of vertices) that contains two regulons (i.e. two sub-
graphs, each with only two vertices and three arrows,
one of the arrows being a self-activation loop and the
other arrows making a negative loop [11]).

3.3. The system of differential equations

The differential system governing the variables T ,A,

B,RA and RB is written:

dRA/dt = (σ − kT − (4k/5)A − (k/5)B)RA

− F(RA)
[
T + (4/5)A + (1/5)B

]
/(T + A + B)

− (
wPA(t) + wPB(t)/2

)
dRB/dt = (

σ − kT − (4k/5)B − (k/5)A
)
RB

− F(RB)
[
T + (1/5)A + (4/5)B

]
/(T + A + B)

− (
wPB(t) + wPA(t)/2

)
dT/dt = (

F(RA) + F(RB)
)
T/(T + A + B) − νT
dA/dt = F(RA)(4/5)A/(T + A + B)

+ F(RB)(1/5)B/(T + A + B) − νA

dB/dt = F(RB)(4/5)B/(T + A + B)

+ F(RA)(1/5)A/(T + A + B) − νB

The first two equations correspond to the dynam-
ics of RA (respectively RB). The derivative at time t ,
dRA(t)/dt (respectively dRB(t)/dt ) results from the
combination of four terms:

– (i) an auto-catalytic term, σRA(t) (respectively
σRB(t)), in which σ is a kinetic constant;

– (ii) a negative term (−kT (t) − (4k/5)A(t) − (k/5)

B(t))RA(t) (respectively (−kT (t) − (4k/5)B(t) −
(k/5)A(t))RB(t)), expressing the mutual inhibi-
tions of buds T , A and B by one another, in which
k is a kinetic constant. Note that this inhibition is
supposed for the buds to be more important on the
same side (4k/5) than on the other side (k/5);

– (iii) a negative term, corresponding to the produc-
tion of growth metabolites T (t), A(t) and B(t),
−F(RA(t))[T (t)+(4/5)A(t)+(1/5)B(t)]/(T (t)+
A(t)+B(t)) (respectively −F(RB(t))[T (t)+(1/5)

A(t) + (4/5)B(t)]/(T (t) + A(t) + B(t))). In this
term, it is assumed that RA (respectively RB) con-
sumption has a non-linear kinetics described by
the function F and that it presents a Michaelian
competitive inhibition by the bud both on its own
side, A (respectively B), and on the other side, B
(respectively A). We also assume that the Vmax of
the Michaelian inhibition is equal to 1 and that the
affinity and competitive coefficients are equal to 1
for T and to 4/5 and 1/5 for A (respectively B),
depending on the side on which they exert their in-
hibition;

– (iv) instantaneous perturbations wPA(t) from side A
(respectively side B) and wPB(t)/2 from the other
side B (respectively A), the value of PA(t) (respec-
tively PB(t)) being 1 if the pricking treatment is
applied to cotyledon A (respectively cotyledon B)
at time t = tP, and 0 anywhere else. The coefficient
w quantifies the intensity of the perturbations, sup-
posed to be equal to w on the same side and w/2
on the opposite side.

Note that, in these first two equations, the coefficients
4/5 and 1/5, and 1 and 1/2, have been chosen arbitrar-
ily, just to express that the effect of one bud upon itself
is much larger than its effect upon the other bud. Given
the robustness of the system, the results would not be
changed significantly by choosing other parameter val-
ues (e.g., 5/6 and 1/6, and 1 and 1/3).
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Fig. 3. The function F(RA) presenting two successive inflection
points (full curve), the function νσRA/(ν + kRA) (dotted curve) and
the function νσRA/(ν + 2kRA) (dashed curve). The black star corre-
sponds to a stable steady state of abscissa RA = r and the white star
to an unstable steady state of abscissa RA = s.

The last three equations correspond to the dynam-
ics of the concentrations of growth metabolites in the
apex and the cotyledonary buds, dT (t)/dt , dA(t)/dt

and dB(t)/dt . These equations merely express the fact
that the production of the growth metabolites depends
on RA(t) and RB(t), with a competitive inhibition by
the other sources of growth as already described above,
minus a linear degradation term, the kinetic constant of
which is equal to ν.

In order to be able to interpret a minima the exper-
imental results given in Table 1, let us assume that F

is a ‘dual-phasic’ function possessing two successive
inflection points [12] (Fig. 3). Moreover, dual-phasic ki-
netic curves have also been shown to exist with natural
or artificial enzymatic or transport systems [13–15].

Let us consider the stationary state equation of the
differential system as described above. In the absence
of any perturbation, it is written:

dRA/dt = 0, dRB/dt = 0, dT/dt = 0,

dA/dt = 0, dB/dt = 0

If the value of the derivative of F , F ′(RA) =
dF(RA)/dRA, verifies F ′(0) > σ , F ′(r) > ν2σ/(ν +
2kr)2, F ′(s) > ν2σ/(ν + ks)2, with F(r) = νσr/(ν +
2kr), F(s) = νσs/(ν + ks), then the differential system
as indicated above possesses, in the space (RA,RB, T ,

A,B), among all its stationary states, (i) the stable
steady state (0,0,0,0,0), (ii) two unstable focuses
(s,0, σ s/(ν + ks),0,0) and (0, s, σ s/(ν + ks),0,0)
(which we assume to be surrounded by the limit cycles
denoted α and β , respectively) and (iii) the stable steady
state C, which is equal to (r, r,2σr/(ν + kr),0,0)
(Fig. 4).
In our reasoning below, we assume that the dynamics
of the inhibitory 3-switch representing the interactions
between T , A and B is already known [10]. Note that,
if we consider an inhibitory n-switch between the enti-
ties Ai ’s and if this n-switch verifies:

dAi/dt =
( ∑

j=1,...,n

KijAj

)/( ∑
j=1,...,n

Aj

)
− νAi

then the stationary states Ai = Kii/ν,Ak = 0, for k �= i

are stable. It is easy to check this property on the Ja-
cobian matrix of the differential system. See Cinquin
and Demongeot [10] for a complete study of the in-
hibitory n-switches. Briefly, such a system has a sin-
gle non-zero real eigenvalue λ = −ν < 0 (all the other
eigenvalues being equal to 0). This implies the stability,
because of the negativity of all the second-order deriv-
atives ∂2(dAk/dt)/∂A2

j , for k �= j . In the following, we
are going to assume that we start from a stable steady
state (T (∞) > 0, A(∞) = B(∞) = 0); when T will be
given the value 0 by apex removal, then fluctuations will
impose at time τ the apparition of a non-zero value of ei-
ther A(τ) or B(τ), the probability of occurrence of both
non-zero values being considered as negligible. Three
cases may then be considered:

– (i) if RA(τ ) and RB(τ ) have approximately the
same value, such as:

F
(
RA(τ )

)
(4/5)A(τ)/

(
T (τ) + A(τ) + B(τ)

)
+ F

(
RB(τ )

)
(1/5)B(τ)

/
(
T (τ) + A(τ) + B(τ)

)
> νA(τ)

F
(
RB(τ )

)
(4/5)B(τ)/

(
T (τ) + A(τ) + B(τ)

)
+ F

(
RA(τ )

)
(1/5)A(τ)

/
(
T (τ) + A(τ) + B(τ)

)
> νB(τ)

then the steady state is A(∞) > 0 and B(∞) = 0, if
A(τ) > 0 and, inversely, B(∞) > 0 and A(∞) = 0,
if B(τ) > 0. In this case, after seedling decapita-
tion both cotyledonary buds, A and B, have equal
chances to be the first to start to grow (thereby in-
hibiting the growth of the opposite bud) if both fluc-
tuations have the same chance to occur;

– (ii) if RA(τ ) � RB(τ ) and A(τ) > 0, B(τ) > 0 or
B(τ) = 0, A(τ) > 0, such as:

F
(
RA(τ )

)
(4/5)A(τ)/

(
T (τ) + A(τ) + B(τ)

)
+ F

(
RB(τ )

)
(1/5)B(τ)

/
(
T (τ) + A(τ) + B(τ)

)
> νA(τ)
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Fig. 4. Experimental perturbations in the state space (RA,RB, T ). See explanation in the text.
F
(
RB(τ )

)
(4/5)B(τ)/

(
T (τ) + A(τ) + B(τ)

)
+ F

(
RA(τ )

)
(1/5)A(τ)

/
(
T (τ) + A(τ) + B(τ)

)
< νB(τ)

then the steady state is A(∞) > 0, B(∞) = 0, if
A(τ) > 0 and no fluctuation B(τ) > 0 can be am-
plified. In this case, bud A takes precedence over
bud B;

– (iii) the third case is identical to the second case,
except that the roles of A and B have been inverted,
and it is bud B that takes precedence over bud A.

4. Application to the interpretation of the
experimental data

When examining the experimental data represented
in Table 1, the phenomenology of the growth response
of the cotyledonary buds looks rather intricate: (i) the
asymmetry of the response (g �= 0) depends not only
on the intensity of the asymmetrical pricking treatment
(1, 2 or 4 pricks), but also on the time of the day when
plant decapitation was carried out, (ii) the combina-
tion of a pricking treatment 1A (which did not induce
any bud growth asymmetry per se) with a treatment 4B
(which induced an asymmetry in favour of bud A per se)
induced an asymmetry in favour of bud B, and (iii) com-
bining a treatment 2A with one or several symmetrical
treatments 2A/2B caused the bud growth response to
be symmetrical (when there was an even number of
treatments 2A/2B) or asymmetrical in favour of bud B
(with an odd number of treatments 2A/2B). However,
the theoretical model described in Fig. 4 gives a straight-
forward interpretation of the various aspects (see the
corresponding reference numbers in Fig. 2 and in the
first column of Table 1) of this apparently complicated
phenomenology:

– (1) if the initial conditions (non-pricked controls)
are within the basin of stability of the stable steady
state C (i.e. close enough to C), then, in the absence
of any perturbation, the whole trajectory lies within
this basin and tends towards C (where RA ≈ RB)
when time t increases to infinity. After seedling de-
capitation and in the absence of any previous prick-
ing (non-pricked control), buds A and B have equal
chances to be the first to start to grow, thereby in-
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hibiting the growth of the opposite bud, with the
consequence that g ≈ 0;

– (2)–(3) with seedlings subjected to a 4-pricks treat-
ment on cotyledon A, there is a shift from the initial
conditions close to C (non-pricked controls) to the
basin of the limit cycle β . That the final response
depends on the time of the day when seedling de-
capitation was carried out (g > 0 or g ≈ 0, accord-
ing to whether the seedlings were decapitated at the
onset of daylight or in the middle of the day) is
due to the fact that, after seedling decapitation, RA
and RB lie within the basin of the limit cycle β in
which RB � RA in the first case, while they are in
the basin of the stable steady state 0 in the second
case, in which RB can be close to RA and suffi-
ciently large for obeying condition (i) at the end of
Section 3. If the trajectory is slowly tending toward
the stable steady state 0, haphazard fluctuations can
cause either bud A or B to start to grow, with the
consequence that g ≈ 0;

– (4) if the system is initially close to C and if a
1-prick treatment is applied to cotyledon A (respec-
tively B), then we assume that this perturbation re-
sults in an instantaneous decrease w of the intensity
of RA (respectively RB) and in a smaller decrease
(e.g., w/2) of the intensity of RB (respectively RA)
at the time tP when the pricking treatment is carried
out. In such a case, the variables RA and RB remain
in the basin of C and g ≈ 0;

– (5) when a 4-prick treatment is applied to cotyle-
don B, then the point representing the system leaves
the basin of C with a decrease of, for instance, 4w

in RA and 2w in RB, to go to the basin of the limit
cycle α in which RA � RB, hence g < 0;

– (6) when the seedlings are subjected to a 1-prick
treatment on cotyledon A followed, 1 h later, by a
4-prick treatment on cotyledon B, then the system
goes into the basin of the limit cycle β , with the
consequence that RB � RA and g > 0;

– (7) when the seedlings are subjected to a 2-prick
treatment on cotyledon A, then the system remains
in the basin of C and g ≈ 0;

– (8) when the seedlings are subjected to a 2-prick
treatment on cotyledon A followed, 1 h later, by
a symmetrical 2-prick treatment on both cotyle-
dons A and B, then the system goes into the basin
of the limit cycle β , again with the consequence that
RB � RA and g > 0;

– (9) when the seedlings are subjected to a 2-prick
treatment on cotyledon A followed, 1 h later, by
a symmetrical 2-prick treatment on both cotyle-
dons A and B, again followed, 3 h later, by a sym-
metrical 2-prick treatment on both cotyledons A
and B, then the system returns into the basin of C
with the consequence that g ≈ 0. This is due to the
special shape of the trajectory (8) that passes close
to the frontier of the basin of attractor C when going
towards the limit cycle β;

– (10) when a 2-prick treatment on cotyledon A is fol-
lowed by three symmetrical 2-pricks treatments on
both cotyledons A and B after 1 h, 3 h and 5 h, re-
spectively, the system goes into the basin of C after
the second symmetrical pricking treatment (same
behaviour as in case (9)), but it leaves the basin
of C to go towards the limit cycle β after the
third symmetrical treatment. In that case, we have
again g > 0.

It is noteworthy that our above reasoning still holds
if C is an attractor (e.g., a limit cycle). Because of its
qualitative character, this reasoning is robust and de-
pends only on the general features that have been cho-
sen for function F : in particular, its dual-phasic non-
linearity is absolutely requisite to be able to account for
all the experimental observations.

5. Conclusions

By using the qualitative description of both the ge-
netic (after a pricking treatment or other stresses) and
epigenetic forces exerted on the opernet, all the simu-
lated behaviours were shown to fit qualitatively the ob-
served phenomenology as it is summarized in Table 1.
In our present interpretation (i) the storage (STO) func-
tion corresponds to the existence of the limit cycles α

and β in the state space (RA,RB, T ), which can be con-
sidered as internal metabolic clocks of the growth func-
tion, while (ii) the recall (RCL) function depends on
each particular pathway that a perturbation can impose
to the point representing the system in its state space
according to each particular condition of experiment.
We can finally note, as already suggested in Tonnelier
et al. [16], that exogenous instantaneous perturbations
exerted on a non-linear system can both store and evoke
information and therefore seem to be a necessary com-
ponent of any memory system.

Acknowledgements

We acknowledge the support of the National Net-
work for Technology Research RNTS ‘Technologies for
Health’ of the French Ministry of Research.



978 J. Demongeot et al. / C. R. Biologies 329 (2006) 971–978
References

[1] M. Thellier, J. Demongeot, J. Guespin, C. Ripoll, V. Norris, R.
Thomas, A logical (discrete) formulation model for the storage
and recall of environmental signals in plants, Plant Biol. 6 (2004)
590–597.

[2] R. Thomas, Boolean formalization of genetic control circuits,
J. Theor. Biol. 42 (1973) 410–415.

[3] M.-O. Desbiez, Y. Kergosien, P. Champagnat, M. Thellier, Mem-
orization and delayed expression of regulatory messages in
plants, Planta 160 (1984) 392–399.

[4] M.-O. Desbiez, M. Tort, M. Thellier, Control of a symmetry-
breaking process in the course of the morphogenesis of plantlets
of Bidens pilosa L, Planta 184 (1991) 397–402.

[5] M.-O. Desbiez, M. Tort, C. Monnier, M. Thellier, Asymmet-
rical triggering of the cell cycle in opposite buds of a young
plant, after a slight cotyledonary wound, C. R. Acad. Sci. Paris,
Ser. III 321 (1998) 403–407.

[6] M. Thellier, L. Le Sceller, V. Norris, M.-C. Verdus, C. Ripoll,
Long-distance transport, storage and recall of morphogenetic in-
formation in plants. The existence of a sort of primitive plant
‘memory’, C. R. Acad. Sci. Paris, Ser. III 323 (2000) 81–
91.

[7] J. Demongeot, M. Kaufman, R. Thomas, Positive feedback cir-
cuits and memory, C. R. Acad. Sci. Paris, Ser. III 323 (2000)
69–79.
[8] J. Demongeot, R. Thomas, M. Thellier, A mathematical model
for storage and recall functions in plants, C. R. Acad. Sci. Paris,
Ser. III 323 (2000) 93–97.

[9] M.-O. Desbiez, M. Thellier, The Bidens plantlet: bilateral
symmetry and possible breaking of the symmetry during bud
growth, in: B. Millet, H. Greppin (Eds.), Intra- and Intercellu-
lar Communications in Plants, Reception-Transmission-Storage
and Expression of Messages, Institut national de la recherche
agronomique, Paris, 1990, pp. 141–150.

[10] O. Cinquin, J. Demongeot, Inhibitory n-switch dynamics and
applications, J. Theor. Biol. 233 (2005) 391–411.

[11] J. Demongeot, J. Aracena, F. Thuderoz, T.P. Baum, O. Cohen,
Genetic regulation networks: circuits, regulons and attractors,
C. R. Biologies 326 (2003) 171–188.

[12] J. Demongeot, M. Laurent, Sigmoidicity in allosteric models,
Math. Biosci. 67 (1983) 1–17.

[13] E. Epstein, Dual pattern of ion absorption by plant cells and by
plants, Nature 212 (1966) 457–474.

[14] J.-C. Vincent, M. Thellier, Theoretical analysis of the sig-
nificance of whether or not enzyme or transport systems in
structured media follow Michaelis–Menten kinetics, Bio-
phys. J. 41 (1983) 23–28.

[15] M. Thellier, J.-C. Vincent, S. Alexandre, J.-P. Lassalles, B. De-
schrevel, V. Norris, C. Ripoll, Biological processes in organised
media, C. R. Biologies 326 (2003) 149–159.

[16] A. Tonnelier, S. Meignen, J. Demongeot, Synchronization and
desynchronization of neural oscillators: comparison of two
models, Neural Networks 12 (1999) 1213–1228.


	Storage and recall of environmental signals in a plant: modelling by use of a differential (continuous) formulation
	Introduction
	Summarizing the experimental data
	The differential modelling of the Bidens system
	Statement of the problem
	The differential symbolism
	The system of differential equations

	Application to the interpretation of the experimental data
	Conclusions
	Acknowledgements
	References


