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Abstract

Disease frequency is measured through estimating incidence rates or disease risk. Several measures are used for assessing
exposure–disease association, with adjusted estimates based on standardization, stratification, or more flexible regression tech-
niques. Several measures are available to assess an exposure impact in terms of disease occurrence at the population level, including
the commonly used attributable risk (AR). Adjusted AR estimation relies on stratification or regression techniques. Sequential and
partial ARs have been proposed to handle the situation of multiple exposures and circumvent the associated non-additivity prob-
lem. Despite remaining issues in properly interpreting AR, AR remains a useful guide to assess prevention strategies. To cite this
article: J. Benichou, C. R. Biologies 330 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Biostatistique et épidémiologie : la mesure du risque attribuable à un facteur environnemental ou génétique. La mesure
de la fréquence d’une maladie repose sur les concepts d’incidence et de risque. Plusieurs mesures d’association entre exposition et
maladie existent. Leur estimation ajustée repose sur la standardisation, la stratification, ou les méthodes plus flexibles de régression.
Le risque attribuable (RA) est une mesure d’impact populationnel d’une exposition sur la survenue de nouveaux cas. Son estimation
ajustée repose sur la stratification ou la régression. Les RAs séquentiels et partiels permettent de prendre en compte plusieurs
expositions et le problème associé de non-additivité. Malgré certaines questions d’interprétation, le RA demeure un guide utile à
l’évaluation de stratégies de prévention. Pour citer cet article : J. Benichou, C. R. Biologies 330 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

A major aim of epidemiologic research is to mea-
sure disease occurrence in relation to various character-
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istics such as exposure to environmental, occupational,
or lifestyle risk factors, genetic traits or other features.
The generic term exposure will be used throughout this
chapter to denote these characteristics. We will start
with reviewing various measures that are at the root
of quantitative epidemiologic thinking. These include
measures that quantify disease occurrence, associations
between disease occurrence and exposures as well as
their consequences in terms of disease risk (Section 2).
Emphasis will be placed on measures based on occur-
rence of new disease cases, referred to as disease inci-
dence. Measures based on disease prevalence, i.e., con-
sidering previously existing disease cases as well as new
cases, will be mentioned only in passing.

In Section 3–7, we will focus on the main measure
of impact at the population level, namely attributable
risk. This measure will be introduced in some detail in
Section 3. Then, we will successively review three spe-
cific problems regarding attributable risk. First, we will
consider adjusted attributable risk estimation from epi-
demiologic study data in Section 4, an issue that has
generated intensive methodological research in the last
20 years, resulting in essentially satisfactory solutions.
Second, we will discuss the lack of additivity of at-
tributable risk contributions for separate exposures and
present a possible solution in Section 5. Third, we will
examine conceptual issues involved in interpreting at-
tributable risk estimates in Section 6. Final remarks will
follow in Section 7.

2. Rates, risks and measures of association

2.1. Incidence and hazard rates

The incidence rate of a given disease is the number
of persons who develop the disease (number of incident
cases) among subjects at risk of developing the disease
in the source population over a defined period of time
or age. Incidence rates are not interpretable as probabil-
ities. While they have a lower bound of zero, they have
no upper bound. Units of incidence rates are reciprocal
of person-time, such as reciprocals of person-years or
multiples of person-years (e.g., 100 000 person-years).
For instance, if five cases develop from the follow-up
of 50 subjects and for a total follow-up time of two
years per subject, the incidence rate is 5/100 = 0.05
cases per person-year (assuming an instantaneous event
with immediate recovery and all 50 subjects being at
risk until the end of the observation period). Usually,
incidence rates are assessed over relatively short time
periods compared with the time scale for disease devel-
opment, e.g., intervals of five years for chronic diseases
with an extended period of susceptibility, such as many
cancers.

Synonyms for incidence rate are average incidence
rate, force of morbidity, person-time rate, or incidence
density [1], the last term reflecting the interpretation of
an incidence rate as the density of incident case occur-
rences in an accumulated amount of person-time [2].
Mortality rates (overall or cause-specific) can be re-
garded as a special case of incidence rates, the outcome
considered being death rather than disease occurrence.

Incidence rates can be regarded as estimates of a lim-
iting theoretical quantity, namely the hazard rate, h(t),
also called the incidence intensity or force of morbid-
ity. The hazard rate at time t , h(t), is the instantaneous
rate of developing the disease of interest in an arbitrarily
short interval Δ around time t , provided that the sub-
ject is still at risk at time t (i.e., has not fallen ill before
time t ). It has the following mathematical definition:

(1)h(t) = limitΔ↓0Δ
−1 Pr(t � T < t + Δ | t � T )

where T is the time period for the development of the
disease considered and Pr denotes probability. Indeed,
for time intervals in which the hazard rate can be as-
sumed constant, the incidence rate as defined above rep-
resents a valid estimate of the hazard rate. Thus, this
result applies when piecewise constant hazards are as-
sumed, which can be regarded as realistic in many appli-
cations, especially when reasonably short time intervals
are used, and leads to convenient estimating procedures,
e.g., based on the Poisson model.

Strictly speaking, incidence and hazard rates do not
coincide. Hazard rates are formally defined as theoret-
ical functions of time, whereas incidence rates are de-
fined directly as estimates and constitute valid estimates
of hazard rates under certain assumptions (see above).

From the definitions above, it ensues that individ-
ual follow-up data are needed to obtain incidence rates
or estimate hazard rates. The cohort design that incurs
follow-up of subjects with various profiles of exposure
is the ideal design to obtain incidence or hazard rates
for various levels or profiles of exposure, i.e., exposure-
specific incidence or hazard rates. In many applications,
obtaining exposure-specific incidence rates is not trivial,
however. Indeed, several exposures are often consid-
ered, some with several exposed levels and some contin-
uous. Moreover, it may be necessary to account for con-
founders or effect-modifiers. Hence, estimation often
requires modelling. Alternatively to the cohort design,
in the absence of individual follow-up data, person-time
at risk can be estimated as the time period width times
the population size at midpoint. Such estimation makes
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the assumption that individuals who disappear from be-
ing at risk, either because they succumb, or because they
move in or out, do so evenly across the time interval.
Thus, population data such as registry data can be used
to estimate incidence rates as long as an exhaustive cen-
sus of incident cases can be obtained.

Case-control data pose a more difficult problem than
cohort data, because case-control data alone are not suf-
ficient to yield incidence or hazard rates. Indeed, they
provide data on the distributions of exposure respec-
tively in diseased subjects (cases) and non-diseased sub-
jects (controls) for the disease under study, which can be
used to estimate odds ratios (see Section 2.3) but are not
sufficient to estimate exposure-specific incidence rates.
However, it is possible to arrive at exposure-specific in-
cidence rates from case-control data if case-control data
are complemented by either follow-up data or popula-
tion data, which happens for nested or population-based
case-control studies. In a nested case-control study, the
cases and controls are selected from a follow-up study.
In a population-based case-control study, they are se-
lected from a specified population in which an effort is
made to identify all incident cases diagnosed during a
fixed time interval, usually in a grouped form (i.e., num-
ber of cases and number of subjects by age group). In
both situations, full information on exposure is obtained
only for cases and controls. Additionally, complemen-
tary information on composite incidence (i.e., counts
of events and person-time irrespective of exposure) can
be sought from the follow-up or population data. By
combining this information with odds ratio estimates,
exposure-specific incidence rates can be obtained as has
long been recognized [1,3–7] and is a consequence of
the relation [6,8]:

(2)h0 = h∗(1 − AR)

where AR is the attributable risk in the population for all
exposures considered, a quantity estimable from case-
control data (see Sections 3–4), h0 is the baseline in-
cidence rate, i.e., the incidence rate for subjects at the
reference (unexposed) level of all exposures considered
and h∗ is the composite or average incidence rate in the
population that includes unexposed subjects and sub-
jects at various levels of all exposures (i.e., with various
profiles of exposure). The composite incidence rate h∗
can be estimated from the complementary follow-up or
population data. Eq. (2) simply states that the incidence
rate for unexposed subjects is equal to the proportion of
the average incidence rate in the population that is not
associated with any of the exposures considered. Eq. (2)
can be specialized to various subgroups or strata defined
by categories of age, sex or geographic location such as
region or centre, on which incidence rates are assumed
constant. From the baseline rate h0, incidence rates for
all levels or profiles of exposure can be derived using
odds ratio estimates, provided odds ratio estimates are
reasonable estimates of incidence rate ratios as in the
case of a rare disease (see Section 2.3). Consequently,
exposure-specific incidence rates can be obtained from
case-control data as long as they are complemented by
follow-up or population data that can be used to esti-
mate average incidence rates.

Finally, cross-sectional designs in which a sample of
the population is assessed for both exposure and dis-
ease status cannot provide any assessment of incidence
rates but instead will yield estimates of disease preva-
lence proportions.

Exposure-specific incidence and hazard rates play a
central role in quantitative epidemiology because, as
will be apparent from the following sections, all mea-
sures of the disease risk, association and impact can be
derived from them.

2.2. Measures of the disease risk

The disease risk is defined as the probability that an
individual who is initially disease-free will develop a
given disease over a specified time or age interval (e.g.,
one year, five years, or lifetime).

If the interval starting at time a1 and ending just be-
fore time a2, i.e., [a1, a2), is considered, the disease risk
can be written formally as:

(3)π(a1, a2) =
a2∫

a1

h(a)
{
S(a)/S(a1)

}
da

In Eq. (3), h(a) denotes the disease hazard at time or
age a (see Section 2.1). The function S(•), with (•)

an arbitrary argument, is the survival function, so that
S(a) denotes the probability of still being disease-free
at time or age a, and S(a)/S(a1) denotes the condi-
tional probability of staying disease-free up to time or
age a for an individual who is free of disease at the be-
ginning of the interval [a1, a2). Eq. (3) integrates over
the interval [a1, a2) the instantaneous incidence rate of
developing disease at time or age a for subjects still at
risk of developing the disease (i.e., still disease-free sub-
jects). Because the survival function S(•) can be written
as a function of the disease hazard through:

(4)S(a2)/S(a1) = exp

{
−

a2∫
a1

h(a)da

}

the disease risk is also a function of the disease hazard.
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By specializing the meaning of functions h(•) and
S(•), various quantities can be obtained that measure
the disease risk in different contexts. First, the time scale
on which these functions as well as the disease risk are
defined corresponds to two specific uses of risk. In most
applications, the first relevant time scale is age, since
disease incidence is usually influenced by age. Note that
by considering the age interval [0, a2), one obtains the
lifetime disease risk up to age a2. However, in clinical
epidemiology settings, risk refers to the occurrence of
an event, such as relapse or death in subjects already
presenting with the disease of interest. In this context,
the other relevant time scale becomes time from disease
diagnosis or, possibly, time from some other disease-
related event, such as a surgical resection of a tumour or
occurrence of a first myocardial infarction.

Second, risk definition may account or not for indi-
vidual exposure profiles. If no risk factors are consid-
ered to estimate the disease hazard, the corresponding
measure of disease risk defines the average or com-
posite risk over the entire population that includes sub-
jects with various exposure profiles. This measure, also
called cumulative incidence [1], may be of value at
the population level. However, the main usefulness of
risk is in quantifying an individual’s predicted probabil-
ity of developing disease depending on the individual’s
exposure profile. Thus, estimates of exposure-specific
disease hazard have to be available for such exposure-
specific risk (also called individualized or absolute risk)
to be estimated.

Third, the consideration of competing risks and the
corresponding definition of the survival function S(•)

yields two separate definitions of risk. Indeed, although
risk is defined with respect to the occurrence of a given
disease, subjects can die from other causes (i.e., com-
peting risks), which obviously precludes disease occur-
rence. The first option is to define S(a) as the theoretical
probability of being disease-free at time or age a if other
causes of death (competing risks) could be eliminated,
yielding a measure of the disease risk in a setting with
no competing risks. This measure may not be of much
practical value. Moreover, unless unverifiable assump-
tions regarding incidence of the disease of interest and
deaths from other causes can be made, for instance as-
suming that they occur independently, the function S(•)

will not be estimable. For these reasons, it is more fea-
sible to define S(a) as the probability that an individual
will be alive and disease-free at age a as the second op-
tion, yielding a more practical definition of disease risk
as the probability of developing disease in the presence
of competing causes of death [9].
From the definition of the disease risk above, it ap-
pears that it depends on the incidence rate of disease
in the population considered and can also be influenced
by the strength of the relationship between exposures
and disease, if individual risk is considered. One conse-
quence is that risk estimates may not be portable from
one population to another, as incidence rates may vary
widely among populations that are separated in time and
location or even among subgroups of populations, pos-
sibly because of differing genetic patterns or differing
exposure to unknown risk factors. Additionally, com-
peting causes of death (competing risks) may also have
different patterns among different populations, which
might also influence the values of the disease risk.

The disease risk is a probability and therefore lies be-
tween 0 and 1, and is dimensionless. A value of 0, while
theoretically possible, would correspond to very special
cases such as a purely genetic disease for an individual
not carrying the disease gene. A value of 1 would be
even more unusual and might again correspond to a ge-
netic disease with a penetrance of 1 for a gene carrier
but, even in this case, the value should be less than 1 if
competing risks are accounted for.

Beside the term ‘disease risk’, ‘absolute risk’ or ‘ab-
solute cause-specific risk’ have been used by several
authors [10–14]. Alternative terms include ‘individual-
ized risk’ [8], ‘individual risk’ [15], ‘crude probability’
[16], ‘crude incidence’ [17], ‘cumulative incidence’ [1,
18], ‘cumulative incidence risk’ [6], and ‘absolute in-
cidence risk’ [1]. The term ‘cumulative risk’ refers to
the quantity

∫ a2
a1

h(a)da and approximates disease risk
closely in the case where disease is rare. The term ‘at-
tack rate’ defines the risk of developing a communicable
disease during a local outbreak and for the duration of
the epidemic or the time during which primary cases oc-
cur [19 (Chapter 5), 20 (Chapter 27)].

Upon taking individual exposure profiles into ac-
count, resulting individual disease risk estimates are
useful in providing an individual measure of the proba-
bility of disease occurrence, and can therefore be useful
in counselling (e.g., in breast cancer, see [8,21–23]).
Individual risk is also useful in designing (i.e., for sam-
ple size calculations and definition of eligibility criteria)
and interpreting trials of interventions to prevent the
occurrence of a disease through a risk–benefit analy-
sis [24]. The concept of risk is also useful in clinical
epidemiology as a measure of the individualized proba-
bility of an adverse event, such as a recurrence or death
in diseased subjects. In that context, it can serve as a
useful tool to help define individual patient management
and, for instance, the absolute risk of recurrence in the
next three years might be an important element in decid-
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ing whether to prescribe an aggressive and potentially
toxic treatment regimen [11,17].

As is evident from its definition, the disease risk can
only be estimated and interpreted in reference to a spec-
ified age or time interval. One might be interested in
short time spans (e.g., five years), or long time spans
(e.g., 30 years). Of course, the disease risk increases as
the time span increases. Sometimes, the time span is
variable such as in lifetime risk. The disease risk can
be influenced strongly by the intensity of competing
risks (typically competing causes of death, see above).
It varies inversely as a function of death rates from other
causes.

It follows from its definition that the disease risk is
estimable as long as hazard rates for the disease of in-
terest are estimable. Therefore, it is directly estimable
from cohort data, but case-control data have to be com-
plemented with follow-up or population data in order to
obtain the necessary complementary information on in-
cidence rates (see Section 2.1).

Interpretation, usefulness, and properties of the dis-
ease risk, as well as methods for its estimation from co-
hort data, population-based or nested case-control data
have been reviewed in detail [10].

2.3. Measures of association

Measures of association assess the strength of asso-
ciations between one or several exposures and the risk
of developing a given disease. Thus, they are useful in
aetiologic research to assess and quantify associations
between potential risk (or protective) factors and disease
risk. The question addressed is whether and to what de-
gree a given exposure is associated with the occurrence
of the disease of interest. In fact, this is the primary
question that most epidemiologic studies are trying to
answer.

Depending on the available data, measures of asso-
ciation may be based on disease rates, disease risks,
or even disease odds, i.e., π/(1 − π), with π denoting
the disease risk. They contrast rates, risks, or odds for
subjects with various levels of exposure, e.g., risks or
rates of developing breast cancer for 40-year-old women
with or without a personal history of benign breast dis-
ease. They can be expressed in terms of ratios or dif-
ferences of risks or rates among subjects exposed and
non-exposed to given factors or among subjects with
various levels of exposure.

Measures of association can be defined for categori-
cal or continuous exposures. For categorical exposures,
any two exposure level can be contrasted using the mea-
sures of association defined below. However, it is con-
venient to define a reference level to which any expo-
sure level can be contrasted. This choice is sometimes
natural (e.g., non-smokers in assessing the association
of smoking with disease occurrence), but can be more
problematic if the exposure considered is of continuous
nature, where a range of low exposures may be consid-
ered potentially inconsequential. The choice of a refer-
ence range is important for interpreting results. It should
be wide enough for estimates of measures of association
to be reasonably precise. However, it should not be so
wide that it compromises meaningful interpretation of
the results, which depend critically on the homogeneity
of the reference level. For continuous exposures, mea-
sures of association can also be expressed per unit of
exposure, e.g., for each additional gram of daily alcohol
consumption. The reference level may then be a precise
value such as no daily alcohol consumption or a range
of values such as less than 10 grams of daily alcohol
consumption.

When computing a measure of association, it is usu-
ally assumed that the relationship being captured has the
potential to be causal, and efforts are taken to remove
the impact of confounders from the quantity. Nonethe-
less, except for the special case of randomized studies,
most investigators retain the word ‘association’ rather
than ‘effect’ when describing the relationship between
exposure and outcome to emphasize the possibility that
unknown confounders may still influence the relation-
ship.

Ratio-based measures of association are particularly
appropriate when the effect of the exposure is multi-
plicative, which means that there is a similar percent
increase or decrease associated with exposure in rate,
risk or odds across exposure subgroups. Effects have of-
ten been observed to be multiplicative, leading to ratios
providing a simple description of the association (e.g.,
see [25 (Chapter 2)]). Ratio measures are dimensionless
and range from 0 to infinity, with 1 designating no as-
sociation of the exposure with the outcome. When the
outcome is death or disease, and the ratio has the rate,
risk, or odds of the outcome with the exposed group in
the numerator, a value less than 1 indicates a protective
effect of exposure. The exposure is then referred to as a
protective factor. When the ratio in this set-up is greater
than 1, there is greater disease occurrence with expo-
sure, and the exposure is then referred to as a risk factor.

The rate ratio is the ratio between the rate of disease
among those exposed and those not exposed or hE/hĒ .
More generally, it can also contrast rates for various lev-
els of exposure. Conceptually, the rate ratio is identical
to a hazard ratio HR. The latter term tends to be used
when time dependence of the rate is emphasized, as the
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hazard is a function that may depend on time. The situ-
ation of a constant rate ratio over time is referred to as
proportional hazards. The proportional hazards assump-
tion is often made in the analysis of rates. Theoretically,
the hazard ratio at a given time point is the limiting
value of the rate ratio as the time interval around the
point becomes very short, just as the hazard is the limit-
ing quantity for the incidence rate (see Section 2.1). The
rate ratio has also been called the Incidence Density Ra-
tio [26 (Chapter 8)].

Rate ratios refer to population dynamics, and are not
as easily interpretable on the individual level. It has been
argued, however, that rate ratios make more sense than
risk ratios when the period subjects are at risk is longer
than the observation period [26 (Chapter 8)]. Numeri-
cally, the rate ratio is further from the null than the risk
ratio. When rates are low, the similarity of risks and
rates leads to rate ratios being close to risk ratios, as
discussed below. Further considerations of how the rate
ratio relates to other ratio-based measures of association
are offered by Rothman and Greenland [20 (p. 50)].

The risk ratio, relative risk or ratio of risks of dis-
ease among those exposed πE and those not exposed
πĒ , RR = πE/πĒ , has been viewed as the gold stan-
dard among measures of association for many years. It
is interpretable on the individual level as a given-fold
increase in risk of disease. Like other ratio-based mea-
sures, it tends to be more stable than the risk difference
across population groups at widely different risk (see
below). However, similar to rate ratios and odds ratios
(see below), the risk ratio can be viewed as mislead-
ing in the public eye when the risk among both the
unexposed and the exposed is very low, yet many-fold
increased by exposure. The risk ratio depends on the
length of the time interval considered, because risk it-
self refers to a specific interval (see Section 2.2). In the
literature, the term relative risk is often used to denote
the rate ratio as well as the risk ratio, creating some con-
fusion.

For several reasons, the odds ratio has emerged as
the most popular measure of association. The odds ra-
tio among those exposed and not exposed is the ratio
of odds, OR = [πE/(1 − πE)]/[πĒ/(1 − πĒ)]. Histor-
ically, the odds ratio has been considered an approx-
imation of the risk ratio obtainable from case-control
studies. The reason for this is that the probabilities of
being sampled into case and control groups cancel in
the calculation of the odds ratio, as long as sampling is
independent of exposure status. Furthermore, when πE

and πĒ are small, the ratio (1 − πĒ)/(1 − πE) has lit-
tle influence on the odds ratio, making it approximately
equal to the risk ratio πE/π ¯ . The assumption of small
E
Table 1
Data from the fictitious cohort study

Exposed Unexposed

Diseased 40 20
Non-diseased 60 80

πE and πĒ is referred to as the rare-disease assumption.
Kleinbaum et al. [26] have pointed out that in a case-
control study of a stable population with incident cases
and controls being representative of non-cases, the odds
ratio is the rate ratio.

It can be shown that numerically the odds ratio falls
the furthest from the null, and the risk ratio the clos-
est, with the rate ratio in between. For example, from
Table 1, based on fictitious data from a cohort study
for a disease that is not rare, we would obtain a risk
ratio R̂R = 0.4/0.2 = 2.00 and an odds ratio ÔR =
[(40)(80)]/[(20)(60)] = 2.67. If we assume a constant
hazard, so that the risk for each group is 1 − exp(−hT ),
with T being the follow-up time for each subject, we
have the rate ratio ĤR = ln(1−0.4)/ ln(1−0.2) = 2.29.
Hence 1 < R̂R < ĤR < ÔR.

The difference in magnitude between the above ratio
measures is important to keep in mind when interpreting
them for diseases or outcomes that are not rare. For rare
outcomes, the values of the three ratio measures tend to
be close.

Difference-based measures are appropriate when ef-
fects are additive (e.g., see [25 (Chapter 2)]), which
means that the exposure leads to a similar absolute in-
crease or decrease in rate or risk across subgroups. Al-
though additive relationships may be less common in
practice, difference measures may be more understand-
able to the public when the outcome is rare, and relate
directly to measures of impact discussed in Section 6.

The numerical ranges of difference measures depend
on their component parts. The rate difference ranges
from minus to plus infinity, while the risk difference is
bounded between minus and plus one. The situation of
no association is reflected by a difference measure of
zero. When the measure is formed as the rate or risk
among the exposed minus that among the non-exposed,
a positive value indicates that the exposure is a risk
factor, while a negative value indicates that it is a pro-
tective factor. It can be shown that the risk difference
falls numerically nearer to the null than the rate differ-
ence does. For example, Table 1 yields a risk differ-
ence of 0.40 − 0.20 = 0.20, while the rate difference
is −ln(1 − 0.40) + ln(1 − 0.20) = 0.29. However, they
will be close for rare outcomes.

The rate difference for exposed an unexposed sub-
jects is defined as hE − h ¯ , and has been commonly
E
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employed to compare mortality rates and other demo-
graphic rates between countries, time periods and/or
regions. In such comparisons, the two rates being com-
pared are often directly standardized to the age and sex
distribution of a standard population chosen, e.g., as the
population of a given country in a given census year.

For the special case of a dichotomous exposure,
the rate difference, i.e., the difference between the in-
cidence rates in the exposed and unexposed subjects
has been termed ‘excess incidence’ [19,27,28], ‘excess
risk’ [29], ‘Berkson’s simple difference’ [30], ‘inci-
dence density difference’ [1], or even ‘attributable risk’
[29,31], which may have caused some confusion.

The risk difference πE −πĒ is parallel to the rate dif-
ference and similar considerations apply. Due to the up-
per and lower limits of plus, minus one on risk, but not
on rate, risk differences are more difficult to model than
rate differences. The odds difference πE/(1 − πE) −
πĒ/(1 − πĒ) has virtually never been used in practice.

Because exposure-specific incidence rates and risks
can be obtained from cohort data, all measures of asso-
ciation considered (based on ratios or differences) can
be obtained as well. This is also true of case-control
data complemented by follow-up or population data (see
Sections 2.1 and 2.2). Case-control data alone allow es-
timation of odds ratios thanks to the identity between
disease and exposure odds ratios, which extends to the
logistic regression framework. Prentice and Pyke [32]
showed that the unconditional logistic model (see also
[25 (Chapter 6)]) applies to case-control data as long as
the intercept is disregarded. Interestingly, time-matched
case-control studies allow estimation of hazard rates
(e.g., see [1,33,34]).

Measures of association have a long history as meth-
ods for estimation and statistical inference. Traditional
methods adjust for confounders by direct or indirect
standardization of the rates or risks involved, prior to
computation of the measure of association, or by strati-
fication, where association measures are computed sep-
arately for subgroups and then combined. For measures
based on the difference of rates or risks, direct stan-
dardization and stratification can be identical, if the
same weights are chosen [35]. Generally, however, di-
rect standardization uses predetermined weights chosen
for external validity, while optimal or efficient weights
are chosen with stratification. Efficient weights make
the standard error of the combined estimator as small
as possible.

In modern epidemiology, measures of association are
most often estimated from regression analysis. Regres-
sion adjustment is a form of stratification, which pro-
vides more flexibility, but most often relies on large
sample size for inference. The function applied to the
rate or risk in a regression analysis is referred to as
the link function in the framework of generalized linear
models underlying such analyses (see [36,37] for theory
and practical application). For example, linear regres-
sion would regress the risk or rate directly on exposure
without any transformation, which is referred to as using
the identity link. When the exposure is the only predic-
tor in such a model, all link functions fit equally well
and simply represent different ways to characterize the
association. However, when several exposures or con-
founders are involved, or if the exposure is measured
as a continuous or ordinal variable, some link functions
and not others may require interaction or non-linear
terms to improve the fit. Most widely used regression
models are the Poisson and Cox models for rate ratio
estimation from cohort data, the log linear model for
risk ratio estimation from cohort data, the logistic re-
gression model for odds ratio estimation from cohort or
case-control data.

Measures of association based on prevalence paral-
lel those for risk (for point prevalence) or incidence
rates (for period prevalence). For example, one can form
prevalence ratios, prevalence differences and prevalence
odds ratios. They can be estimated from cross-sectional
data. These measures are less useful for studying the ae-
tiology of a disease than measures based on incidence.
The reason for this is that prevalence reflects both inci-
dence and duration of disease. For a potentially fatal or
incurable disease, duration means survival and the ex-
posures that increase incidence may reduce or increase
survival, and hence the association of an exposure with
prevalence may be very different from its association
with incidence.

Measures of associations and related methods of in-
ference are reviewed at length in epidemiologic text-
books (e.g., [20,25,26,29,38–43]).

3. Measures of impact: attributable risk

Measures of impact are used to assess the contribu-
tion of one or several exposures to the occurrence of
incident cases at the population level. Thus, they are
useful in public health to weigh the impact of exposure
on the burden of disease occurrence and assess potential
prevention programmes aimed at reducing or eliminat-
ing exposure in the population. The most commonly
used measure of impact is the attributable risk.

The term ‘attributable risk’ (AR) was initially intro-
duced by Levin in 1953 [44] as a measure to quantify
the impact of smoking on lung cancer occurrence. Grad-
ually, it has become a widely used measure to assess
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the consequences of an association between an expo-
sure factor and a disease at the population level. It is
defined as the following ratio:

(5)AR = {
Pr(D) − Pr(D|Ē)

}
/Pr(D)

The numerator contrasts the probability of disease,
Pr(D), in the population, which may have some ex-
posed, E, and some unexposed, Ē, individuals, with
the hypothetical probability of disease in the same pop-
ulation but with all exposure eliminated Pr(D|Ē). Thus,
it measures the additional probability of disease in the
population that is associated with the presence of ex-
posure in the population, and AR measures the corre-
sponding proportion. Probabilities in Eq. (5) will usu-
ally refer to the disease risk although, depending on the
context, they may be replaced with incidence rates.

Unlike measures of association (see Section 2.3), AR
depends both on the strength of the association between
exposure and disease and the prevalence of exposure
in the population, pE . This can be seen for instance
through rewriting AR from Eq. (5). Upon expressing
Pr(D) as:

Pr(D|E)pE + Pr(D|E)pE with pĒ = 1 − pE

both in the numerator and the denominator, and noting
that:

Pr(D|E) = RR × Pr(D|Ē)

the term Pr(D|Ē) cancels out and AR is obtained as [6,
45]:

(6)AR = {
pE(RR − 1)

}
/
{
1 + pE(RR − 1)

}
a function of both the prevalence of exposure in the pop-
ulation, pE , and the rate ratio or relative risk, RR.

An alternative formulation underscores this joint de-
pendency in yet another manner. Upon using the same
decomposition of Pr(D) as above and again noting that:

Pr(D|E) = RR × Pr(D|Ē)

the numerator in Eq. (5) can be rewritten as:

pE Pr(D|E) − pE Pr(D|E)/RR

From using Bayes’ theorem to express Pr(D|E) as
Pr(E|D)Pr(D)/pE , it becomes equal to:

Pr(D)pE|D(1 − 1/RR)

after simple algebra. This yields [6]

(7)AR = pE|D(RR − 1)/RR

a function of the prevalence of exposure in diseased
individuals, pE|D (= Pr(E|D)), and the rate ratio or rel-
ative risk, RR.
A high relative risk can correspond to a low or high
AR, depending on the prevalence of exposure, which
leads to widely different public-health consequences.
One implication is that portability is not a usual property
of AR, as the prevalence of exposure may vary widely
among populations that are separated in time or loca-
tion. This is in contrast with measures of association
such as the relative risk or rate ratio, which are more
portable from one population to another, as the strength
of the association between disease and exposure might
vary little among populations, unless strong interactions
with environmental or genetic factors are present.

When the exposure considered is a risk factor (RR >

1), it follows from the above definition that AR lies be-
tween 0 and 1. Therefore, it is very often expressed as a
percentage. AR increases both with the strength of the
association between exposure and disease measured by
RR, and with the prevalence of exposure in the popula-
tion. A prevalence of 1 (or 100%) yields a value of AR
equal to the attributable risk among the exposed individ-
uals, i.e., (RR − 1)/RR (see Section 6). AR approaches
1 for an infinitely high RR, provided that the exposure
is present in the population (i.e., non-null prevalence of
exposure).

AR takes a null value when either there is no asso-
ciation between exposure and disease (RR = 1) or no
subject is exposed in the population. Negative AR val-
ues are obtained for a protective exposure (RR < 1).
In this case, AR varies between 0 and −∞, a scale
on which AR lacks a meaningful interpretation. One
solution is to reverse the coding of exposure (i.e., inter-
change exposed and unexposed categories) to go back
to the situation of a positive AR, sometimes called the
preventable fraction in this case [46–48]. Alternatively,
one may consider a different parameter, namely the pre-
vented fraction [6,30,46,47,49].

Some confusion in the terminology arises from the
reported use of as many as 16 different terms in the lit-
erature to denote the attributable risk [50,51]. However,
a literature search by Uter and Pfahlberg [52] found
some consistency in terminology usage, with ‘attribut-
able risk’ and ‘population attributable risk’ [19] being
the most commonly used terms, by far followed by ‘eti-
ologic fraction’ [6]. Other popular terms include ‘at-
tributable risk percentage’ [45], ‘fraction of aetiology’
[6], and ‘attributable fraction’ [20 (Chapter 4), 48,53,
54].

Moreover, additional confusion may originate in the
use by some authors [19,29,31] of the term ‘attributable
risk’ to denote a measure of association, the excess inci-
dence, that is the difference between the incidence rates
in exposed and unexposed subjects (see Section 2.3).
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Context will usually help the readers to detect this less
common use.

While measures of association such as the rate ra-
tio and relative risk are used to establish an association
in aetiologic research, AR has a public-health interpre-
tation as a measure of the disease burden attributable
or at least related to one or several exposures. Conse-
quently, AR is used to assess the potential impact of
prevention programmes aimed at eliminating exposure
from the population. It is often thought of as the fraction
of disease that could be eliminated if exposure could be
totally removed from the population.

However, this interpretation can be misleading be-
cause, for it to be strictly correct, the three following
conditions have to be met [30]. First, estimation of AR
has to be unbiased (see Section 4). Second, exposure
has to be causal rather than merely associated with the
disease. Third, elimination of exposure has to be with-
out any effect on the distribution of other risk factors.
Indeed, as it might be difficult to alter the level of ex-
posure to one factor independently of other risk factors,
the resulting change in disease load might be different
from the AR estimate. For these reasons, various authors
elect to use weaker definitions of AR, such as the pro-
portion of disease that can be related or linked, rather
than attributable, to exposure [6].

Several authors have considered an interpretation of
AR in terms of aetiologic research. The argument is that
if an AR estimate is available for several risk factors
jointly, then its complement to 1, i.e., 1 −AR, must rep-
resent a gauge of the proportion of disease cases not
explained by the risk factors used in estimating AR.
Hence, 1 − AR would represent the proportion of cases
attributable to other (possibly unknown) risk factors.
For instance, it was estimated that the AR of breast can-
cer was 41% for late age at first birth, nulliparity, family
history of breast cancer and higher socioeconomic sta-
tus, which suggested that at least 59% of cases had to
be attributable to other risk factors [55]. A similar type
of reasoning was used in several well-known reports of
estimated percentages of cancer death or incidence at-
tributable to various established cancer risk factors (e.g.,
smoking, diet, occupational exposure to carcinogens...).
Some of these reports conveyed the impression that little
remained unexplained by factors other than the main es-
tablished preventable risk factors and that cancer was a
mostly preventable illness [56–60]. Such interpretation
has to be taken with great care since ARs for different
risk factors may add to more than 100% because mul-
tiple exposures are usually possible (e.g., smoking and
occupational exposure to asbestos). Moreover, this in-
terpretation can be refuted based on logical arguments
regarding the fact that disease occurrence may require
more than one causal factor. Furthermore, one can note
that once a new risk factor is considered, the joint unex-
posed reference category changes from lack of exposure
to all previously considered risk factors to lack of expo-
sure to those risk factors and the new risk factor [61].
Because of this change in the reference category, the AR
for the new risk factor may surpass the quantity 1 − AR
for the previously considered risk factors. Thus, while it
is useful to know that only 41% of breast cancer cases
can be attributed to four established risk factors in the
above example, it is entirely conceivable that new risk
factors of breast cancer may be elicited, which yield an
AR of more than 59% by themselves in the above ex-
ample.

AR can be estimated from cohort studies since all
quantities in Eqs. (5)–(7) are directly estimable from
cohort studies. AR estimates can differ depending on
whether rate ratios, risk ratios or odds ratios are used,
but will be numerically close for rare diseases. For
case-control studies, exposure-specific incidence rates
or risks are not available, unless data are comple-
mented with follow-up or population-based data (see
Sections 2.1 and 2.2). Thus, one has to rely on odds ratio
estimates, use Eq. (6) and estimate pE from the propor-
tion exposed in the controls, making the rare-disease as-
sumption also involved in estimating odds ratios rather
than relative risks. Alternatively, one can use Eq. (7), in
which the quantity pE|D can be directly estimated from
the diseased individuals (cases) and RR can be estimated
from the odds ratio. It is possible to form a measure
equivalent to AR based on prevalence, e.g., by substi-
tuting a prevalence odds ratio for RR in Eq. (7). This
quantity can be estimated from cross-sectional data. It
will be useful in weighing the impact of exposure on the
overall burden of disease rather than disease occurrence
and will be influenced by disease length or survival (see
Section 2.3). Detailed reviews of estimability and ba-
sic estimation of AR for various epidemiologic designs
can be found in Walter [30] and Benichou [62,63], who
provide explicit formulae for point and standard errors
estimates and consider various mathematical transfor-
mations on which to base confidence intervals.

Beside AR, other measures of impact have been pro-
posed, notably the generalized impact fraction and the
number of person-years (or potential years) of life lost.
The generalized impact fraction broadens the concept
of AR and is obtained by replacing the term Pr(D|Ē)

in Eq. (5) by Pr∗(D), the probability of disease un-
der a modified distribution of exposure. Thus, it can
be interpreted as the fractional reduction of disease oc-
currence that would result from changing the current
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distribution of exposure in the population to some spe-
cific modified distribution characterized by reduced ex-
posure, with AR corresponding to the special case of
a modified distribution putting unit mass on the low-
est risk configuration (i.e., with all exposure eliminated)
[64–66]. For a potentially fatal or incurable disease, the
number of person-years of life lost related to a given ex-
posure is a measure defined as the difference between
current life expectancy of the population and potential
life expectancy with the exposure eliminated [67–69].
This quantity may be difficult to estimate. Indeed, sev-
eral causes of death may have to be considered, e.g.,
lung cancer and pleural as well as peritoneal mesothe-
lioma for asbestos exposure. Moreover, this measure
depends on the prevalence of exposure in the popula-
tion and strength of association between exposure and
disease(s), but also on the age-distribution of exposure-
associated diseases and their severity, i.e. case fatality.

4. Adjusted attributable risk estimation

As it is the case for measures of association, un-
adjusted (or crude or marginal) AR estimates may be
inconsistent [6,30,66,70]. The precise conditions under
which adjusted AR estimates that take into account the
distribution and effect of other factors will differ from
unadjusted AR estimates that fail to do so were worked
out by Walter [66]. If E and X are two dichotomous
factors taking levels 0 and 1, and if one is interested in
estimating the AR for exposure E, then the following
applies. The adjusted and unadjusted AR estimates co-
incide (i.e., the crude AR estimate is unbiased) if and
only if (a) E and X are such that Pr(E = 0,X = 0) •
Pr(E = 1,X = 1) = Pr(E = 0,X = 1) • Pr(E = 1,X =
0), which amounts to the independence of their distri-
butions, or (b) exposure to X alone does not increase
disease risk, namely Pr(D|E = 0,X = 1) = Pr(D|E =
0,X = 0). When considering one (or several) poly-
chotomous factor(s) X forming J levels (J > 2), con-
ditions (a) and (b) can be extended to a set of analogous
sufficient conditions. Condition (a) translates into a set
of J (J − 1)/2 conditions for all pairs of levels j and
j ′ of X, amounting to an independent distribution of E

and all factors in X. Condition (b) translates into a set of
J − 1 conditions stating that in the absence of exposure
to E, exposure to any of the other factors in X, alone or
in combination, does not increase the disease risk.

The extent of bias varies according to the severity
of the departure from conditions (a) and (b) above. Al-
though no systematic numerical study of the bias of un-
adjusted AR estimates has been performed, Walter [66]
provided a revealing example of a case-control study as-
sessing the association between alcohol, smoking, and
oral cancer. In that study, severe positive bias was ob-
served for crude AR estimates, with a very large differ-
ence between crude and adjusted AR estimates both for
smoking (51.3% vs. 30.6%, a 20.7 difference in percent-
age points and 68% relative difference in AR estimates)
and alcohol (52.2% vs. 37.0%, a 15.2% absolute dif-
ference and 48% relative difference). Thus, the prudent
approach must be to adjust for factors that are suspected
or known to act as confounders in a similar fashion as
for estimating measures of associations.

Two simple adjusted estimation approaches dis-
cussed in the literature are inconsistent. The first ap-
proach was presented by Walter [30], and is based on
a factorization of the crude risk ratio into two compo-
nents, similar to those in Miettinen’s earlier derivation
[71]. In this approach, a crude AR estimate is obtained
under the assumption of no association between expo-
sure and disease (i.e., values of RR or the odds ratio are
taken equal to 1 separately for each level of confound-
ing). This term reflects the AR only due to confounding
factors since it is obtained under the assumption that
disease and exposure are not associated. By subtract-
ing this term from the crude AR estimate that ignores
confounding factors and thus reflects the impact of both
exposure and confounding factors, what remains is an
estimate of the AR for exposure adjusted for confound-
ing [30]. The second approach is based on using Eq. (6)
and plugging in a common adjusted RR estimate (odds
ratio estimate in case-control studies), along with an
estimate of pE [45,71,72]. Both approaches, while intu-
itively appealing, were shown to be inconsistent [72–74]
and, accordingly, very severe bias was exhibited in sim-
ulations of cross-sectional and cohort designs [51].

By contrast, two adjusted approaches based on strati-
fication yield valid estimates. The Mantel–Haenszel ap-
proach consists in plugging-in an estimate of the com-
mon adjusted RR (odds ratio in case-control studies)
and an estimate of the prevalence of exposure in dis-
eased individuals, pE|D , in Eq. (7) in order to obtain an
adjusted estimate of AR [47,75–78]. In doing so, it is
possible to adjust for one or more polychotomous fac-
tors forming J levels or strata. While several choices
are available for a common adjusted RR or odds ratio
estimator, a usual choice is to use a Mantel–Haenszel
estimator of RR in cohort studies [20 (Chapters 15–
16), 26 (Chapters 9 and 17), 79,80] or odds ratio in
case-control studies [20 (Chapters 15–16), 25 (Chap-
ters 4–5), 26 (Chapters 9,17), 79,81]. For this reason, the
term ‘Mantel–Haenszel approach’ has been proposed to
denote this approach to adjusted AR estimation [82].
When there is no interaction between exposure and fac-
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tors adjusted for, Mantel–Haenszel-type estimators of
RR or odds ratio have favourable properties, as they
combine lack of (or very small) bias even for sparse data
(e.g., individually matched case-control data) and good
efficiency, except in extreme circumstances [25 (Chap-
ters 4–5), 79,83–85]. Moreover, variance estimators are
consistent even for sparse data (‘dually-consistent’ vari-
ance estimators) [47,86]. Simulation studies of cohort
and case-control designs [47,77,78,87] showed that ad-
justed AR estimates are little affected by small-sample
bias when there is no interaction between exposure and
adjustment factors, but can be misleading if such inter-
action is present.

The weighted-sum approach also allows adjust-
ment for one or more polychotomous factors form-
ing J levels or strata. The adjusted AR is written
as a weighted sum over all strata of stratum-specific
ARs, i.e.,

∑J
j=1 wj ARj [30,88,89]. Using crude es-

timates of ARj separately within each stratum j and
setting weights wj as proportions of diseased individ-
uals (cases) yield an asymptotically unbiased estimator
of AR, which can be seen as a maximum-likelihood
estimator [88]. This choice of weights defines the ‘case-
load method’. The weighted-sum approach does not
require the assumption of a common relative risk or
odds ratio. Instead, the relative risks or odds ratios are
estimated separately for each adjustment level with no
restrictions placed on them, corresponding to a fully sat-
urated model for exposure and adjustment factors (i.e.,
a model with all interaction terms present). From these
separate relative risk or odds ratio estimates, separate
AR estimates are obtained for each level of adjustment.
Thus, the weighted-sum approach not only accounts for
confounding, but also for interaction. However, simula-
tion studies of cohort and case-control designs [77,78,
87,88] show that the weighted-sum approach can be af-
fected by small sample bias, sometimes severely. Hence,
it should be avoided when analyzing sparse data, and
should not be used altogether for analyzing individually
matched case-control data.

A natural alternative to generalize these approaches
is to use adjustment procedures based on regression
models, in order to take advantage of their flexible and
unified approach to efficient parameter estimation and
hypothesis testing. Regression models allow one to take
into account adjustment factors as well as interaction
of exposures with some or all adjustment factors. This
approach was first used by Walter [30], Sturmans et
al. [90] and Fleiss [91] followed by Deubner et al. [92]
and Greenland [47]. The full generality and flexibility
of the regression approach was exploited by Bruzzi et
al. [93], who developed a general AR estimate based on
rewriting AR as:

1 −
J∑

j=1

I∑
i=0

ρij RR−1
i|j

Quantities ρij represent the proportion of diseased in-
dividuals with level i of exposure (i = 0 at the refer-
ence level, i = 1, . . . , I for exposed levels) and j of
confounding and can be estimated from cohort or case-
control data (or cross-sectional survey data) using the
observed proportions. The quantity RR−1

i|j represents the
inverse of the rate ratio, risk ratio or odds ratio, de-
pending on the context, for level i of exposure at level
j of confounding. It can be estimated from regression
models, both for cohort and case-control data (as well
as cross-sectional data), which allows confounding and
interactions to be accounted for. Hence, this regression-
based approach to AR estimation allows control for con-
founding and interaction, and can be used for the main
epidemiologic designs. Depending on the design, con-
ditional or unconditional logistic, log-linear or Poisson
models can be used. Variance estimators were devel-
oped based on an extension of the delta-method to im-
plicitly related random variables in order to take into ac-
count the variability in estimates of terms ρij and RR−1

i|j
as well as their correlations [94–96]. This regression
approach includes the crude and two stratification ap-
proaches as special cases and offers additional options
[82]. The unadjusted approach corresponds to models
for RR−1

i|j with exposure only. The Mantel–Haenszel ap-
proach corresponds to models with exposure and con-
founding factors, but no interaction terms between ex-
posure and adjustment factors. The weighted-sum ap-
proach corresponds to fully saturated models with all
interaction terms between exposure and confounding
factors. Intermediate models are possible, for instance
models allowing for interaction between exposure and
only one confounder, or models in which the main ef-
fects of some confounders are not modelled in a satu-
rated way.

A modification of the approach by Bruzzi et al. was
developed by Greenland and Drescher [97] in order to
obtain full maximum likelihood estimates of AR. The
modification consists in estimating the quantities ρij

from the regression model rather than simply relying on
the observed proportions of cases. The two model-based
approaches seem to differ very little numerically [97].
Greenland and Drescher’s approach might be more effi-
cient in small samples, although no difference was ob-
served in simulations of the case-control design, even
for samples of 100 cases and 100 controls [97]. It might
be less robust to model misspecification, however, as it
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Table 2
Illustration of the phenomenon of non-additivity of attributable risks for two exposures E1 and E2 and multiplicative risks

Exposure to
factor E1

Exposure to
factor E2

Prevalence Relative
risk

Risk Risk in the absence
of factor E1

Risk in the absence
of factor E2

Yes Yes 0.25 81 0.81 0.09 0.09
Yes No 0.25 9 0.09 0.01 0.09
No Yes 0.25 9 0.09 0.09 0.01
No No 0.25 1 0.01 0.01 0.01
relies more heavily on the RR or the odds ratio regres-
sion model used. Finally, it does not apply to the con-
ditional logistic model, and if that model is to be used
(notably, in case-control studies with individual match-
ing), the original approach of Bruzzi et al. is the only
possible choice.

Detailed reviews of adjusted AR estimation [63,82,
87,98] are available. Alternative methods to obtain esti-
mates of variance and confidence intervals for AR have
been developed either based on resampling techniques
[52,87,99–102] or on quadratic equations [103–105].

5. Non-additivity of attributable risks for separate
exposures

AR is frequently estimated in multifactorial situa-
tions when trying to evaluate the joint and individual im-
pact of multiple exposures. In this context, separate ARs
can be estimated for each exposure as well as the over-
all AR for all or several exposures jointly. This raises a
problem since individual contributions of exposures to
attributable risk are usually non-additive.

Indeed, Walter [70] showed that the sum of separate
ARs for each exposure is not equal to the joint AR un-
less at least one of the two following specific conditions
is fulfilled: there is no joint exposure to the different
exposures in the population and the effects of the expo-
sures on disease risk are additive. For two exposures, the
latter condition means that the relative risk for exposure
to the two factors, RR12, is linked to the relative risks for
exposures 1 and 2 separately, RR1 and RR2 respectively,
by the formula (RR12 − 1) = (RR1 − 1) + (RR2 − 1).
If none of the two conditions above is verified, then the
sum of the separate for each exposure differs from the
joint AR and the difference can be very substantial.

Table 2 taken from Begg [61] illustrates this problem.
It considers two dichotomous exposures E1 and E2 with
prevalence in the population of 0.25 for each of the four
joint categories. Each of these exposures multiplies the
disease risk by 9 with a joint multiplicative effect such
that the risk is multiplied by 81 in the case of joint ex-
posure to E1 and E2. By using either Eq. (5) or Eq. (6),
one obtains an 80% AR for both factors E1 and E2 sep-
arately. Indeed, with Eq. (6), for example, the AR for
factor E1 is:

AR1 = 0.50 × (9 − 1)/
{
1 + 0.50 × (9 − 1)

} = 0.80

i.e., AR1 = 80%. The same applies to E2, since the
problem is perfectly symmetrical in this particular case.
Thus, the sum of the separate ARs for exposures E1 and
E2, i.e., AR1 + AR2, cannot be equal to the joint at-
tributable risk for factors E1 and E2, since this sum is
greater than 100%! The joint AR for exposures E1 and
E2, AR12, can be obtained by using Eq. (5), which is
equivalent to:

AR12 = 1 − Pr(D|Ē)/Pr(D)

where Pr(D|Ē) is the risk of developing the disease in
subjects that are neither exposed to E1 nor E2, i.e. 0.01.
The probability Pr(D) represents the risk of developing
the disease in the population. Upon taking into account
the joint distribution of exposures E1 and E2 it is given
by:

Pr(D) = 0.25 × (0.81 + 0.09 + 0.09 + 0.01) = 0.25

and the joint AR for exposures E1 and E2 is:

AR12 = 1 − 0.01/0.25 = 0.96

i.e., AR12 = 96%, which is clearly lower than the sum
AR1 + AR2.

The non-additivity problem comes from the fact that
by forming the sum AR1 + AR2, one is not considering
the same reference levels as when considering the joint
AR, namely AR12. For the latter, the reference level is
the category that corresponds to an absence of exposure
to E1 and E2. In the case of the AR for exposure E1,
i.e., AR1, the reference level corresponds to an absence
of exposure to E1 only and therefore includes subjects
both exposed and unexposed to E2 (in equal proportion
in this example). Similarly, for AR2, the reference level
corresponds to an absence of exposure to E2 only, and
therefore includes subjects both exposed and unexposed
to E1 (again, in equal proportion in this example). This
means that the contribution of the category of subjects
exposed to both E1 and E2 is taken into account more
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than once in the sum AR1 + AR2, which explains the
inadequateness of calculating AR1 + AR2, except in the
specific cases described by Walter [70].

Because non-additivity is somewhat counter-intuitive
and generates misinterpretations, three alternative ap-
proaches have been suggested, one based on consider-
ing variance decomposition methods [106] rather than
estimating AR, one based on estimating assigned share
or probability of causation of a given exposure with
relevance in litigation procedures for individuals with
multiple exposures [107–113], and one based on an
extension of the concept of AR [114,115]. This last ap-
proach relies on partitioning techniques [116,117] and
keeps with the framework of AR estimation by intro-
ducing the sequential AR that generalizes the concept
of AR. The principle is to define an order among the ex-
posures considered. Then, the contribution of each ex-
posure is assessed sequentially according to that order.
The contribution of the first exposure considered is cal-
culated as the standard AR for that exposure separately.
The contribution of the second exposure is obtained as
the difference between the joint AR estimate for the first
two exposures and the separate AR estimate for the first
exposure, the contribution of the third exposure is ob-
tained as the difference between the joint AR estimates
for the first three and first two exposures, etc. Thus, a
multidimensional vector consisting of contributions of
each separate exposure is obtained.

These contributions are meaningful in terms of po-
tential prevention programmes that consider successive
rather than simultaneous elimination of exposures from
the population. Indeed, each step yields the additional
contribution of the elimination of a given exposure once
higher-ranked exposures are eliminated. At some point,
additional contributions may become very small, indi-
cating that there is not much point in considering extra
steps. By construction, these contributions sum to the
overall AR for all exposures jointly, which constitutes
an appealing property. Of course, separate vectors of
contributions are obtained for different orders. Mean-
ingful orders depend on practical possibilities in im-
plementing potential prevention programmes in a given
population. Average contributions can be calculated for
each given step (i.e., the first step, second step, etc.) by
calculating the mean of contributions corresponding to
that step over all possible orders. These average contri-
butions have been termed partial ARs [114], and they
represent another potentially useful measure.

For the data in Table 2, sequential ARs would be
equal to 80% and 96 − 80 = 16% for exposures ranked
first and second respectively, and partial ARs would be
equal to (80 + 16)/2 = 48% for each factor.
(a)

(b)

Fig. 1. Sequential attributable risk estimates for elevated alcohol con-
sumption (40 + g/day) and heavy smoking (10 + g/day) for two dif-
ferent orders of removal (top panel (a): alcohol, then smoking; bottom
panel (b): smoking, then alcohol) – Case-control data on oesophageal
cancer [119].

Methods for visualizing sequential and partial ARs
are provided by Eide and Heuch [118]. An illustration
is given by Fig. 1 based on data from the case-control
study of oesophageal cancer conducted in the Ille-et-
Vilaine district of France. This study included 200 cases
and 775 controls selected by simple random sampling
from electoral lists [119]. The assessment of associa-
tions between alcohol consumption and smoking with
oesophageal cancer has been the focus of detailed illus-
tration by Breslow and Day [25], who presented var-
ious approaches to odds ratio estimation. Upon con-
sidering 0–39 g/day as the reference category for al-
cohol consumption, 29 cases and 386 controls were in
the reference category, while 171 cases and 389 con-
trols were in the exposed (i.e., 40+ g/day) category.
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The corresponding crude odds ratio was estimated as
(171 × 386)/(29 × 389) = 5.9 and the crude AR as
70.9% from Eq. (6). Upon considering 0–9 g/day as
the reference category for smoking, 78 cases and 447
controls were in the reference category, while 122 cases
and 328 controls were in the exposed (i.e., 9+ g/day)
category. The corresponding crude odds ratio was esti-
mated as (122 × 447)/(78 × 328) = 2.1 and the crude
AR as 32.4% from Eq. (6). Moreover, there were nine
cases and 252 controls in the joint reference level of al-
cohol consumption and smoking (i.e., 0–39 g/day of
alcohol and 0–9 g/day of tobacco), which yielded a
crude joint odds ratio estimate of 10.2 and a crude joint
AR estimate for drinking at least 40 g/day of alcohol or
smoking at least 10 g/day of tobacco of 86.2%.

Hence, considering the first order of risk factor re-
moval (i.e., eliminating alcohol consumption above
39 g/day followed by eliminating smoking above
9 g/day) yields sequential AR estimates of 70.9% for el-
evated daily alcohol consumption and (86.2−70.9)% =
15.3% for heavy smoking, so that, once elevated alco-
hol consumption is eliminated, the additional impact
of eliminating heavy smoking appears rather limited
(Fig. 1a). Considering the second order (i.e., eliminating
heavy smoking first) yields sequential AR estimates of
32.4% for heavy smoking and (86.2 − 32.4)% = 53.8%
for elevated alcohol consumption so that, once heavy
smoking is eliminated, the additional impact of elim-
inating elevated alcohol consumption remains major
(Fig. 1b). A summary of these results is provided by
partial ARs for elevated alcohol consumption and heavy
smoking, with estimated values of 62.4% and 23.9%, re-
spectively, again reflecting the higher impact of elevated
alcohol consumption on oesophageal cancer.

A detailed review of properties, interpretation, and
variants of sequential and partial ARs was provided by
Land et al. [115].

6. Conceptual issues in estimating attributable risk

As first pointed out by Greenland and Robins [53],
there are three distinct measures within the concept of
AR. It is easier to make this point using the formulation
of AR in Eq. (7) and considering the attributable risk
in the exposed individuals. In Eq. (7), AR is expressed
as the product of two terms, the prevalence of exposure
in diseased individuals, pE|D , and the quantity (RR −
1)/RR. The latter term is equivalent to the attributable
risk in the exposed (ARE) or attributable fraction in the
exposed individuals, which is defined as the following
ratio [6,19,44,45]:

(8)ARE = {
Pr(D|E) − Pr(D|Ē)

}
/Pr(D|E)
where Pr(D|E) is the probability of disease in the ex-
posed individuals and Pr(D|Ē) is the hypothetical prob-
ability of disease in the same subjects, but with every
exposure eliminated. ARE can be regarded as a relative
rate or risk difference (see Section 2.3). Depending on
the context, probabilities in Eq. (8) will refer to the dis-
ease risk or the incidence rates (see Sections 2.1–2.2), as
will be discussed further below. Hence, the logic behind
Eq. (7) is that the impact of exposure at the population
level depends on the impact among exposed subjects
and the prevalence of exposure among disease cases.

Greenland and Robins [53] proposed to distinguish
three separate measures of impact that are conceptually
different. They made these distinctions for ARE , but
they apply equivalently to AR. The first measure, de-
noted ‘excess fraction’, corresponds to the definition of
ARE , with probabilities in Eq. (8) representing risks.
The corresponding AR definition is that considered
throughout this paper with probabilities in Eqs. (5)–
(7) representing risks and the measure of association
RR representing the risk ratio (i.e., the relative risk).
The second measure denoted ‘excess rate’, ‘rate frac-
tion’ [20 (Chapter 4)], or ‘assigned share’ in the risk-
assessment literature [110,120], corresponds to the def-
inition of ARE with probabilities in Eq. (8) representing
incidence rates or hazards. The corresponding AR def-
inition is again that considered throughout this paper,
but with probabilities in Eqs. (5)–(7) representing inci-
dence rates or hazards, and the measure of association
RR representing the rate ratio or hazard rate. Both AR
(and ARE) measures are estimable from cohort data,
but estimability from case-control data requires that
case-control data be complemented with follow-up or
population-based data (see Sections 2.1, 2.2, 3, and 4).
Usually, these two AR measures will be substantially
different numerically. For instance, from the data in Ta-
ble 1 and for a 10% prevalence of the exposed category,
the AR counterpart of the excess fraction will be esti-
mated as 9.1% and the AR counterpart of the excess rate
as 11.4%, a 25.7% relative difference. The two mea-
sures will be close only in special circumstances, for
instance for a closed cohort and a rare disease [53]. Gen-
erally speaking, the AR counterpart of the rate fraction
will be more useful than the AR counterpart of the ex-
cess fraction in situations where the question of when
the disease occurred matters as much or more than the
question of whether it occurred or not in a given delay.
Both measures aim at assessing the impact of exposure
by quantifying the increase in disease risk or rate caused
by exposure, which amounts to considering only extra
cases that would not have become cases in the absence
of exposure. Although it is usually impossible to dis-
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tinguish individual exposed cases for which exposure
played an aetiologic role from those where exposure
was irrelevant, such risk or rate increases are estimable
from epidemiologic data.

The third AR measure is defined as the proportion
of disease cases in which exposure played an aetio-
logic role either by contributing to disease occurrence
through making the case’s incidence time earlier that
it would have been in the absence of exposure (i.e.,
disease would have occurred in the absence of expo-
sure, only later) or by causing disease occurrence (i.e.,
disease would not have occurred in the absence of expo-
sure). It is the AR counterpart to the ‘aetiologic fraction’
definition of ARE proposed by Greenland and Robins
[53]. Strong and usually unverifiable assumptions are
needed to estimate it. Greenland and Robins [53] gave
a theoretical example in which a 20-year leukaemia risk
was estimated in a cohort of former military personnel
who had all been exposed to radiation during a nuclear-
weapon test. In this example, AR and ARE were equiv-
alent, because all subjects had been exposed. Overall,
24 cases developed including six cases in the last five
years (i.e., 15–20 years after radiation exposure). Under
one biologic assumption, the effect of radiation could
be to accelerate leukaemia incidence by five years, in
which case the six subjects who developed leukaemia
in 15–20 years would have remained leukaemia-free at
20 years in the absence of exposure. Thus, the excess
fraction (and its AR counterpart) would be 6/24 = 0.25
(25%), but the aetiologic fraction (and its AR counter-
part) would be 24/24 = 1.00 (100%) because radiation
exposure was a contributory cause in every one of the
24 cases. Under an alternative biologic assumption, the
effect of radiation could be carcinogenic in 25% (i.e.,
six) of the exposed cases, but without any effect in the
remaining 75% (i.e., 18) ‘spontaneous’ cases, which
would have become cases irrespective of exposure, this
differential effect being possibly explained by a differ-
ence in genetic make-ups of subjects (i.e., exposure–
gene interaction). Thus, the excess fraction would be
6/24 = 0.25 (25%) as before, but the aetiologic fraction
would be 25% as well in this case, because radiation
exposure did not play a contributory causal role in any-
one of the remaining 18 cases. This considerable change
in aetiologic fraction estimates results from the consid-
eration of different biologic mechanisms, although the
same epidemiologic data are used. This example helps
to grasp the distinction between the excess and aetio-
logic fractions and their AR counterparts and stresses
that, depending on the underlying biologic assumptions,
the aetiologic fraction estimates can vary enormously.
Other similar examples were given by Beyea and Green-
land [121]. Thus, the use of the aetiologic fraction and
of its AR counterpart is problematic, because it requires
usually unverifiable biologic assumptions to be esti-
mated. Moreover, AR counterparts to excess fractions
and rates seem better suited to quantify the impact of ex-
posure on disease occurrence at the population level in
view of their definitions. However, the aetiologic frac-
tion may be useful from a biological standpoint, and it
has also become the key measure used in legal think-
ing for awarding compensation for harmful exposure,
at least in the United States. In this context, the term
‘probability of causation’ has been proposed to denote
the aetiologic fraction and has been extended to account
for several exposed levels or multiple exposures [107–
113]. Whereas aetiologic and excess fractions will usu-
ally differ numerically, sometimes very substantially, it
has been shown that they are equal in certain biologic
models [86,120].

7. Final remarks

Disease frequency is measured through the compu-
tation of incidence rates or estimation of disease risk.
Both measures are directly accessible from cohort data.
They can be obtained from case-control data only if
they are complemented by follow-up or population data.
Using regression techniques, methods are available to
derive incidence rates or risk estimates specific to a
given exposure profile. Exposure-specific risk estimates
are useful in individual prediction. A wide variety of
options and techniques are available for measuring as-
sociation. Adjustment for confounding is a key point in
all analyses of observational studies, and can be pur-
sued by standardization, stratification, and by regression
techniques. The flexibility of the latter, especially in the
generalized linear model framework, and the availabil-
ity of computer software, has made it widely applied in
the last several years.

Several measures are available to assess the impact
of an exposure in terms of the occurrence of new dis-
ease cases at the population level, among which AR
is the most commonly used. Several approaches have
been developed to derive adjusted AR estimates from
case-control as well as cohort data, either based on strat-
ification or on more flexible regression techniques. Se-
quential and partial ARs have been proposed to handle
the situation of multiple exposures and circumvent the
associated non-additivity problem. Although there re-
main issues in properly interpreting the concept of AR,
AR remains a useful measure to assess the potential im-
pact of exposure at the population level and can serve as
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a suitable guide in practice to assess and compare vari-
ous prevention strategies.

General problems of AR definition, interpretation
and usefulness as well as properties have been reviewed
in detail [6,30,51,62,122,123]. Special issues were re-
viewed by Benichou [62,63]. They include estimation
of AR for risk factors with multiple levels of expo-
sure or with a continuous form, multiple risk factors,
recurrent disease events, and disease classification with
more than two categories. They also include assessing
the consequences of exposure misclassification on AR
estimates. Specific software for attributable risk estima-
tion [100,124,125] as well as a simplified approach to
confidence interval estimation [126] has been developed
to facilitate implementation of methods for attributable
risk estimation. Finally, much remains to be done to pro-
mote proper use and interpretation of AR, as illustrated
in a recent literature review [127].
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