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Abstract

A method is proposed to represent and to analyze complete genome sequences (52 species from procaryotes and eukaryotes),
based upon n-gram sequence’s frequencies of amino acid pairs (bigrams), separated by a given number of other residues. For
each of the species analyzed, it allows us to construct over-abundant and over-deficient occurrence profiles, summarizing amino
acid bigram frequencies over the entire genome. The method deals efficiently with a sparseness of statistical representations of
individual sequences, and describes every gene sequence in the same way, independently of its length and of the genome sizes. The
frequency of over-abundant and over-deficient occurrences of bigrams presents a singular periodicity around 3.5 peptide bonds,
suggesting a relation with the alpha helical secondary structure. To cite this article: J.P. Radomski, P.P. Slonimski, C. R. Biologies
330 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La séquence primaire des protéines de génomes complètement séquencés présente une périodicité singulière : analyse
sans alignement fondée sur la fréquence des bigrames. Nous avons développé une méthode d’analyse des séquences, dite des
bigrames (n-tuples avec n = 2), représentant les 400 combinaisons des 20 acides aminés, séparées par un nombre variable de liai-
sons peptidiques. Un ensemble de 52 génomes, procaryotes et eucaryotes, a été étudié. Une analyse statistique approfondie permet
de dégager, pour chaque génome, un profil caractéristique de combinaisons d’acides aminés significativement surreprésentées ou
sous-représentées. La fréquence de ces déviations présente une périodicité de 3,5 liaisons peptidiques, ce qui suggère une relation
avec l’hélice alpha de la structure secondaire. Pour citer cet article : J.P. Radomski, P.P. Slonimski, C. R. Biologies 330 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In an intriguing article, Damashek [1] described an
automatic classification of a whole library of texts with
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the aid of calculated n-grams. The resulting vector
representation of documents, together with a simple
Euclidean distance measure, allowed for each docu-
ment to be placed into a proper semantic context, not
only as to its language origin, but also to put it into a
correct thematic contextual class. Similar searches, for
near exact sequence matches, are performed frequently
in large-scale sequencing projects of comparative ge-
nomics. However, the traditional sequence distances re-
quire sequence alignment (either pairwise or multiple),
and therefore are not directly applicable to the prob-
lem of whole genome phylogeny, where events such as
rearrangements (gene/chromosome/genome) make the
full-length alignments inapplicable. Nevertheless, the
vast majority of methods used up to date to compare
complete genomes are based upon techniques of local
alignment of two or more DNA, or protein sequences.
These methods are very successful for the phylogenetic
studies of gene/protein families or superfamilies, and
even for the phylogenies of complete genomes, when
the evolutionary divergence between taxons is not too
great. However, when genetic recombination, shuffling
and various mechanisms responsible for genome fluid-
ity and dynamics are predominant (as in phylogenies of
deep-rooted taxons), comparisons based upon sequence
alignments alone fail to extricate a large body of phy-
logenetic signals. For example, in a comparison of the
Aeropyrum pernix genome with the Ureoplasma ure-
aliticum one, only a very small fraction of protein se-
quences of the first genome can be aligned with those
of the second genome (114/3499 = 3%). Thus, the ge-
netic recombination and, in particular, genetic shuffling
are at odds with sequence comparison by alignment,
which assumes conservation of contiguity between ho-
mologous segments: the alignment approach overlooks
well-documented long-range interactions, and also the
relative fluidity resulting from recombination with shuf-
fling of conserved segments without loss of function.

A variety of theoretical approaches are being used to
derive alignment-free methods that overcome this lim-
itation. The issue of quantifying the similarity between
biological sequences is of paramount importance, and
even more, so as the difficulty in defining a metric for
sequences’ dissimilarity is also present in the analysis
of natural language texts, thus both areas can be syn-
ergistic. There are many algorithms for searching ge-
netic databases for biologically significant similarities
in biological sequences. Past research has shown that
word-based search tools are computationally efficient
and can find similarities or dissimilarities invisible to
other methods. The characteristic family of word-based
dissimilarity measures, that define distance between se-
quences, can be computed by simultaneously compar-
ing the frequencies of all subsequences of n adjacent let-
ters (i.e., n-words, n-grams, k-tuples, the actual names
given in the literature can differ; however, they all de-
scribe the same concepts and approaches) in sequences.
Applications to real data demonstrate that currently
used word-based methods rely mostly on Euclidean dis-
tance; however, other distance measures can be used as
well, perhaps leading to a significant improvement.

The earliest work systematizing the use of n-tuple
counts for sequence comparison [2–4] used the dif-
ference between two DNA sequences by the squared
Euclidean distance between their transition matrices.
Daeyaert et al. [5] have studied unaligned sequences
characteristics of the amino acid composition of n-
tuples (i.e. doublets, triplets, quadruplets, etc.), inves-
tigating the performance of two statistics (termed com-
monality and specificity) derived from n-tuple counts.

Distribution regimes for the number of k-word
matches between two random sequences observed when
comparing two sequences and counting the number of
k-letter words the two sequences have in common were
analyzed by Karlin [6] and Lippert et al. [7]. The rig-
orous study of the statistical distribution revealed three
asymptotic regimes, including compound Poisson and
normal. The compound Poisson distribution arises when
the word size k is large, and the word matches are rare.
The normal distribution arises when the word size is
small and the matches are common. However, when the
word size is small and the letters are uniformly distrib-
uted, the anticipated limiting normal distribution does
not always occur. In this situation, the uniform distribu-
tion provides the exception to other letter distributions.
Therefore a naive ‘one distribution fits all’ approach
could easily create serious errors in estimating signifi-
cance.

Stuart et al. [8] presented a method for generating
gene and species phylogenies from whole genomes, us-
ing short-character string matches not placed within
explicit alignments. The singular value decomposition
of a sparse tetrapeptide frequency matrix was used to
represent the proteins of organisms uniquely as vec-
tors in a high-dimensional space. Muller and Koonin
[9] have used a principal component analysis (PCA) to
classify DNA sequences, by translating sequences into
vectors that represent their word content. They tested
the approach with several datasets of genomic DNA,
and were able to classify introns and exons with an
accuracy of up to 96%. Alignment-free metrics, until
very recently, have not been an object of a compar-
ative study. The classification accuracy of word com-
position metrics was reviewed [10,11], together with a
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new definition of distance between protein sequences
– the W -metric, which bridges alignment metrics, such
as scores produced by the Smith–Waterman algorithm
[12], and methods based solely on k-tuple composition.
Although alignment methods resulted in very good clas-
sification accuracy at the family and superfamily levels,
the alignment-free distances were as good as alignment
algorithms when sequence similarity was smaller, such
as for recognition of fold or class relationships. Edgar
[13] used word statistics for the discovery of local sim-
ilarities and the estimation of evolutionary distance by
identifying k-mers common to two sequences. The abil-
ity of compressed amino acid alphabets to extend these
techniques to distantly related proteins was also investi-
gated. Distance measures derived from k-mer counting
were found to correlate well with percentage identity
derived from sequence alignments. Compressed alpha-
bets were seen to improve performance in local similar-
ity discovery, but no evidence was found for improve-
ments when applied to distance estimates.

None of the studies discussed so far have dealt with
the comparison of complete genomes using alignment-
free techniques, although some did refer to such a
possibility. The major obstacle stems from the very
sparse statistics resulting while using n-grams of longer
lengths (already for tetrapeptides, the number of possi-
ble combinations of 4-grams from 20-letter alphabet is
much larger than that actually observed for proteins of
an average 300 residues). Also, the longer the n-grams
used, the less the method can be termed truly align-
ment free. The very first approach, which can be con-
sidered as analyzing complete genomes by alignment-
free methods, takes the idea to its extreme – Kreil and
Ouzounis [14] used amino acid compositions deduced
from six archea, 19 bacterial species, and two eukary-
otes to build a phylogenetic tree of species correlated
with the optimal living temperatures of their environ-
ment. Their method takes into account, not only ho-
mologous proteins, but also proteins unique to partic-
ular species. Radomski and Slonimski [15] have used
to a small extent, the bigram analysis of a set of ribo-
somal protein sequences to develop the notion of the
genomic style of proteins. Rosato et al. [16] also ana-
lyzed the thermal dependencies of 15 proteomes, using
the concept of n-grams with a spacer, and described
some observed anomalies in n-gram distribution at cer-
tain spacer lengths.

On the other hand, already in 1967, the notion of
the expectancy-rectified frequencies of bigrams with
spacer (s) – i.e. the observed frequency of occurrence
of the s-pair of amino acids f s(ij) compared to the ex-
pected frequency of such s-pair occurrence f s(i)f s(j)
– was introduced by Krzywicki and Slonimski [17],
who have shown that for certain spacer length statis-
tically highly significant deviations are present in pro-
teins, albeit due to the small number of sequences avail-
able at that time, judged by the present-day standards,
the idea had to wait a long time for further develop-
ments.

2. The concepts and the methods used

When compared to a language text, an average ge-
netic sequence is relatively short. The mean length of
proteins oscillates at about 350 residues (see, e.g., in
Table 1). Therefore, calculating the set of n-grams for
a such short string of amino acids will lead to a vector
representation, which is severely sparse, especially for
higher n-grams lengths, and hence to very poor statis-
tics. To alleviate this problem, we propose here a hybrid
approach. Namely, to compute counts of all amino acid
pairs – separated by sub-sequences of differing length,
the actual composition of these spacer sub-sequences
will be neglected. However, when such partial counts
are used as a composite set, a poor statistic problem is
not any longer a hindering obstacle, and the complete
information about particular n-gram frequencies profile
is preserved, albeit in a distributed and convoluted form.

The method involves several steps (although, de-
pending on the actual purpose at hand, not all the chain
will be always necessary). For completeness sake, we
present them here sequentially, to facilitate understand-
ing.

Step one involves counting occurrences of the partic-
ular amino acid pairs as follows. For the given genome
sequence V , and the all spacer lengths, λ, in order to
calculate observed values of a given amino acid pair
(ak , al), for each species i, first we need to construct a
series of square matrices Nλ

i . Each element of every ma-
trix Nλ

i contains the counted sum of all specific (ak , al)
pairs separated by a string of length λ of other residues
present in this sequence. Using a sliding window of the
length λ + 2, and starting at the position m, we would
scan the whole sequence V , calculating elements of the
matrix by the formula:

(1)Nλ
i (ak, al, n) =

M−λ−1∑
m=1

f (ak, al, λ,m)

where M is the sequence’s n length, and

f (ak, al, λ,m) =
{1, if V (m) = ak and

V (m + λ + 1) = al

0, otherwise
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Table 1
Summary of data from 52 species for all proteins analyzed. The data of the 52 species under study: their systematic names, abbreviations, number
of protein sequences in each genome, sum of all their respective sequence lengths, and the mean sequence length for each genome

Species Abbr. Sequences Length Mean

1 Aeropyrum pernix AerPe 2 689 642 607 239
2 Agrobacterium tumefaciens AgrTu 4 554 1 473 418 323
3 Aquifex aeolicus AquAe 1 520 483 613 318
4 Archaeoglobus fulgidus ArcFu 2 404 667 175 278
5 Arabidopsis thaliana AThal 25 546 11 143 776 436
6 Bacillus halodurans BacHa 4 060 1 191 293 293
7 Bacillus subtilis BacSu 4 093 1 220 624 298
8 Borrelia burgdorferi BorBu 850 284 466 335
9 Buchnera sp Buchn 563 185 207 329

10 Campylobacter jejuni CamJe 1 628 510 671 314
11 Caulobacter crescentus CauCr 3 729 1 211 419 325
12 Caenorhabditis elegans CEleg 17 083 7 730 583 453
13 Chlamydia muridarum ChlMu 907 324 168 357
14 Chlamydophila pneumoniae AR39 ChlPn 1 108 364 543 329
15 Chlamydia trachomatis serD ChlTr 892 312 510 350
16 Clostridium acetobutylicum CloAc 3 666 1 134 524 310
17 Deinococcus radiodurans DeiRa 2 930 903 345 308
18 Escherichia coli O157H7 EColi 5 352 1 614 338 302
19 Haemophilus influenzae HaeIn 1 707 523 355 307
20 Halobacterium sp HaloB 2 050 585 593 286
21 Helicobacter pylori 26695 HelPy 1 562 498 658 319
22 Lactococcus lactis LacLa 2 258 668 470 296
23 Methanococcus jannaschii MetJa 1 714 486 267 284
24 Methanobacterium thermoautotrop MetTh 1 866 529 023 284
25 Mycoplasma genitalium MycGe 479 175 115 366
26 Mycobacterium leprae MycLe 1 605 537 654 335
27 Mycoplasma pneumoniae MycPn 676 239 568 354
28 Mycoplasma pulmonis MycPu 779 290 681 373
29 Mycobacterium tuberculosis CDC1551 MycTu 4 175 1 330 978 319
30 Neisseria meningitidis MC58 NeiMe 2 020 587 940 291
31 Pasteurella multocida PasMu 2 008 666 797 332
32 Porphyromonas gingivalis PorGi 2 226 660 580 296
33 Pseudomonas aeruginosa PseAe 5 559 1 867 388 336
34 Pyrococcus abyssi PyrAb 1 761 536 824 305
35 Pyrococcus horikoshii PyrHo 2 060 572 271 278
36 Rickettsia conorii RicCo 1 374 339 125 247
37 Rickettsia prowazekii RicPr 832 278 929 335
38 Sinorhizobium meliloti SinMe 3 336 1 051 050 315
39 Staphylococcus aureus Mu50 StaAu 2 708 805 807 298
40 Streptococcus pneumoniae Tigr4 StrPn 2 088 595 476 285
41 Streptococcus pyogenes StrPy 1 695 517 888 306
42 Sulfolobus solfataricus SulSo 2 968 843 129 284
43 Sulfolobus tokadai SulTo 2 826 755 676 267
44 Synechocystis PCC6803 Syny3 3 164 1 034 287 327
45 Thermoplasma acidophilum TheAc 1 478 456 589 309
46 Thermotoga maritima TheMa 1 842 584 266 317
47 Thermoplasma volcanium TheVo 1 522 453 778 298
48 Treponema pallidum TrePa 1 031 352 431 342
49 Ureaplasma urealyticum UreUr 611 228 980 375
50 Vibrio cholerae VibCh 3 283 1 161 898 304
51 Xylella fastidiosa XylFa 2 759 744 871 270
52 Saccharomyces cerevisiae Yeast 6 200 2 897 330 467

Sum/mean 157 796 55 256 952 350
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Obviously, when λ = 0 one has a dipeptide (and a
tripeptide for λ = 1; tetrapeptide for λ = 2, etc.). Note,
that since these are ordered counts, each starting at the
protein’s N -terminus, the amino acid pair, e.g., Phe–Ala
is not identical to the amino acid pair Ala–Phe, and thus
the matrices Nλ

i are not symmetrical.
Step two – the null hypothesis. It is well known that

various proteins have large differences in their amino
acid composition. Therefore, the actual abundance of
any amino acid pair in a given protein has to be com-
pared with the one predicted by the null hypothesis,
which states there are no constrains whatsoever in the
occurrence of any amino acid pair, i.e. their occurrence
is random, and depends solely on the amino acid com-
position of a given protein. Therefore, the expected
value, P λ

i (ak, al,n), of finding the given amino acids
pair (ak, al) separated by λ residues in a protein se-
quence n of the species i, can be calculated according
to the formula:

(2)P λ
i (ak, al, n) = S

ak

i (n) · Sal

i (n) · Lλ
i (n)

for the genome i, the Lλ
i is sum of the lengths of all

specific segments akλal , present in the sequence n, and
the sum of all frequencies, Sa(n), of the sequence’s n

amino acids a, equals 1, that is:

20∑
a=1

Sa
i (n) = 1

It needs to be stressed, although it is obvious as all se-
quences differ by both length and their composition, that
the expected value of P λ

i must be calculated separately
for each protein in a particular genome.

Step three: the measure of deviation from the null
hypothesis for any species i can be expressed as a ra-
tio of the two values: the Nλ

i and the P λ
i . Given the

observed (as described in step one), and expected (de-
scribed in the step two) values of finding any amino acid
pair (ak, al) separated by λ residues in all sequences of
species i, one can calculate their ratio, as a sum running
through all sequences n of a given genome:

(3)Rλ
i (ak, al) = log

{∑
n

Nλ
i (ak, al, n)

P λ
i (ak, al, n)

}

The Rλ
i values can be considered as a measure of

how much any particular (akλal) frequency deviates
from the expected: based on the frequencies of amino
acids ak , and al . It must be stressed that the calcu-
lated Rλ

i values will account for both occurrences of the
over-abundant situations, as well as the over-deficient
amino acid pairs. Accordingly, each kind of occurrence
must be treated separately to obtain meaningful results.
Whichever the case, in order to extricate the observa-
tions significantly deviating from the bulk of all ratios
Rλ

i , it is useful to consider only the values larger than a
predefined threshold, e.g., larger than one, two or three
standard deviations. Also, it is important to note that this
method of the Rλ

i calculation eliminates any bias due to
the different sizes of compared genomes and lengths of
protein sequences, which was still present in both the
Nλ

i and the P λ
i matrices. We will denote all such Rλ

i

matrices, after passing them through the standard devia-
tion threshold, by Oλ

i , and call them species-occurrence
matrices.

Additionally, we can count how often any two
species i and j display co-occurrence of such anom-
alous effects for a given (ak, al) pair of amino acids.
This step involves summing-up all co-occurrences of
the same (ak, al) pair of amino acids between the two
occurrence matrices Oλ

i (ak, al), and Oλ
j (ak, al) for the

corresponding species i and j , which yields a series of
the square matrices Cλ of co-occurrence. Again these
matrices are not symmetrical, as the upper triangles
will contain the positive, and the lower triangles will
contain the negative co-occurrence counts, respectively.
At the same time, we need to know also the corre-
sponding sums of all positive, Spλ, and negative, Snλ,
co-occurrences, in order to calculate expected species
co-occurrence matrices Epλ (and Enλ ) as follows:

(4)Epλ(i, j) = Spλ
i · Spλ

j

400

The factor of 400 corresponds to all possible amino
acids combinations. The respective elements Enλ(i, j)

of the negative co-occurrence matrices are calculated in
the same manner.

And finally we arrive at how to calculate the species
co-occurrence difference matrices:

(5)Dpλ = Cpλ − Epλ

3. The results

Table 1 contains the names of all 52 species used in
the present study, together with their abbreviations, the
number of genes/sequences, their total length and the
average, species specific, sequence length. The range of
spacer, λ, lengths used here varied from 0 to 18 (already
at about λ = 12–14, there were only small variations
visible, see below, so the higher values of λ are included
here for comparison purpose only).



38 J.P. Radomski, P.P. Slonimski / C. R. Biologies 330 (2007) 33–48
Fig. 1. Distribution of all the bigrams analyzed. The value of the ratio
Rλ

i
(Eq. (3)) is plotted in intervals of 0.001 (abscissa) and the cor-

responding number of occurrences is shown in ordinals, based upon
analysis of 395 200 bigrams of different kinds (19 spacer lengths, and
400 amino acid pairs) from complete genomes of 52 species (see Ta-
ble 1).

3.1. Distributions

It is of primary interest to see the shape of the distri-
bution and to verify whether there would be any statis-
tically significant deviations. For 52 species, 400 amino
acid pairs, and 19 spacer lengths, we have almost 400
thousands observations. Notice, that calculation of Rλ

i

eliminates any bias due to the length and number of pro-
teins present in a genome. Fig. 1 shows the histogram
(at bin width of 0.001) of the sum of the results ob-
tained. It is immediately apparent that the mono-modal
bell-shaped curve, closely resembling a normal distri-
bution, is not ideally symmetrical, as there are slightly
more negative then positive values present. A thin white
line at the left slope is a mirror image of the right slope,
and it can be seen that this minor lack of symmetry con-
cerns all ranges of values.

The source of this dissymmetry is immediately ob-
vious upon comparing distributions for all species in-
volved. In Fig. 2, there are examples of distributions for
the three archea: AerPe, ArcFu, and SulTo (first row),
the three eubacteria: AgrTu, ChlMu, and VibCh (middle
row), and finally all the three eukaryotes present: AThal,
CEleg, and Yeast (bottom row). It can be seen that for
the three eukaryotes, their distributions are all shifted
systematically towards negative values, and approxi-
mately by the same amount. As eukaryotic sequences
constitute about 31% of all sequences analyzed, their in-
fluence is quite substantial, although the negative shift
is less pronounced for all sequences together, than for
any of the three eukaryotes separately. At present, we
are unable to comment upon this observation, and per-
haps a few more complete eukaryotic genomes need to
be analyzed by the method described, before any firm
conclusions can be drawn. For all archea, most notably
for AerPe, distributions are also broader, than for both
the bacterial (the distribution for AgrTu being very nar-
row, perhaps the most narrow of all 52 genomes), and
the eukaryotic species analyzed.

The most interesting characteristics of the monomod-
al, bell-shaped curve of Fig. 1 are, however, its de-
viations from a normal distribution. The extreme tails
of the observed distribution are more pronounced than
expected from normal. For instance, the Rλ

i values devi-
ating from mean by more than three standard deviations
(STD) represent 1.42% of the whole (for a Gaussian
distribution: 0.27%), whereas the Rλ

i values comprised
within ±1 STD represent 84.3% (normally distrib-
uted: 68.3%). This means there are 4545 [= 395 200
× (1.42 − 0.27%)] occurrences of Rλ

i values, which are
exceptional in comparison with a normal distribution.
The analysis of these singular Rλ

i occurrences consti-
tutes the main body of the present article. They corre-
spond to the two classes of bigrams: over-abundant (or
over-represented) amino acid pairs, and over-deficient
(under-represented) amino acid pairs.

As an attempt to substantiate the above observations,
at least semi-quantitatively, we performed a principal-
component analysis (PCA) of the 52 histogram vectors
(bin width of 0.001). The first three principal compo-
nents covered almost 98.7% of the whole information
variance present in this set (the first PC: 97.67%, the
second PC: 0.71%, and the third PC: 0.28%). The scat-
ter plots of the first PC vs. the second PC, of the first
PC vs. the third PC, and the second PC vs. the third PC
are shown on Figs. A1a, A1b and A1c (Figs. A1–A3
can be found in the web-available supplementary ma-
terial), respectively. While it remains always a subject
of interpretation when one attempts to attribute an ex-
planatory meaning to a particular set of PCs, it seems
reasonable to propose the following. The first PC and
the second PC together correspond to the vertical ex-
tent of each histogram, and to the histogram’s ‘steep-
ness’ (AThal and AgrTu, points numbered on all panels
of Fig. A1 as 5 and 2, respectively), or its antinomy
‘broadness’ (AerPe, points numbered 1 on all panels).
And the third PC could well stem from the histogram’s
shift to the left or to the right of the central position
(CEleg and Yeast, points 12 and 52 on all panels, be-
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Fig. 2. Examples of distribution of bigrams from different species. The value of the ratio Rλ
i

(Eq. (3)) and the corresponding number of occurrences
are plotted as in Fig. 1 for nine individual complete genomes. Note that each genome has 7600 different kinds of bigrams (400 amino acid pairs,
and 19 spacers).
ing most shifted towards negative values, while PorGi
and MycLe, points numbered 32 and 26 on all panels,
are least shifted (Figs. A1b and A1c). Such an inter-
pretation agrees very well with all the individual his-
togram cases (cf. Fig. 2). To check whether the first
PC of the above analysis is affected by the particular
genome size, and if so to what extent, we normalized
all histogram vectors such that the vertical axes were
now spanning the range between 0 and 1, and then per-
formed the PCA on the new set as well. Again the first
three principal components covered more than 98.6% of
the whole information variance present in the normal-
ized set (the first PC: 97.65%, the second PC: 0.73%,
and the third PC: 0.24%). Exactly the same interpre-
tation as for the primary histogram set holds for the
normalized PCA results; so much so that the respective
genomes occupy qualitatively the same positions, in re-
lation to each other, although the overall appearance is
somewhat changed. Notably, the PCA plots corroborate
that eukaryotes are indeed negatively shifted, which is
most pronounced for CEleg, and Yeast (points 12 and
52 on all panels), as well as being rather separated from
all other species (Figs. A1b and A1c). Of the whole
set of 52 species analyzed, the AThal (points numbered
5 on all panels) displays the steepest distribution (the
distribution of AgrTu, points numbered 2 on all pan-
els, is steepest amongst bacteria), whereas that of AerPe
(points numbered 1 on all panels) is the most broad,
indicating substantial deviations from the null hypoth-
esis for this archeon, for both the over-abundant, and
the over-deficient regions.

It is perhaps also noteworthy (Fig. A1a), that after
AerPe, the more broad distributions are characteris-
tic also for the smallest genomes of the set: BorBu
(8), Buchn (9), MycGe (25), MycPn (27), MycPu (28),
and UreUr (49). Then follows the rest of archean
genomes (all archea are marked as squares on all Fig.
A1 plots), together with the two hyper-thermophilic
bacteria AquAe (3), and TheMa (46), and then all re-
maining bacteria. Should we have only an isolated case
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like that of AerPe, then perhaps a lateral gene transfer
might be indicated as a possible source of the genome
broad distribution. However, as it is being followed by
all small genomes of the set analyzed, which because
of their very smallness could hardly be all subjects
of a more pronounced massive horizontal exchange
than other, bigger microbial genomes, the actual rea-
son remains unclear. Especially as all remaining archea
have relatively broad distributions too. We believe that
‘broadness’ of the distribution reflects the intra species
diversity of protein sequences of a genome. In that
sense, AerPe sequences would be the most diverse in
between themselves, and on the contrary, AThal se-
quences would be least diverse, since these two species
occupy the two extremes of the PCA component PC1
vs. component PC2 plot (Fig. A1a). Obviously, these
two species have in their genomes numerous protein
sequences that are so different that by classical com-
parison methods they could be only assigned to the
‘maximum’ of diversity (e.g., the Blast Evalue close to 1,
in a pairwise comparison). The alignment free approach
we use here would allow us to disentangle, within this
‘maximum’ of diversity, several subclasses, and to re-
late them to different species.
Fig. 3. Example of distribution of bigrams for different spacer lengths, as the sum for all 52 species analyzed. The value of the ratio Rλ
i

(Eq. (3))
and the corresponding number of occurrences are plotted as in Figs. 1 and 2 for the different spacer lengths and for all 52 genomes analyzed. Note,
that for each spacer there are 20 800 (400 × 52) different kinds of bigrams.
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Interestingly, the broadness of diversity is quite large
not only in AerPe (whose genome is deeply rooted and
rather difficult to place in a classical species tree), which
has a quite large genome for a prokaryote, but also in the
smallest genomes like mycoplasmas or UreUr. There-
fore, if one hypothesizes that the AerPe broadness of
diversity results from horizontal transfer of numerous
genes, one would have to evoke a similar mechanism
for a large fraction of genomes of the smallest, semi-
parasitic eubacteria as well.

There are also striking differences between distrib-
utions for different spacer lengths. The example his-
tograms of such distributions for the sum of all 52
species analyzed are given in Fig. 3 – the value of the
ratio Rλ

i (Eq. (3)) and the corresponding number of oc-
currences are plotted as in Figs. 1 and 2, for the different
spacer lengths. Note that there are 20 800 (400×52) dif-
ferent kinds of bigrams for each spacer. The more broad
distributions are observed for dipeptides, and then with
increasing λ they are getting steeper and steeper. Again,
as it is the case for the whole set and for individual
eukaryotic genomes, a notable negative shift can be ob-
served for λ = 2,3,6,7,10, and 13, although with the
increasing spacer lengths these discrepancies are getting
less and less pronounced.

3.2. Periodicity

For the 52 species, and 19 spacer lengths, each cal-
culated for 400 amino acid pairs, there are 395 00 in-
dividual data points. One can ask what are the mean,
variance and standard deviation of the whole set, or for
each particular genome. However, it is perhaps much
more interesting to examine deviations and regularities
occurring for the individual amino acid pairs constitut-
ing peptide ends at various λ, and the differences or
similarities concerning each and all of 52 genomes.

In Fig. 4, there are plots of the number of obser-
vations exceeding two standard deviations (estimated
separately for all 52 species, and for each amino acid
pair at a given λ) for the over-abundant, and the over-
deficient occurrence situations, summed up for each λ.
It can be seen that for λ = 2 up to λ = 8, the slight
negative shift, already mentioned above, is readily visi-
ble. The number of over-deficient situations (triangles)
is greater than that of over-abundant ones (circles) in
this range to a much greater extent, although the effect
is present at almost every λ value. The greatest differ-
ences are present for the spacer lengths 2 and 3, and also
6. The sum of both effects (squares) is also plotted at the
top. The periodic character of significant deviations co-
incides to a very high extent for both the over-abundant
Fig. 4. Periodic behaviour of over-abundant and over-deficient cases
for all amino acid pairs, summarized for all 52 species. The
summed-up occurrences of over-deficient cases (triangles) and of
over-abundant cases (circles) for all amino acid pairs and all 52
species show the overall effect of the value of the ratio Rλ

i
(Eq. (3)) ex-

ceeding two standard deviations, and its dependence upon the spacer
length λ. The top curve (squares) shows the additive effect of both
over-deficient and over-abundant cases.

and the over-deficient cases, and these oscillations are
highly intriguing. If one considers the summed-up plot
(squares), there are several ridges at λ = 1,3,6,10,13
and 17, separated by valleys at λ = 2,5,8,12, and 16.
The remaining λ values are of intermediate character.
With the exception of the valley at λ = 2, all other oc-
currences fit in well with their respective character be-
tween ‘deficient’ and ‘abundant’ cases; thus the actual
character of the data point at λ = 2 warrants perhaps a
further investigation. However, as these points behave
for the current set of 52 genomes, one can state that the
ridges are spaced intermittently at the intervals of three
and four peptide bonds. The most obvious explanation
would be that the effect is caused by the prevalence of
alpha helical conserved 3-D protein motifs, since the
3.5-periodicity is the characteristic feature of the α he-
lix. However, although it is generally believed that such
alpha helices are prevalent, there are also other struc-
tural 3-D motifs, also quite abundant, most notably the
beta sheets and beta barrels, whose effect should be to
obscure, rather than to enhance the periodicity observed
here. On the other hand, it might be argued that while
the other 3-D motifs should influence the outcome as
well, their summary effects might cancel each other, and
thus the only remaining strong signal will be that of the
alpha helices (and possibly also beta sheets).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.
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(g) (h)

Fig. 5. (Continued) The summarized periodic behaviour of over-abundant and over-deficient cases for all amino acid pairs, shown for selected
species. The summed-up occurrences of over-deficient (triangles) cases, and of over-abundant (circles) cases for all amino acid pairs and some
individual species: 5a – Yeast, 5b – CEleg, 5c – AThal, 5d – BacSu, 5e – AgrTu, 5f – ChlMu, 5g – ChlPn, 5h – ChlTr: showing the overall effect of
the value of the ratio Rλ

i
(Eq. (3)) exceeding two standard deviations, and its dependence upon the spacer length λ. The top curve (squares) shows

the addictive effect of both over-deficient and over-abundant cases. Clearly, while for the most species the individual curves are very much alike the
shapes depicted in Fig. 4, there are also quite a few exceptions, most notably for the two spirochetes BorBu and TrePa, HelPy, and archeon AerPe.
Examination of the effects, shown in Fig. 4 for the
summed up influences of each λ value, and all 52 com-
plete genomes, can also be done individually for each
of the 52 species under study. Many such examples
are depicted in Figs. 5 and A2, comparing the behav-
iours of all three eukaryotes: Yeast, CEleg, and AThal
(panels 5a, 5b, and 5c respectively from top to bot-
tom – for consistency reasons the numbering of all
panels in Figs. 5 and A2 is continuous: marked in
small letters a–p), eight bacteria: BacSu (5d), AgrTu
(5e), ChlMu (5f), ChlPn (5g), ChlTr (5h), HelPy (A2n),
BorBu (A2o), and TrePa (A2p), as well as five archea:
ArcFu (A2i), MetTh (A2j), PyrAb (A2k), SulTo (A2l),
and AerPe (A2m). For the most species not shown in
Figs. 5 and A2, the overall behaviour of their periodic
ridges and valleys usually follows the same patterns
shown and described in Fig. 4, that is the prominent
peaks at the λ = 3,6,10, and 13, and the correspond-
ing valleys at the λ = 4–5,8–9,11–12, etc. In particular,
for all six remaining archean species (data not shown):
HaloB, MetJa, PyrHo, SulSo, TheAc, and TheVo, their
patterns match some or at least one pattern displayed by
archea in Figs. 5 and A2. Also for the bacterial species:
AquAe, BacHa, CamJe, CloAc, DeiRa, EColi, HaeIn,
LacLa, NeiMe, PasMu, RicCo, SinMe, StrPy, TheMa,
and XylFa, the overall periodicity scheme looks ‘typ-
ical’. However, all three (ChlMu, ChlPn, and ChlTr,
Figs. 5f, 5g, and 5h, respectively) display distinctly vari-
ant patterns with the very prominent ridge at the λ = 1
value, with the peaks at λ = 3,6,10 much less pro-
nounced; the same variant can be also observed for the
PorGi, and Syny3. Another, rather striking difference is
distinctly visible for the HelPy (Fig. A2n), which, alone
in the whole set of the 52 species, shows a very dif-
ferent behaviour for dipeptides (λ = 0), also the usual
valley at λ = 4 turns to a peak, especially for the over-
abundant occurrence situations (bottom curve, circles).
BorBu (Fig. 6o) TrePa (Fig. A2p), while quite similar
to each other, also differ from the other species. At the
same time, BorBu is also to some extent similar to many
other small genomes of comparable size, like MycGe,
MycPn, and MycPu. Very distinct, and quite dissimilar
from any other genome, is the pattern displayed by the
archeon AerPe (Fig. A2m).

To better illustrate relationships between various pat-
terns of periodicity shown by the different species, we
have again used Principal-Component Analysis scatter
plots. In Fig. A3a, the results show the plot of the first
PC vs. the second PC obtained after performing PCA on
the periodicity vectors for all 52 species constructed as
a sum of over-deficient and over-abundant occurrence
situations exceeding two standard deviations (the same
data has been shown already as the top curves in Figs. 5
and A2), together with the corresponding mean vector
for all species together (the top curve in Fig. 4, divided
by 52). In Fig. A3b, the results show the corresponding
plot of the first PC vs. the third PC. The first three prin-
cipal components covered almost 99.3% of the whole
information variance present in the set of 53 periodic-
ity vectors (first PC: 97.67%, second PC: 1.19%, third
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(a) (b)

(c) (d)

Fig. 6. The comparison examples of summed-up distributions of the individual amino acid pairs for the over-deficient and the over-abundant cases,
and the spacer-length values λ = 5 and λ = 6. The summed-up (for all 52 species analyzed) occurrences of over-deficient (left column) and of
over-abundant (right column) cases for all amino acid individual pairs show the overall effect of the spacer-length values λ = 5 (top row) and λ = 6
(bottom row). Only situations for values of the ratio Rλ

i
(Eq. (3)) exceeding two standard deviations were considered. The area of each square

is proportional to the magnitude of the effect, and additionally they are colour coded such that the increase is depicted from deep blue (smallest)
through green (medium) towards dark red (largest). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
PC: 0.40%). The point near the (0,0) coordinates on
the both panels of Fig. A3, marked as AllMean cor-
responds to the top curve in Fig. 4, and can be in-
terpreted as the average periodicity patterns of all 52
species taken together. The numbering for all species in
Fig. A3 is the same as in Table 1. It is readily visible
that AerPe (A3a, number 1, square) is indeed very dif-
ferent from all other species. The same can be said about
HelPy (A3b, number 21, circle). All three chlamydias:
ChlMu, ChlPn, and ChlTr (A3b, numbers 13, 14, and
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15, circles) are also grouped close to each other. On
both panels, the three eukaryotes (numbers 5, 12, and
52, stars) are close to each other, and are placed right-
most of other species. There are two distinct, diagonally
oriented, groups clearly visible in Fig. A3a. The first
one encompasses all but two (TheAc: number 45, and
TheVo: number 47, which are both members of the sec-
ond group) archea; four small eubacteria: MycGe, My-
cPn, MycPu, and UreUr (numbers 25, 27, 28, and 49,
respectively), and also three larger eubacteria: CamJe,
HelPy, and TheMa (numbers 10, 21, and 46). The sec-
ond group comprises all but three remaining bacteria
(which are members of an intermediary, and also dis-
cernible group situated in between: BorBu – number 8,
Buchn – number 9, and DeiRa – number 17), and all
eukaryotes.

It is also interesting to compare the individual amino
acid pair’s distributions for given λ values. The nature
of the peak at λ = 3, as shown in Fig. 5, is not entirely
clear because the position of this particular peak may
be actually located at λ = 2. For this reason, we have
visualized the behaviour of the AA pairs for both the
over-deficient and the over-abundant occurrence situa-
tions, and for λ = 5 (Figs. 6a and 6b, top row), and
λ = 6 (Figs. 6c and 6d, bottom row), that is for the big
peak and its adjacent valley. The size of each square
is proportional to the corresponding value of the sum
of all occurrences, when the value of the particular ra-
tio Rλ

i (Eq. (3)) exceeded two standard deviations, for
a given amino acid pair, and a particular value of the
spacer length λ, that is the thresholds are the same as in
Fig. 4. The behaviour of various AA pairs are strikingly
different, not only between the same AA pair at the dif-
ferent λ values, or between the over-deficient and the
over-abundant occurrence situations at the same spacer
length, but particularly in the case when all conditions
are exactly the same, and when only the AA pairs dif-
fer. For obvious reasons, the behaviour of a given amino
acid pair can be either neutral (most common situation),
although, as can be observed here, there are surpris-
ingly many cases when it exceeds the value of two stan-
dard deviations from expectancy, or over-deficient, or
over-abundant; but it cannot be both – so, in a sense,
panels 6a and 6b, or panels 6c and 6d does form com-
plementary pairs. Much more interesting is to compare
panels 6a with 6c, or panels 6b with 6d, respectively.
Remembering that for λ = 5 there is a valley in Fig. 4,
whereas for λ = 6 we observe a peak, it is intriguing
to note that for both situations, the observed effects are
of qualitatively of the same nature for both valleys and
peaks, with differences only in their quantities. Hence,
we can see a roughly diagonal concentration of more
numerous observations exceeding two standard devia-
tions for both panels 6a and 6c, or 6b and 6d, corre-
sponding to over-deficiency and over-abundance respec-
tively. The effect is much more pronounced for peaks
(e.g., λ = 3,6,10, etc.) than for valleys (λ = 2,5,8,
etc.); nevertheless, it can be explained as the concentra-
tion of either hydrophobic–hydrophobic (e.g., Leu–Leu,
or Phe–Phe pairs) or hydrophylic–hydrophylic bigrams
(e.g., Glu–Glu, or Glu–Lys pairs) for the over-abundant
occurrence situations (right column in Fig. 6), and the
concentration of either hydrophylic–hydrophobic (e.g.,
Glu–Leu pair) or hydrophobic–hydrophylic (e.g., Leu–
Asp pair) bigrams for the over-deficient occurrence
situations (left column in Fig. 6). The most striking
comparison is that of the two orthogonal diagonals
at λ = 6, where the hydrophilic–hydrophilic and the
hydrophobic–hydrophobic amino acid pairs are over-
abundant, while the hydrophilic–hydrophobic and the
hydrophobic–hydrophilic ones are over-deficient (com-
pare Figs. 6c and 6d).

4. Discussion and conclusions

The method we propose here, to represent and ana-
lyze sequences of complete genomes, by using n-gram-
based frequencies of amino acid pairs separated by a
given number of other residues, allows us to:

(a) deal with a sparseness of statistical representation
of resulting n-gram descriptors for individual gene
sequences;

(b) describe every gene sequence in the same way, in-
dependently of its length;

(c) compare whole genomes in the same manner,
notwithstanding given genome size;

(d) finally to compare qualitatively even deeply rooted
taxons, without the necessity of utilizing even a sin-
gle sequence alignment.

Using this approach, we show first of all that the n-
gram-based analysis allows the classification of various
taxons into the most intra-genome, but inter-protein di-
verse species on the one hand, and to the intra-genome
and inter-protein most homogenous species, on the
other one. To the first class belong the archeon Aeropy-
rum pernix and small bacteria like Mycoplasmas, Bor-
relia burgdorferi and Ureaplasma urealyticum, while
to the second class belong the eukaryote Arabidop-
sis thaliana and eubacteria like Vibrio cholerae and
Agrobacterium tumefaciens. The continuous spectrum
of other taxons lies between these two extremes (Fig.
A1a). This classification is neither related to the G+C
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content of the genome, nor to the classical tripartite tree
of life [18]. We think that it describes the heterogene-
ity/homogeneity of protein sequences and protein struc-
tures within the species, and evolutionary constrains
that either lead to the maintenance of extreme diversity
or streamline the species to more homogeneity. In the
genomes that have to cope with all the functions nec-
essary for an independent (or quasi independent) life,
in a minimum of genome size, the diversity will be ex-
treme, while in larger genomes functionally specialized
for certain types of life, the inter-protein diversity would
decrease due to successive duplications and extensions
of sequences, like in Agrobacterium and Arabidopsis.
If this hypothesis is correct, the recently sequenced
genome of Paramecium would be placed at the lower
rightmost part of the Fig. A1a PCA scatter plot.

The subsequent PCA analysis (Fig. A3), utilizing
the summed up over-abundant and over-deficient oc-
currence profiles of each species, leads to a very sim-
ilar classification: again Aeropyrum and small eubacte-
ria occupy one end of the PCA first and second com-
ponents’ space, while Agrobacterium, Arabidopsis and
Vibrio cholerae are located at the opposite extreme
(Fig. A3a). However, additional information is gained
by comparing these two PC analyses. While in Fig. A1a
the vectors summarize the diversity of sequences in
proteome, in Fig. A3a the vectors represent the form
of amplitude changes in oscillations of summed up
over-abundant and over-deficient occurrences, depicted
individually in panels of Figs. 5 and A2. The more
homogeneous proteomes have more conspicuous os-
cillations than the more heterogeneous ones (compare
pronounced oscillations of Arabidopsis, panel 5c, and
Agrobacterium, panel 5e, with the more flat oscilla-
tions of Aeropyrum pernix, panel A2m, and Borrelia
burgdorferi, panel A2o).

The relationship between individual amino acid
pairs and the distance separating two members of the
pair also leads to interesting results. We do not at-
tempt here to describe the detailed behaviour of all
19 spacer lengths and all the 400 amino acid pairs.
However, as shown in Fig. 6, there are striking dif-
ferences in the abundance of the occurrence pairs of
similar amino acids (hydrophobic–hydrophobic, and
hydrophilic–hydrophilic) as opposed to the abundance
of dissimilar pairs (hydrophilic–hydrophobic, and hyd-
rophobic–hydrophilic), the first ones being overrepre-
sented at the oscillation peaks (Figs. 4, 6, and 7), while
the second ones are generally under-represented. The
peaks correspond to the λ = 3,6,10 . . . and therefore to
the distances of 4, 7, 11. . . peptide bonds. This immedi-
ately suggests that the oscillations observed at the level
Fig. 7. Summary of the periodicity data for all 52 species. The
summed-up occurrences of the over-deficient, together with the
over-abundant cases for all amino acid pairs, presenting the overall
effect of the value of the ratio Rλ

i
(Eq. (3)) exceeding two standard

deviations. Shown as ratios [in percent] of occurrences for a given
polypeptide chain length, divided by the sum of all such occurrences.
The lines are for: CEleg (diamonds, black line), all three eukaryotes
together (triangles, red line), all eleven archea together (stars, ma-
genta line), and all 38 bacterial species together (squares, blue line).
For comparison purposes, an exponentially dampened sinusoid, with
periodicity of 3.5, and the functional form given by the equation:
f (τ) = A1eψτ sin(ωτ) − A2eφτ + B , and A1 = 4, ψ = −0.095,
A2 = 0.01, φ = 0.26, B = 6.1; ω = 1.75, is also plotted (green line).
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

of whole genomes may result from the periodic nature
of the α helical proteins with their basic frequency of
3.5 peptide bonds.

If our hypothesis, according to which the observed
periodicity is connected with the relative abundance
of the α helical fragments in certain genomes when
compared to others, is correct, then the genome of
CEleg (Fig. 5b) would code for proteins statistically
more rich in α helical structures than genome of BorBu
(Fig. A2o), for example. There are two possible statisti-
cal interpretations:

– either in the genome of CEleg, there are many more
proteins rich in α helices, such proteins being rela-
tively absent in the genome of BorBu;

– or, although such α helical motifs might be preva-
lent in BorBu, there are other structural 3-D motifs,
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also quite abundant, most notably the β sheets and
β barrels, whose effect should act to obscure, rather
than to enhance the periodicity observed.

Therefore, the relative prevalence of different struc-
tural motifs would influence observed diversity of the
periodicity patterns described here (Figs. 5a and A2p).
It has been observed [19–22] that the periodicity of the
DNA sequence, with about 10 to 11 bp per turn, is
prevalent in a number of both eukaryotic and prokary-
otic genome sequences. These periodicities are gener-
ally interpreted as resulting from physical properties of
DNA chain, reflecting chromatin structure and its var-
ious aspects in different kingdoms of archea and bac-
teria. It has been envisaged that the 10–11 bp DNA
sequence periodicity might stem from the “correlations
in the corresponding protein sequences due to the am-
phipatic character of α helices” [21]. Also, another type
the DNA sequence periodicity of 6 bp have been corre-
lated [20] with the β sheet protein sequence structural
motif. However, more recent work [23] argues in favour
of the idea that the 10–11-bp DNA sequence periodicity
is not related to the protein structure, since it appears
concentrated in the intergenic regions of the E. coli
genome.

Here we observe periodicity with a basic frequency
of 3.5 peptide bonds (Fig. 7), together with its mul-
tiplicity of 7, 10.5, 14, etc., resulting from the over-
representation of specific pairs of similar amino acids
(e.g., Leu–Leu), together with the under-representation
of the corresponding dissimilar amino acid pairs (e.g.,
Leu–Asp). This amino acid periodicity of whole geno-
mes, when translated to the DNA level would give 10.5
bonds periodicity (3.5 × 3 = 10.5); therefore, we be-
lieve that in the DNA sequence periodicity of 10–11
bp, the α helical structure of proteins encoded by DNA
plays a mayor role. The most important conclusion of
our work concerns the cause of the observed period-
icity of oscillation revealed by the bigram analysis of
complete proteomes. Depending on the genome studied,
this periodicity is more or less conspicuous (compare
various panels in Figs. 5 and A2). However, also when
summing up the analyzed genomes (whether all eleven
archeas, or all thirty eight eubacteria, etc.), the peri-
odicity of 3.5 peptide bonds is always quite apparent
and striking (Fig. 7). This idea is further developed in
the accompanying article [24], demonstrating that 11-bp
periodic oscillations of nucleotide sequence are local-
ized in the genomic ORFs, and are more pronounced in
genes coding for alpha rich proteins than in those cod-
ing for proteins devoid of such secondary structures.
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