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Abstract

In previous notes, we have described both mathematical properties of potential (n-switches) and potential-Hamiltonian (Liénard
systems) continuous differential systems, and also biological applications, especially those concerning primitive cyclic RNAs
related to the genetic code. In the present note, we give a general definition of a potential automaton, and we show that a discrete
Hopfield-like system already introduced by Goles et al. is a good candidate for such a potential automaton: it has a Lyapunov
functional that decreases on its trajectories and whose time derivative is just its discrete velocity. Then we apply this new notion of
potential automaton to the genetic code. We show in particular that the consideration of only physicochemical properties of amino-
acids, like their molecular weight, hydrophobicity and ability to create hydrogen bonds suffices to build a potential decreasing on
trajectories corresponding to the synonymy classes of the genetic code. Such an ‘a minima’ construction reinforces the classical
stereochemical hypothesis about the origin of the genetic code and authorizes new views about the optimality of its synonymy
classes. To cite this article: J. Demongeot et al., C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Automates cellulaires potentiels. Application au code génétique. Dans les notes précédant cet article, nous avons décrit des
systèmes différentiels continus potentiels (de type « n-switches ») et potentiel-hamiltoniens (de type « systèmes de Liénard »), dont
les équations étaient bien adaptées à la modélisation des systèmes dynamiques en biologie. Par exemple, un système différentiel
potentiel défini sur �n est du type : ∀i = 1, . . . , n, dxi/dt = −∂P/∂xi , où P est une fonction réelle continûment différentiable sur
�n. Nous donnons dans cet article une définition du même type pour les automates discrets et nous montrons, à titre d’exemple,
un système de type Hopfield, déjà étudié par Goles et al., pour lequel il existe une fonction de Lyapunov décroissant le long des
trajectoires. Nous montrons que la dérivée temporelle de cette fonction de Lyapunov est exactement la vitesse discrète de l’automate
et nous appliquons cette nouvelle notion au code génétique. Nous montrons en particulier que l’on peut construire un potentiel
uniquement à partir de propriétés physicochimiques simples des amino acides, comme leur poids moléculaire, leur hydrophobicité
et leur capacité à créer des liaisons hydrogène, les orbites de l’automate potentiel correspondant n’étant autres que les classes
de synonymie du code. Leur construction « a minima » renforce l’hypothèse classique stéréochimique quant à l’origine du code
génétique et ouvre de nouvelles perspectives vers l’optimalité de ses classes de synonymie. Pour citer cet article : J. Demongeot
et al., C. R. Biologies 329 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

A discrete dynamical system has the same definition
as the continuous ones [1–9]. It involves a flow function
f defined on E × T , where T is a discrete time space
(in general N ) and E a discrete state space ({0,1}n in
the Boolean case and more generally a countable subset
of �n+), f (e, t) representing, for each state e and time
t , the state reached after time t by the trajectory start-
ing in state e at time 0. We denote in general f (x(0), t)

by x(t) = (xi(t))i=1,...,n, which permits to have a co-
herent notation for all the states of a trajectory. The
set of such states is called the orbit of x(0). Follow-
ing [10], we can now define the discrete time derivative
for the state vector (xi(t))i=1,...,n of an automaton by:
�xi/�t = (xi(t + �t) − xi(t))/�t , which reduces to
xi(t + 1)− xi(t), if �t = 1. By using the same formula,
we can also define:

– the space derivative: �f (x)/�i = (f (xi+�i) −
f (xi))/�i = f (xi+1) − f (xi), if �i = 1

– the partial state derivative: �f (x)/�xi = (f (xi +
�xi) − f (xi))/�xi .

A discrete automaton is defined by a transition func-
tion F : �xi/�t = (xi(t + �t) − xi(t))/�t = Fi(x(t)),
where Fi depends only on coordinates (xj (t))j∈V (i),
V (i) being a neighbourhood of i in the space set S (in
general the Manhattan – or L1 – unit ball of S ⊆ Zm

centred on i and having a radius equal to 1), with con-
ditions defining V on the boundary of S (e.g., periodic)
and with constraints on the discrete velocity ensuring
that the flow remains in E.

The aim of the paper is to find a discrete analogous
for the definition of a potential (or gradient) discrete dy-
namical system (called here potential automaton) simi-
lar to those known in continuous systems. Then we will
study as biological application a potential automaton
whose orbits are the synonymy classes of the genetic
code, the potential deriving only from simple physic-
ochemical properties of the amino-acids corresponding
to these synonymy classes.

2. Definition of a potential automaton

A continuous potential differential equation on �n

is defined by: ∀i = 1, . . . , n, dxi/dt = −∂P/∂xi , where
P is a real continuously differentiable function (e.g., a
polynomial with real coefficients) on �n. In the same
way, a potential automaton on the discrete state space E

is defined by:

(1)xi(t + 1) = h
(−�P/�xi + xi(t)

)
where P is a real function (e.g., a polynomial with real
coefficients) on E and h a function from � to E, with
boundary conditions ensuring that the flow remains in
E. For example, in the Boolean case, we will choose
for h the Heaviside function H : H(s) = 1 if s > 0, and
H(s) = 0 if s � 0. In the integer case (E subset of Nn),
h will be the identity, if P has integer coefficients and if
∀i = 1, . . . , n, �xi ∈ {−1,0,1}. Then Eq. (1) rewritten
as �xi/�t = h(−�P/�xi + xi(t))− xi(t) can be con-
sidered as the discrete equivalent of dxi/dt = −∂P/∂xi .

Example. In the Boolean case, if P(x) = ∑
k(

t xAkx)xk

+ t xWx + Bx, where A = (aijk) is an interaction ten-
sor, with Ak = (aij )k as marginal matrices and aiii = 0,
W = (wij ) is an interaction matrix and B = (bi) a
threshold line vector, we have, for the partial space
derivatives of P :

�P/�xi =
∑
j,k

(aijk + ajik + ajki)xj xk

+
∑
j

(wij + wji)xj + bi

(2)

+
[
wii +

∑
j �=i

(aijj + ajij + ajji)xj

]
�xi

Then the potential automaton associated to P is defined
by:

�xi/�t = �xi = −�P/�xi

= −
∑
j,k

(aijk + ajik + ajki)xj xk

−
∑
j

(wij + wji)xj − bi

−
[
wii +

∑
j �=i

(aijj + ajij + ajji)xj

]
�xi
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Hence we have:

�xi = −
[∑

j,k

(aijk + ajik + ajki)xj (t)xk(t)

+
∑
j

(wij + wji)xj (t) + bi

]
/[

1 + wii +
∑
j �=i

(aijj + ajij + ajji)xj (t)

]

and xi(t + 1) = H(�xi + xi(t)) = H(−�P/�xi +
xi(t)), where H is the Heaviside function. From (2), we
derive:

xi(t + 1) = H

(
−

[∑
j,k

(aijk + ajik + ajki)xj (t)xk(t)

+
∑
j

(wij + wji)xj (t) + bi

]
/[

1 + wii +
∑
j �=i

(aijj + ajij + ajji)xj (t)

]

(3)+ xi(t)

)

3. Properties of a potential automaton

Proposition 1. Let us suppose that the state space E

equals Nn and that P is defined on E by: ∀x ∈ E,
P(x) = ∑

k(
t xAkx)xk + t xWx + Bx, where A, W , B

are respectively an integer tensor, an integer matrix
and an integer line vector. Let suppose also that: ∀i =
1, . . . , n, �xi ∈ {−1,0,1}. Consider now the potential
automaton defined by: xi(t + 1) = −�P/�xi + xi(t),
if xi(t) > 0, and by boundary conditions xi(t + 1) � 0,
if xi(t) = 0, such that the flow remains in E.

Then, if the tensor A is symmetrical with vanishing
diagonal (i.e. if ∀i, j, k = 1, . . . , n, aijk = aikj = akij =
ajki = ajik = akji and aiik = 0), and if each sub-matrix
on any subset J of indices in {1, . . . , n} of Ak and of
W is non-positive with vanishing diagonal, P decreases
on the trajectories of the potential automaton, for any
mode of implementation of the dynamics (sequential,
block sequential and parallel). Hence the stable fixed
configurations of the automaton correspond to the min-
ima of its potential P .

Proof. We have:

P
(
x(t + 1)

) − P
(
x(t)

)
= 3

∑∑
aijk�xi�xjxk(t) +

∑
aijk�xi�xj�xk
k i,j i,j,k
+ 3
∑

k

∑
i,j

aijkxi(t)xj (t)�xk

+
∑

i

(∑
j �=i

(wij + wji)xj (t)�xi

+
∑
j �=i

wij�xi�xj + 2wiixi(t)�xi + wii�x2
i

)

+
∑

i

bi�xi

In a potential automaton, we have ∀i = 1, . . . , n, �xi =
−�P/�xi , hence:

�xi = −
[∑

j,k

(aijk + ajik + ajki)xj xk

+
∑
j

(wij + wji)xj + bi

]

−
[
wii +

∑
j �=i

(aijj + ajij + ajji)xj

]
�xi

(1) In the sequential updating, only one component
xk changes its value between t and t + 1, hence:

P
(
x(t + 1)

) − P
(
x(t)

)
= 3

(∑
i �=k

aikk�x2
k xi(t) +

∑
i,j

aijkxi(t)xj (t)�xk

)

+
∑
j

(wkj + wjk)xj (t)�xk + wkk�x2
k + bk�xk

= �xk(−�xk) = −�x2
k � 0

(2) In the block-sequential updating, let denote by J

the subset of {1, . . . , n} reached by the sequential iter-
ation. Then only the xk’s for k in J can change their
value between t and t + 1, hence:

P
(
x(t + 1)

) − P
(
x(t)

)
= 3

∑
k

∑
(i,j)∈J×J

aijk�xi�xjxk(t)

+
∑

(i,j,k)∈J×J×J

aijk�xi�xj�xk

+ 3
∑
k∈J

∑
i,j

aijkxi(t)xj (t)�xk

+
∑
i∈J

∑
j

(wij + wji)xj (t)�xi

+
∑

wij�xi�xj +
∑

bi�xi
(i,j)∈J×J i∈J
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=
∑
i∈J

�xi

[
3
∑
j,k

aijkxj (t)xk(t)

+ 3
∑

j∈J,k

aijk�xjxk(t) +
∑

(j,k)∈J×J

aijk�xj�xk

+
∑
j

(wij + wji)xj (t) +
∑
j∈J

wij�xj + bi

]

=
∑
i∈J

�xi

[
−�xi

(
1 + wii + 3

∑
j �=i

aijj xj (t)

)

+
∑
j∈J

�xj

(
wij + 3

∑
k

aijkxk(t)

)

+
∑

(j,k)∈J×J

aijk�xj�xk

]

= −
∑
i∈J

�x2
i (1 + wii) +

∑
(i,j)∈J×J

wij�xi�xj

+ 3
∑

(i,j)∈J×J,k

aijk�xi�xjxk(t)

+
∑

(i,j,k)∈J×J×J

aijk�xi�xj�xk

= −
∑
i∈J

�x2
i (1 + wii) +

∑
(i,j)∈J×J

wij�xi�xj

+ 3
∑

(i,j)∈J×J,k /∈J

aijk�xi�xjxk(t)

+ 2
∑

(i,j,k)∈J×J×J

aijk�xi�xjxk(t)

+
∑

(i,j,k)∈J×J×J

aijk�xi�xj

(
xk(t) + �xk

)

From the hypotheses of the present proposition and
from the positivity of xk(t) and xk(t +1) = xk(t)+�xk ,
we deduce that P(x(t + 1)) − P(x(t)) � 0. �
Proposition 2. In the Boolean case, let us suppose that
A = 0, P(x) = txWx + Bx, with wii = 1 and each
sub-matrix on any subset J of indices in {1, . . . , n} of
W is non-positive. Then P decreases on the trajecto-
ries of the potential automaton defined by xi(t + 1) =
H(−�P/�xi + xi(t)) for any mode of implementa-
tion of the dynamics (sequential, block sequential, and
parallel). This automaton is a Hopfield-like neural net-
work, whose stable fixed configurations correspond to
the minima of P .

Proof. It is easy to check that from (2): �P/�xi =∑
(wij +wji)xj +bi +wii�xi , and from (3) and from
j
Fig. 1. Potential automaton with �x = −gradP (on the left) and au-
tomaton with a Lyapunov function decreasing on its trajectories (on
the right).

wii = 1:

xi(t + 1) = H
(−�P/�xi + xi(t)

)
= H

(
−

[∑
j

(wij + wji)xj (t) + bi

]

/[1 + wii] + xi(t)

)

= H

(
−

∑
j �=i

(wij + wji)xj (t) − bi

)

Then, for the block sequential iteration: P(x(t + 1)) −
P(x(t)) = −∑

i∈J �x2
i (1 + wii) + ∑

(i,j)∈J×J wij ×
�xi�xj � 0, the result coming from the non-positivity
of the sub-matrices of W or from [9]. �

The interest of Proposition 2 is to show that the
Hopfield-like automaton, defined by:

∀i = 1, . . . , n,

xi(t + 1) = H

(
−

∑
j �=i

(wij + wji)xj (t) − bi

)

has not only P as Lyapunov function, as proved in [9],
but more it can be considered as a potential automaton
with a potential equal to P , because the opposite of the
gradient of P is the velocity of the automaton, which
is quite different in general for a system with simply a
Lyapunov function (Fig. 1).

4. Application to the genetic code

We will now use the notion of potential automa-
ton introduced above in order to show what kind of
biological significance can have the attraction basins
of the stable fixed configurations (i.e. corresponding to
the minima of the potential) of such an automaton (see
also [11]).



J. Demongeot et al. / C. R. Biologies 329 (2006) 953–962 957
Fig. 2. Repartition of the amino-acids and of their codons following
two criteria, size (small or large) and hydrophobicity (high/internal
and low/external) (after [12]).
The stereochemical hypothesis belongs to a theory
about the origin of the genetic code for which the first
complexes between amino-acids (AA) and nucleic acids
(NA) have been the start of the autopoietic origin of life.
This theory claims that, from a physicochemical sim-
ilarity on three (dependent) dimensions: (i) the ability
L of binding (in particular through hydrogen bounds),
(ii) the hydrophobicity H , and (iii) the molecular weight
P , codons are associated in an unique and degenerate
way to their AA [13,14]. This correspondence can be
summarized in Fig. 2, in which the variables H , L and
P are given for each amino-acid showing a structure
into synonymy classes with sizes from 1 to 6.

According to the wobble hypothesis by Crick, the
first two bases of a codon are essential for its affec-
tation to a given amino-acid: we observe that the sec-
ond base permits to share the codon space into classes
(Fig. 3) associated with hydrophobic AA (central base
uridine U or cytosine C) or heavy AA (central base U
or adenine A), or able of binding AA (central base C
or guanine G). Then we could represent each base by a
Boolean number of three binary digits (e.g., 110 for U,
the first 1 for the hydrophobicity, the second 1 pour the
heavy weight and the last 0 for a weak ability of bind-
Fig. 3. Table of the genetic code, indicating the hydrophobicity H , the maximal number L of possible hydrogen bounds divided by the length of
the longest carbonate chain and molecular weight P , for each amino-acid of a synonymy class of codons.
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ing), summarizing their characteristics on the H , L and
P axes. For the sake of simplicity, we will in the fol-
lowing reduce the coding to two binary digits, retaining
only hydrophobicity and steric volume, redundant with
P and L. We will show that it will suffice to explain
the essential of the degeneracy of the genetic code, by
taking into account optimality properties of the genetic
code [15] and using a classical coding for the nucleic
bases [1], i.e. U = 11, C = 10, A = 01 et G = 00. We
will also define a potential automaton SUSY (SUrrogate
SYstem), linking codons and AA having similar physic-
ochemical properties like hydrophobicity H � 0 (resp.
hydrophily H < 0) et big (resp. small) steric volume,
positively correlated to P and L.

Let us define, for each configuration W in {0,1}6, the
set of Boolean numbers of six binary digits, the subset
V (W) = {X;S(X,W) � 10 and D(X,W) � 3/32}:

– where D is the Hamming distance, weighted fol-
lowing the Crick’s wobble, which defines the codons
ordering O (given in Fig. 3 from 1 to 64, for the W s
varying between 111111 and 000000):

∀X,Y ∈ {0,1}6

D(X,Y ) = |x3 − y3| + |x4 − y4|/2 + |x1 − y1|/4

+ |x2 − y2|/8 + |x5 − y5|/16

+ |x6 − y6|/32,

– S is a similarity function between codons X and Y :
S(X,Y ) = ∑

i=1,5 ai(xi, yi)xiyi + bi(xi, yi)(1 −
xi)(1 − yi),

– coefficients ai and bi are fixed by electrostatic (hy-
drophobicity H ) and steric (molecular weight P

and ability of binding L) properties of the amino-
acids [16]:

a1(1,1) = 2, a2(1,1) = 2, a3(1,1) = 3,

a4(1,1) = 2, a5(1,1) = 2,

b1(0,0) = 2, b2(0,0) = 3, b3(0,0) = 2,

b4(0,0) = 3, b5(0,0) = 3.

Then the potential automaton SUSY is defined on
{0,1}6 by:

O
(
W(t + 1)

) = O
(
W(t)

) + H
(
O

(
W(t)

− O
(
MinO V (W(t))

)))
,

where for the ordering O, O(W) is the rank of the
Boolean number W and MinO V (W(t)) denotes the
minimum of the subset V (W(t)), H being the Heavi-
side function. The potential P is defined by: P(W) =
O(W) − O(MinO V (W)). P decreases along trajecto-
ries and has for attraction basins the first part of the
states chains linked below by an arrow, the last state of
a chain being a stable fixed configuration:

(111111) ⇒ (111110), (111101) ⇒ (111100)

(101111,101110,101101) ⇒ (101100)

(011111) ⇒ (011110) (011101) ⇒ (011100)

(001111,001110,001101) ⇒ (001100)

(111011,111010,111001) ⇒ (111000)

(101011,101010,101001) ⇒ (101000)

(011011,011010,011001) ⇒ (011000)

(001011,001010,001001) ⇒ (001000)

(110111) ⇒ (110110), (110101) ⇒ (110100)

(100111) ⇒ (100110), (100101) ⇒ (100100)

(010111) ⇒ (010110), (010101) ⇒ (010100)

(000111) ⇒ (000110), (000101) ⇒ (000100)

(110011) ⇒ (110010), (110001) ⇒ (110000)

(100011,100010,100001) ⇒ (100000)

(010011) ⇒ (010010), (010001) ⇒ (010000)

(000011,000010), (000001) ⇒ (000000).

The attraction basins can be identified in the frame-
work of the genetic code table in Fig. 4.

If we except codon 111100, whose similarity S = 10
with 101100, the only codons having an incorrect affec-
tation [17,18] are:

• 011101, to relate to the block (011111,011110)

(S = 9),
• 110001, to relate to the block (110101,110100)

(S = 9),
• 010000, whose block has to be related to those of

100000 (S = 8),
• 010011, whose block has to be related to those of

111011 (S = 7).

For the two last codons above, the three digits cod-
ing with a complement of similarity equal to 1 for the
equality between the third digit of the two first bases
of a codon would relate 010001001 to the block of
101001001 (S = 9) and 010001110 to the block of
110101110 (S = 9). In any case of incorrect affectation
we would be then very near to the above critical thresh-
old of 10 defined for the similarity between the five first
digits, in coherence with the stereochemical hypothe-
sis and with the previous observations of the Gray code
regularities [12,19,20].
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Fig. 4. Identification of the attraction basins of the automaton SUSY in the genetic code table.

Fig. 5. Table giving the frequencies of occurrences of the AA in human genome [23] and in the genetic code, and giving their rank in a consensus
chronology [22] and in the Miller experiment [22].
5. Variational properties of the system

The automaton SUSY not only maximizes a similar-
ity function, but it gives final synonymy classes veri-
fying two other variational properties, one based on a
maximal information principle and the second showing
a maximal congruence with present nucleic ‘fossils’ ex-
isting in many types of cells.

5.1. A maximal information principle

The easy way shown above to obtain a sketch of
the synonymy classes through the potential automaton
SUSY reinforces the stereochemical hypothesis. Apart
from the amino-acids with six codons, the result is par-
ticularly convincing for the amino-acids the most fre-
quent both in the Miller experiment and in the human
genome as recalled in the table in Fig. 5 [21,22]. The
mutual benefit taken by the RNA and AA worlds from
a possible primitive direct association as predicted by
the stereochemical theory (four out of the AA in Fig. 5,
Leu, Glu, Val and Arg have preferential affinities with
their codons and anti-codons [24]) is compatible with
their Darwinian co-evolution well summarized by de
Duve [25]: “The theory considered most likely today
supposes a historical, co-evolutionary process in which
the anticodons and the corresponding amino-acids were
progressively recruited together under the control of
natural selection. Several arguments support this hy-
pothesis. The most convincing lies in the structure of the
code, which, far from being random, happens to be such
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Fig. 6. Graph of the mutation function M and of the information I

showing the optimal frequency fo .

as to minimize the deleterious consequences of muta-
tions.”

We can interpret in a very schematic way this pro-
gressive adaptation by using a simple variational crite-
rion, based on the dual principle of the minimization of
the mutation function M and of the maximization of the
genetic code information I .

Fig. 6 gives the optimal classes repartition frequency
fo ≈ 2/3 for a code with 2 AA, obtained at the intersec-
tion of the graphs of the functions

M(f ) = 2f (1 − f ) and

I (f ) = (−f lnf − (1 − f ) ln(1 − f )
)

×
1∫

0

M(x)dx
/ 1∫

0

H(x)dx,

where H(x) = −x lnx − (1 − x) ln(1 − x). The fre-
quency of an amino-acid AAi class being equal to
ni/64, where ni is its size, the mutation function M =
E/64 is the expectation E = ∑

i=1,2(64 − ni)ni/64 of
the deleterious mutations (causing the exit of a syn-
onymy class) divided by the number of codons. The
information I is equal to the entropy of the distribution
of the AA classes frequencies normalized such as M

and I have the same mean value on [0,1].
If now we renormalize the repartition of the genetic

code in 21 synonymy classes or clusters: 3 of 6 codons,
5 of 4, 2 of 3, 9 of 2 and 2 of 1, following at each step
the rule such as we roughly respect the optimal propor-
tion fo ≈ 2/3 for one of the bigger renormalized class,
we get a coherent tree (Fig. 7), satisfying at each bifur-
cation the above variational criterion. For example, the
first renormalization concerns clusters of size 1 and 2,
we combine for obtaining clusters of size 3 and 4 (see
the bottom line of the tree) and secondly with clusters
Fig. 7. Renormalization tree respecting the optimal frequency fo for
the synonymy classes of the genetic code.

of size 4 and 6 for obtaining the third line from the bot-
tom, which corresponds to the affectation of codons to
only 8 amino-acids (e.g., the 8 first in Miller’s experi-
ment). This short proof explains the classical properties
of resistance to the mutations shown by the genetic code
[26,27] compatible with the stereochemical hypothesis
used in the automaton SUSY.

5.2. A maximal congruence with present nucleic
‘fossils’

Some RNA relics exist in practically all eukary-
ote and prokaryote cells: tRNAs and miRNAs repre-
sent such fossils preserved during the evolution. We
have already proved [1,2] that the most conserved part
of tRNAS (their loops) were similar to primitive cir-
cular RNAs made of 1 and only 1 representative of
each codon class, obtained by maximizing their affin-
ity to AAs and minimizing their length. In the presently
known functional miRNAS, we have the same similari-
ties. For example, there is 222 known human miRNAs,
plus 76 supplementary human miRNAs recently discov-
ered [28], similar to a primitive circular RNA called AB:
CAAGACUAUGAAUGGUGCCAUU, with a significa-
tivity p less than 21 – as shown in Fig. 8, which presents
consensus sequences for these 76 miRNAs.

Fig. 8 presents also consensus sequences for mi-
ARNs coming from bacteria and plants [29,30] show-
ing the same similarities. Further statistical studies [31]
confirm this fact and the miRNA world can then be
considered as a fossil reservoir coming from primitive
RNAs built with respect to the synonymy classes ob-
tained from the automaton SUSY.
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Fig. 8. Similarities between miRNA consensus sequences and a circular primitive RNA called AB.
6. Conclusion

We have introduced in this paper the notion of po-
tential automaton, which gives a natural framework
to previous discrete systems like Hopfield neural net-
works, well studied in the past for the existence of
Lyapunov energy functions. In a further study, we will
introduce the notion of Hamiltonian automaton and pro-
pose new directions of research towards the potential-
Hamiltonian decomposition of discrete dynamical sys-
tems (cf. [5,6] for the continuous case). An application
of this new notion of potential automaton concerns the
genetic code for which we proved that the degeneracy in
synonymy classes of codons can be partly explained by
the action of a potential automaton based on the stere-
ochemical properties of both the amino-acids and their
codons.
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