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Abstract

We consider a two-competitor/one-prey model in which both competitors exhibit a general functional response and one of the
competitors exhibits a density-dependent mortality rate. It is shown that the two competitors can coexist upon the single prey.
As an example, we consider a two-competitor/one-prey model with a Holling II functional response. Our results demonstrate that
density-dependent mortality in one of the competitors can prevent competitive exclusion. Moreover, by constructing a Liapunov
function, the system has a globally stable positive equilibrium. To cite this article: S. Ruan et al., C. R. Biologies 330 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Coexistence dans des modèles de compétition avec mortalité densité dépendante. Nous considérons un modèle à deux
compétiteurs et une proie, dans lequel les deux compétiteurs ont une réponse fonctionnelle générale et un des compétiteurs pos-
sède un taux de mortalité densité dépendant. Nous montrons que les deux compétiteurs peuvent coexister en présence d’une seule
proie. Pour illustrer nos résultats, nous considérons un modèle deux compétiteurs/une proie avec une réponse fonctionnelle de
type Holling II. Ces résultats prouvent qu’un taux de mortalité densité dépendant chez un des compétiteurs peut empécher l’exclu-
sion compétitive. De plus, en construisant une fonction de Lyapunov, nous montrons que le système possède un équilibre positif
globalement stable. Pour citer cet article : S. Ruan et al., C. R. Biologies 330 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The principle of competitive exclusion [13,17,20,35,
47] asserts that two or more competitors cannot coex-
ist indefinitely on a single prey, which was supported
by experiments on Paramecium cultures by Gause [15]
(see also [28]). It was thought to hold in laboratory set-
tings until Ayala [2] demonstrated experimentally that
y Elsevier Masson SAS. All rights reserved.
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two species of Drosophila could coexist upon a single
prey.

In order to explain Ayala’s experiments, various
competition models have been proposed. For example,
Armstrong and McGehee [1] considered the model:

du

dt
= ru

(
1 − u

K

)
− auv − Auw

1 + Bu

(1.1)
dv

dt
= v(−d + eu)

dw

dt
= w

(
−D + Eu

1 + Bu

)

where v and w are the densities of the two competitors
and u is the density of the prey. In model (1.1) the con-
tributions of the interaction between the competitor with
density w and the prey u to the growth rates of those
species are described by Holling II functional response
terms. However, predation of a common prey is the only
interaction between species v and w that is represented.
Armstrong and McGehee [1,36] found that, for appro-
priate parameter values and suitable initial population
densities (u(0), v(0),w(0)), system (1.1) does predict
the coexistence of the two competitors via a locally at-
tracting periodic orbit. Hsu, Hubbell and Waltman [23,
24] generalized this type of coexistence to the case when
both competitors exhibit Holling II functional response
(see also Butler and Waltman [4], Cushing [9], Farkas
[12], Muratori and Rinaldi [37], Smith [41], etc.), i.e.,
to a system of the form:

du

dt
= ru

(
1 − u

K

)
− auv

1 + bu
− Auw

1 + Bu

(1.2)
dv

dt
= v

(
−d + eu

1 + bu

)
dw

dt
= w

(
−D + Eu

1 + Bu

)

These studies support Hutchinson’s point [26] that the
two competitive species “might oscillate in varying
numbers, but persist almost indefinitely”. However, such
systems do not possess a componentwise positive equi-
librium [34] and thus no stable equilibrium is possi-
ble [31]. Moreover, system (1.2), exhibiting Armstrong-
and McGehee-type coexistence is only weakly persis-
tent, but not persistent. Hence, it is not permanent, oth-
erwise it would exhibit componentwise positive equilib-
ria (see [27]).

Consider an ordinary differential equation model for
n interacting biological species:

(1.3)
dui

dt
= uifi(u1, u2, . . . , un), i = 1,2, . . . , n
where ui(t) denotes the density of the ith species.
Let (u1(t), u2(t), . . . , un(t)) denote the solution of sys-
tem (1.3), with componentwise positive initial values.
The system (1.3) is said to be weakly persistent if:

lim sup
t→∞

ui(t) > 0, i = 1,2, . . . , n

persistent if:

lim inf
t→∞ ui(t) > 0, i = 1,2, . . . , n

and uniformly persistent if there is an ε0 > 0 such that

lim inf
t→∞ ui(t) � ε0, i = 1,2, . . . , n

The system (1.3) is said to be permanent if, for each
i = 1,2, . . . , n, there are constants εi and Mi such that:

0 < εi � lim inf
t→∞ ui(t) � lim sup

t→∞
ui(t) � Mi

Clearly, permanence implies uniform persistence, which
in turn implies persistence, and persistence implies
weak persistence; a dissipative uniformly persistent sys-
tem is permanent. For further discussion about various
definitions of persistence and permanence and their con-
nections, we refer to [14,27,43,48].

To have the strong version of coexistence, researchers
have taken various other factors into account when
modeling competition, such as interspecific interference
[45,46], spatial heterogeneity [5], stoichiometric princi-
ples [34], etc. Another important factor is intraspecific
interference within a population of competitors, which
includes aggressive displays, posturing, fighting, infan-
ticide, and cannibalism [30]. When the principal effect
of the intraspecific interference is a reduced rate of feed-
ing or resource intake, the effects can be modeled via an
altered functional response for the consumer [8,10,40].
Recently, Cantrell et al. [6] extended system (1.2) to
incorporate conspecific feeding interference for one of
the competitors. The functional responses for the com-
petitor w and the prey u are now taken to have the
Beddington–DeAngelis form:

Eu

1 + Bu + Cw

where Cw may be viewed as accounting for mutual
feeding interference among members of the competi-
tors. It was demonstrated that two competitors not only
coexist upon a single prey in the sense of uniform per-
sistence, but also have a globally stable equilibrium.

On the other hand, when lethal fighting or cannibal-
ism occurs, it is more appropriate to include a nonlin-
ear (density-dependent) mortality term for the consumer
into the competition model [30]. In plant population,
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density-dependent mortality is one of the three principal
effects resulting from intraspecific competition [38,49].
To incorporate such intraspecific competition (as well as
the interspecific competition) into the model, Ruan and
He [39] studied the global stability of a chemostat-type
competition model, Kuang et al. [30] investigated the
global stability of a Lotka–Volterra competition model.
See also [16,32,33] for persistence of n species on a sin-
gle resource.

Notice that in Refs. [16,30,32,33,39] all competi-
tors are assumed to have density-dependent mortal-
ity rates. A very natural and very significant question
arises: If one of the competitors does not have a density-
dependent mortality rate, does the model still exhibit
coexistence and have a stable componentwise positive
equilibrium? The numerical simulations of Kuang et
al. [30] indicate that, even for a Lotka–Volterra model,
a competitor without a density-dependent mortality
rate could eliminate another competitor with a density-
dependent mortality rate if the first competitor has a
lower break-even prey biomass. The problem can be
very subtle.

Hixon and Jones [21] found that density-dependent
mortality in demersal marine fishes is often caused
by the interplay of predation and competition (see
also [22]). To study how the nonlinear mortality rate
determines the dynamics of such competition models
qualitatively, we consider a two-competitor/one-prey
model of the form:

du

dt
= ru

(
1 − u

K

)
− avf (u) − Awg(u)

(1.4)
dv

dt
= v

(−d + ef (u)
)

dw

dt
= w

(−D − Gw + Eg(u)
)

under the initial value conditions:

u(0) = u0 � 0, v(0) = v0 � 0,

(1.5)w(0) = w0 � 0

The functional responses for the predators v and w

are given by f (u) and g(u), respectively, which are
increasing and continuously differentiable functions,
f (0) = g(0) = 0. The density-dependent mortality term
for the second species, Gw2, also referred to as a
‘closure term’, describes either a self-limitation of the
consumers, w, or the influence of predation (see [42]
and [29]). Self-limitation can occur if another factor
besides food can possibly become limiting at high pop-
ulation densities. Predation on consumers can increase
as the w2 power if higher consumer densities attract
greater attention from predators or if consumers become
more vulnerable at higher densities. Zooplankton, for
example, can experience density-dependent mortality
when population densities are high (see [7,11,39,42]).

We shall show that the two competitors can coex-
ist upon the single prey. It demonstrates that density-
dependent mortality in one of the competitors can pre-
vent competitive exclusion.

As an example, we apply the obtained results to a
two-competitor/one-prey model with a Holling II func-
tional response:

du

dt
= ru

(
1 − u

K

)
− auv

1 + bu
− Auw

1 + Bu

(1.6)
dv

dt
= v

(
−d + eu

1 + bu

)
dw

dt
= w

(
−D − Gw + Eu

1 + Bu

)
More specific conditions on local and global stability
are given in terms of the model parameters. Model (1.6)
differs from model (1.2) in an important respect. The
growth of species w in (1.6) is strictly limited, due to
the Gw2 term, and can become non-positive for large
enough values of w, no matter what the size of its prey,
u, is. In model (1.2), it is always possible for the prey
density, u, to be large enough for the growth rate of w to
be positive. Thus, model (1.6) differs significantly from
the others and warrants separate investigation.

2. Mathematical analysis

2.1. General functional responses

First of all, we can see that the solutions to the initial
value problem (1.4)–(1.5) are nonnegative.

Define U(t) = u + a
e
v + A

E
w and denote d0 =

min{d,D}. We have:

dU

dt
� (r + d0)(K + ε) − d0U

where ε > 0. The comparison principle implies that the
solutions of system (1.4) are bounded.

Next, we consider the existence of a positive equilib-
rium. System (1.4) has a componentwise positive equi-
librium E∗ = (u∗, v∗,w∗), where:

u∗ = f −1
(

d

e

)

(2.1)v∗ = 1

af (u∗)

[
ru∗

(
1 − u∗

K

)
− Aw∗g(u∗)

]

w∗ = 1 [
Eg(u∗) − D

]

G
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if:

(2.2)ru∗
(

1 − u∗

K

)
− Aw∗g(u∗) > 0

and

(2.3)G > 0, Eg(u∗) − D > 0

It is important to note that the key assumption for
the existence of the positive equilibrium E∗ is G > 0.
If G = 0, then the positive equilibrium simply does not
exist. To have w∗ > 0, we require Eg(u∗) > D, which
means that at the steady state the growth rate of the
species w must be greater than the linear mortality rate.
Notice that from the first equation, we have:

ru∗
(

1 − u∗

K

)
− av∗f (u∗) − Aw∗g(u∗) = 0

which gives:

av∗f (u∗) = ru∗
(

1 − u∗

K

)
− Aw∗g(u∗) > 0

so v∗ > 0 is well defined.
Now we study the local stability of the positive equi-

librium E∗. Define:

(2.4)ρ(u) = r

K
+ av∗

(
f (u)

u

)′
+ Aw∗

(
g(u)

u

)′

The Jacobian matrix of system (1.4) at E∗ takes the
form:

(2.5)J ∗ =
[

j11 j12 j13
j21 0 0
j31 0 j33

]

where:

j11 = −u∗ρ(u∗)
j12 = −af (u∗) < 0

j13 = −Ag(u∗) < 0

j21 = ev∗f ′(u∗) > 0

j31 = Ew∗g′(u∗) > 0

j33 = −Gw∗ < 0

The positive equilibrium E∗ is locally stable if all eigen-
values of the Jacobian matrix J ∗ given by (2.5) have
negative real parts. The characteristic equation is given
by:

(2.6)λ3 + a1λ
2 + a2λ + a3 = 0

where

a1 = −(j11 + j33) = u∗ρ(u∗) + Gw∗

a2 = j11j33 − j13j31 − j12j21
a3 = j12j21j33 = aeGv∗w∗f (u∗)f ′(u∗) > 0

Routh–Hurwitz criteria state that all roots of the charac-
teristic equation (2.6) have negative real parts if:

a1 > 0, a3 > 0, a1a2 − a3 > 0

Since a3 > 0, the characteristic equation (2.6) always
has at least one negative real root. Notice that:

a1a2 − a3 = G(u∗)2w∗T
(
ρ(u∗)

)
where:

T
(
ρ(u∗)

) = ρ(u∗)2 + ρ(u∗)
[

aev∗

Gw∗
f (u∗)

u∗ f ′(u∗)

+ AE

G

g(u∗)
u∗ g′(u∗) + Gw∗

u∗

]

+ AEw∗

u∗
g(u∗)
u∗ g′(u∗)

Thus, we have

(i) a1 > 0 iff u∗ρ(u∗) + Gw∗ > 0
(ii) a1a2 − a3 > 0 iff T (ρ(u∗)) > 0

Observe that for the quadratic form T (ρ(u∗)), we have

�T :=
[

aev∗

Gw∗
f (u∗)

u∗ f ′(u∗)
]2

+ 2
aev∗

Gw∗

× f (u∗)
u∗ f ′(u∗)

[
AE

G

g(u∗)
u∗ g′(u∗) + Gw∗

u∗

]

(2.7)+
[
AEw∗

u∗
g(u∗)
u∗ g′(u∗) − Gw∗

u∗

]2

> 0

and

T

(
−Gw∗

u∗

)
= −aev∗

Gw∗
f (u∗)

u∗ f ′(u∗) < 0

Thus

ρ∗+ > −Gw∗

u∗

where

ρ∗+ = 1

2

{
−

[
aev∗

Gw∗
f (u∗)

u∗ f ′(u∗)

(2.8)+ AE

G

g(u∗)
u∗ g′(u∗) + Gw∗

u∗

]
+ √

�T

}

It follows that a1a2 − a3 > 0 iff ρ(u∗) > ρ∗+. We ob-
serve that ρ∗+ < 0. Therefore, by Routh–Hurwitz criteria
we have the following result on the local stability of E∗.
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Theorem 2.1. Assume that the positive equilibrium E∗
exists. If

(2.9)u∗ρ(u∗) + Gw∗ > 0

and

(2.10)ρ(u∗) > ρ∗+
then it is locally asymptotically stable.

Remark 2.2. The conditions (2.9) and (2.10) (cor-
responding (2.17) and (2.18) in Proposition 2.4) are
technical assumptions on parameters. For the specific
Holling II functional response, these conditions will
be expressed explicitly, see Remark 2.7. Also, since
ρ∗+ < 0, we can see that ρ(u∗) > 0 implies both (2.9)
and (2.10). Thus, conditions (2.9) and (2.10) can be re-
placed by a stronger condition

ρ(u∗) > 0

Remark 2.3. Assume ρ(u∗) = ρ∗+ for certain parame-
ter value, say a critical value of the carrying capacity
of the prey population, K = Kc . Then the characteris-
tic equation (2.6) has a pair of purely imaginary roots
given by λ2,3 = ±i

√
a2. If, moreover, the transversality

condition

d

dK
λ2,3(K)|K=Kc > 0

holds, then the positive equilibrium E∗ becomes unsta-
ble and a Hopf bifurcation occurs at E∗ when K passes
through Kc .

Finally, we discuss the global stability of the pos-
itive equilibrium E∗. Choose a Liapunov function as
follows:

V (u, v,w) = α

u∫
u∗

x − u∗

x
dx + β

v∫
v∗

y − v∗

y
dy

(2.11)+ γ

w∫
w∗

z − w∗

z
dz,

where α, β , and γ are positive constants to be deter-
mined. Along any trajectory of system (1.4), we have:

dV

dt
= α(u − u∗)

[
r

(
1 − u

K

)
− av

f (u)

u
− Aw

g(u)

u

]

+ β(v − v∗)
[−d + ef (u)

]
+ γ (w − w∗)

[−D − Gw + Eg(u)
]

= α(u − u∗)
[
− r(u − u∗)

K
− av∗

(
f (u)

u
− f (u∗)

u∗

)

− Aw∗
(

g(u)

u
− g(u∗)

u∗

)

− a
f (u)

u
(v − v∗) − A

g(u)

u
(w − w∗)

]
Define:

φ1(ξ1u) = d

du

(
f (u)

u

)∣∣∣∣
u=ξ1u

, 0 < ξ1 < 1

φ2(ξ2u) = d

du

(
g(u)

u

)∣∣∣∣
u=ξ2u

, 0 < ξ2 < 1

so that:

f (u)

u
− f (u∗)

u∗ = φ1(ξ1u)(u − u∗)

g(u)

u
− g(u∗)

u∗ = φ2(ξ2u)(u − u∗)

Also, denote:

f (u) − f (u∗) = f ′(ξ3u)(u − u∗), 0 < ξ3 < 1

g(u) − g(u∗) = g′(ξ4u)(u − u∗), 0 < ξ4 < 1

Therefore, we have:

dV

dt
= α

[
− r

K
− av∗φ1(ξ1u) − Aw∗φ2(ξ2u)

]
(u − u∗)2

+
[
αa

f (u)

u
+ βef ′(ξ3u)

]
(u − u∗)(v − v∗)

+
[
αA

g(u)

u
+ γEg′(ξ4u)

]
(u − u∗)(w − w∗)

− γG(w − w∗)2

= zSzT

where

z = (u − v∗, v − v∗,w − w∗)

and the matrix S = (sij )3×3 is defined as

s11 = α

[
− r

K
− av∗φ1(ξ1u) − Aw∗φ2(ξ2u)

]

s12 = s21 = 1

2

[
αa

f (u)

u
+ βef ′(ξ3u)

]

s13 = s31 = 1

2

[
αA

g(u)

u
+ γEg′(ξ4u)

]
s22 = s23 = s32 = 0, s33 = −γG

If α, β and γ can be chosen suitably such that S is neg-
ative definite for all (u, v,w) ∈ R

3+, then dV
dt

� 0 and
dV
dt

= 0 if and only if u = u∗, v = v∗, w = w∗. The
largest invariant subset of the set of the points where
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dV
dt

= 0 is (u∗, v∗,w∗). Therefore, LaSalle’s Invariance
Principle implies that E∗ = (u∗, v∗,w∗) is globally sta-
ble.

In next subsection, for the model with Holling II
functional responses, we will choose proper α,β and
γ to derive explicit sufficient conditions for the global
stability of the positive equilibrium.

2.2. Holling II functional responses

In this subsection we apply the above results to sys-
tem (1.4) with Holling II functional responses, namely
system (1.6). System (1.6) has a unique componentwise
positive equilibrium E∗ = (u∗, v∗,w∗) defined by:

(2.12)

u∗ = d

e − bd

v∗ = 1 + bu∗

a

[
r

(
1 − u∗

K

)
− Aw∗

1 + Bu∗

]

w∗ = 1

G

(
−D + Eu∗

1 + Bu∗

)

= 1

G

(
−D + Ed

Bd + e − bd

)

provided

(2.13)r

(
1 − u∗

K

)
− Aw∗

1 + Bu∗ > 0

and

(2.14)G > 0,
e

b
> d,

Ed

Bd + e − bd
> D

Note that the last two inequalities in (2.14) simply mean
that the death rates of the two competitors must be
smaller than the corresponding growth rates, otherwise
the competing species cannot survive and the positive
steady state does not exist.

Define

ρ1(u) = r

K
− abv∗

(1 + bu)(1 + bu∗)

(2.15)− ABw∗

(1 + Bu)(1 + Bu∗)
We have:

T
(
ρ1(u

∗)
) = ρ1(u

∗)2 + ρ1(u
∗)

[
eav∗

Gw∗(1 + bu∗)3

+ EA

G(1 + Bu∗)3
+ Gw∗

u∗

]

+ EAw∗
∗ ∗ 3
u (1 + Bu )
�T :=
[

v∗

w∗
ea

G(1 + bu∗)3

]2

+ 2eav∗

Gw∗(1 + bu∗)3

×
[

EA

G(1 + Bu∗)3
+ Gw∗

u∗

]

+
[

EA

G(1 + Bu∗)3
− Gw∗

u∗

]2

> 0

and

ρ∗
1 = 1

2

{
−

[
eav∗

Gw∗(1 + bu∗)3
+ EA

G(1 + Bu∗)3

(2.16)+ Gw∗

u∗

]
+ √

�T

}

By Theorem 2.1, we have the following local stabil-
ity result.

Proposition 2.4. Assume that the positive equilibrium
E∗ of system (1.6) exists. If

(2.17)u∗ρ1(u
∗) + Gw∗ > 0

and

(2.18)ρ1(u
∗) > ρ∗

1

then it is locally stable.

Remark 2.5. Note that ρ(u∗), defined by Eq. (2.4), is
for general functional responses, while ρ1(u

∗), defined
by Eq. (2.15), is for the specific Holling type-II func-
tional response. They both are related to the derivative
of the right-hand side function of the prey equation, that
is, the growth of the prey population at the positive equi-
librium.

Finally, we give a sufficient condition for the global
stability of the positive equilibrium E∗ for system (1.6).

Proposition 2.6. Assume that the positive equilibrium
E∗ of system (1.6) is locally stable. If

(2.19)ρ1(0) > 0

then it is globally stable.

Proof. Let V (u, v,w) be the Liapunov function defined
by (2.11), where α, β , and γ are positive constants to
be determined. Along any trajectory of system (1.6), we
have:

dV

dt
= α

[
− r

K
+ abv∗

(1 + bu)(1 + bu∗)

+ ABw∗
∗

]
(u − u∗)2
(1 + Bu)(1 + Bu )
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+ 1

1 + bu

[
−αa + βe − βbeu∗

1 + bu∗

]
× (u − u∗)(v − v∗)

+ 1

1 + Bu∗

[
−αA + γE − γBEu∗

1 + Bu∗

]
× (u − u∗)(w − w∗)
− γG(w − w∗)2

Choose

α = 1, β = a

e − bd

γ = A(e − bd + Bd)

E(e − bd)

Then we have

dV

dt
=

[
− r

K
+ abv∗

(1 + bu)(1 + bu∗)

+ ABw∗

(1 + Bu)(1 + Bu∗)

]
(u − u∗)2

− AG(e − bd + Bd)

E(e − bd)
(w − w∗)2

The coefficient for (w − w∗)2 is always negative. The
coefficient for (u − u∗)2 is:

−ρ1(u) = − r

K
+ abv∗

(1 + bu)(1 + bu∗)

+ ABw∗

(1 + Bu)(1 + Bu∗)

� − r

K
+ abv∗

1 + bu∗ + ABw∗

1 + Bu∗
� −ρ1(0)

Thus, if (2.19) is satisfied, then dV
dt

� 0 and dV
dt

= 0 if
and only if u = u∗, v = v∗, w = w∗. This completes the
proof. �
Remark 2.7. Using (2.12), (2.15) and (2.19), one of the
local stability conditions (2.17) becomes:

(2.20)

u∗
[

r

K
− abv∗

(1 + bu∗)2
− ABw∗

(1 + Bu∗)2

]
+ Gw∗ > 0

and the global stability condition (2.19) reduces to

(2.21)K <
d + e − bd

e − bd

We can see that G plays a role in the local stability con-
dition (2.20). Once the positive equilibrium is locally
stable, K, the carrying capacity of the prey, plays a role
in the global stability. If the value of K is increased so
that condition (2.21) is not satisfied, the positive equi-
librium becomes unstable and a Hopf bifurcation can
occur (see Figs. 4 and 5).
Fig. 1. The plot of the function ρ1(u). Here r = 1.5, K = 3, a = 0.45,
b = 0.35, d = 0.45, e = 0.55, A = 0.55, B = 0.35, D = 0.45,
E = 0.65, and G = 0.05.

The plot of ρ1(u) indicates that ρ1(0) > 0 for
some parameter values (see Fig. 1). So the assumption
ρ1(0) > 0 in Theorem 2.6 makes sense.

3. Simulations and discussion

It is well known that density-dependent mortality
terms (closure terms) can greatly affect the outcome of
plankton models [42]: not only limit cycles [11] but also
chaos [7] can occur in such models.

In the case of two competitors competing for a com-
mon prey, our results indicate that density-dependent
mortality of one competitor not only ensures the long-
term survival of itself, but also guarantees the existence
of the other competitor, which would otherwise be out-
competed.

To illustrate the results numerically, consider sys-
tem (1.6) with Holling II functional responses. Choose
r = 1.5, K = 3, a = 0.45, b = 0.35, d = 0.45, e = 0.55,
A = 0.55, B = 0.35, D = 0.45, E = 0.65, and let G

(the density-dependent mortality parameter) vary. When
G = 0, that is, when there is only linear mortality for
the competitor with density w, numerical simulations
show that the competitor with density w out-competes
the competitor with density v (see Fig. 2). Note that sys-
tem (1.6) does not have any positive equilibrium when
G = 0.

Introducing density-dependent mortality only for the
competitor with density w (the stronger competitor)
makes the system coexistent not only in the sense of
uniform persistence, but also in the sense of existence
of a globally stable positive equilibrium (Fig. 2). With
the above parameter values and G = 0.1, all conditions
in Proposition 2.6 are satisfied. Thus, system (1.6) has a
positive equilibrium (1.1465,1.8837,0.8197), which is
globally stable. A possible explanation for this phenom-
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Fig. 2. When G = 0, the strong competitor with density w wins the
competition and the weak competitor with density v tends toward
extinction (top). When G = 0.1, both competitors coexist and the so-
lution converges to the positive equilibrium (1.1465,1.8837,0.8197)

(bottom). XPPAUT was used for the simulations.

enon is that density-dependent mortality in the stronger
competitor prevents it from reducing the density of the
prey below the threshold value (the R∗ value – see [44])
needed for the weaker competitor to be able to main-
tain itself. In fact, the steady-state values of v and w are
functions of G (see Fig. 3).

Is the situation represented by model (1.4) a fea-
sible one ecologically? It is a variation on the model
of Tilman [44] for two consumers competing exploita-
tively for a single prey. Tilman’s model predicts that the
consumer that reduces the prey to the lower steady-state
value will displace the other competitor. Model (1.4)
includes the mechanism of density-dependent mortal-
ity, or biomass loss, Gw2, on the superior competitor.
We believe that this represents one way in which a fit-
ness ‘tradeoff’ might occur between two species. It is
reasonable to suppose that one species, w in this case,
has superior fitness in its ability to exploit prey, but this
is compensated for by a vulnerability to mortality. In-
creased mortality could reasonably occur under the cir-
cumstance that the superior competitor is also the one
Fig. 3. The steady-state value of the weak competitor with density v

is an increasing function of G (top) and the steady-state value of the
strong competitor with density w is a decreasing function of G (bot-
tom). Here r = 1.5, K = 3, a = 0.45, b = 0.35, d = 0.45, e = 0.55,
A = 0.55, B = 0.35, D = 0.45, E = 0.65.

that is more of a risk taker; for example, that it seeks
prey in areas where there is also a greater risk of mor-
tality, say through predation. However, the non-linear
form of the mortality, Gw2, still requires justification.
A nonlinear response of this form might occur if the
foraging area contains a diversity of subareas having
different relative risk factors. In that case, individuals of
species w can tend to use areas that are relatively low in
predation or other mortality risk (although higher than
members of species v) when the population of species
w is low, but can be forced into areas of higher risk
as the population size increases. This situation could
easily lead the better competitor to have also a density-
dependent mortality rate. This might also occur if the
better competitor is more prone to dispersal; the proba-
bility of dispersal of individuals increases with density,
and dispersal increases the chances of mortality. There-
fore, we believe that model (1.4) may represent a fairly
common situation among consumers competing for a
common prey.

It is interesting to observe that, when the carrying
capacity K of the prey is increased, the positive equi-
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Fig. 4. The bifurcation diagram shows that the positive equilibrium is
stable when K � 5.21. At K = 5.21, it loses its stability and a super-
critical Hopf bifurcation occurs. Here r = 1.5, a = 0.45, b = 0.35,
d = 0.45, e = 0.55, A = 0.55, B = 0.35, D = 0.45, E = 0.65,
G = 0.1. XPPAUT was used for the simulations.

Fig. 5. When K = 6, there is a periodic orbit bifurcated from the
interior equilibrium in the three-dimensional space which is asymp-
totically stable. Here r = 1.5, a = 0.45, b = 0.35, d = 0.45, e = 0.55,
A = 0.55, B = 0.35, D = 0.45, E = 0.65, G = 0.1. XPPAUT was
used for the simulations.

librium loses its stability and a Hopf bifurcation occurs
when K passes a critical value. With parameters given
above, a supercritical Hopf bifurcation occurs when
K = 5.21 (see Fig. 4). A three-dimensional positive pe-
riodic solution bifurcates from the positive equilibrium
via a Hopf bifurcation with K = 6 (see Fig. 5). This
is an example of the well-known paradox of enrich-
ment [25].

It is also interesting to notice that, for the subsystem
without the competitor v, that is, the predator-prey sys-
tem with density-dependent mortality:

(3.1)

du

dt
= ru

(
1 − u

K

)
− Auw

1 + Bu

dw

dt
= w

(
−D − Gw + Eu

1 + Bu

)

it is well known that (Bazykin [3], Hainzl [18,19]) very
complex dynamics, such as the existence of multiple
equilibria and multiple limit cycles, Hopf, homoclinc
and Bagdanov–Takens bifurcations, can occur. Note that
when system (1.6) has one positive equilibrium, it is
unique. Thus, it does not exhibit complex dynamics as
the 2-dimensional system (3.1) has. Our results indicate
that introducing a weak competitor v (without density-
dependent mortality) into the system has a stabilizing
effect on the system, since the competition model (1.6)
either has a globally stable positive equilibrium under
certain conditions or exhibits the coexistence of both
competitors in terms of positive periodic solutions.

Acknowledgements

The authors are very grateful to the anonymous ref-
eree for his careful reading, detailed comments, and
helpful suggestions. The first author would like to thank
Prof. G. Bard Ermentrout and Dr. Rongsong Liu for
their help in using XPPAUT for the numerical simula-
tions.

References

[1] R.A. Armstrong, R. McGehee, Competitive exclusion, Am. Nat.
115 (1980) 151–170.

[2] F.J. Ayala, Experimental invalidation of the principle of compet-
itive exclusion, Nature 224 (1969) 1076–1079.

[3] A.D. Bazykin, Nonlinear Dynamics of Interacting Populations,
World Scientific, Singapore, 1998.

[4] G.J. Butler, P. Waltman, Bifurcation from a limit cycle in a two
predator-one prey ecosystem modeled on a chemostat, J. Math.
Biol. 12 (1981) 295–310.

[5] R.S. Cantrell, C. Cosner, Spatial Ecology via Reaction–Diffusion
Equations, Series in Math. Comput. Biol., John Wiley and Sons,
Chichester, UK, 2003.

[6] R.S. Cantrell, C. Cosner, S. Ruan, Intraspecific interference and
consumer-resource dynamics, Dis. Con. Dynam. Syst. 4B (2004)
527–546.

[7] H. Caswell, M.G. Neubert, Chaos and closure terms in plankton
food chain models, J. Plankton Res. 20 (1998) 1837–1845.

[8] C. Cosner, D.L. DeAngelis, J.S. Ault, D.B. Olson, A model for
trophic interaction, Theor. Pop. Biol. 56 (1999) 65–75.

[9] J.M. Cushing, Periodic two-predator, one-prey interactions and
the time sharing of a resource niche, SIAM J. Appl. Math. 44
(1984) 392–410.

[10] D.L. DeAngelis, R.A. Goldstein, R.V. O’Neill, A model for
trophic interaction, Ecology 56 (1975) 881–892.

[11] A.M. Edwards, A. Yool, The role of higher predation in plankton
population models, J. Plankton Res. 22 (2000) 1085–1112.

[12] M. Farkas, Zip bifurcation in a competition model, Nonlinear
Analysis – TMA 8 (1984) 1295–1309.

[13] H.I. Freedman, Deterministic Mathematical Models in Popula-
tion Ecology, Marcel Dekker, New York, 1980.

[14] H.I. Freedman, P. Moson, Persistence definitions and their con-
nections, Proc. Amer. Math. Soc. 109 (1990) 1025–1033.

[15] G.F. Gause, The Struggle for Existence, Williams and Wilkins,
Baltimore, 1934.

[16] F. Grognard, F. Mazenc, A. Rapaport, Polytopic Lyapunov func-
tions for persistence analysis of competing species, Dis. Con.
Dynam. Syst. 8B (2007) 73–93.



854 S. Ruan et al. / C. R. Biologies 330 (2007) 845–854
[17] J.P. Grover, Resource Competition, Chapman and Hall, London,
UK, 1997.

[18] J. Hainzl, Stability and Hopf bifurcation in a predator-prey sys-
tem with several parameters, SIAM J. Appl. Math. 48 (1988)
170–190.

[19] J. Hainzl, Multiparameter bifurcation of a predator-prey system,
SIAM J. Math. Anal. 23 (1992) 150–180.

[20] G. Hardin, Competitive exclusion principle, Science 131 (1960)
1292–1297.

[21] M.A. Hixon, G.P. Jones, Competition, predation, and density-
dependent mortality in demersal marine fishes, Ecology 86
(2005) 2847–2859.

[22] S.J. Holbrook, R.J. Schmitt, Competition for shelter space causes
density-dependent predation mortality in damselfishes, Ecol-
ogy 83 (2002) 2855–2868.

[23] S.-B. Hsu, S.P. Hubbell, P. Waltman, Competing predators,
SIAM J. Appl. Math. 35 (1978) 617–625.

[24] S.-B. Hsu, S.P. Hubbell, P. Waltman, A contribution to the theory
of competing predators, Ecol. Monogr. 48 (1978) 337–349.

[25] G.E. Hutchinson, The paradox of the plankton, Am. Nat. 95
(1961) 137–145.

[26] G.E. Hutchinson, The lacustrine microcosm reconsidered, Amer.
Sci. 52 (1964) 334–341.

[27] V. Hutson, K. Schmitt, Permanence and the dynamics of biolog-
ical systems, Math. Biosci. 111 (1992) 1–71.

[28] P. Kareiva, Renewing the dialogue between theory and exper-
iments in population ecology, in: J. Roughgarden, R.M. May,
S.A. Levin (Eds.), Perspectives in Ecological Theory, Princeton
Univ. Press, Princeton, 1989, pp. 68–88.

[29] C. Kohlmeier, W. Ebenhöh, The stabilization role of cannibal-
ism in a predator-prey system, Bull. Math. Biol. 57 (1995) 401–
411.

[30] Y. Kuang, W.F. Fagan, I. Loladze, Biodiversity, habitat area, re-
source growth rate and interference competition, Bull. Math.
Biol. 65 (2003) 497–518.

[31] S.A. Levin, Community equilibria and stability, and an exten-
sion of the competitive exclusion principle, Am. Nat. 104 (1970)
413–423.

[32] C. Lobry, J. Harmand, A new hypothesis to explain the coex-
istence of n species in the presence of a single resource, C. R.
Biologies 329 (2006) 40–46.

[33] C. Lobry, A. Rapaport, F. Mazenc, Sur un modèle densité dépen-
dent de compétition pour une ressource, C. R. Biologies 329
(2006) 63–70.
[34] I. Loladze, Y. Kuang, J.J. Elser, W.F. Fagan, Competition and
stoichiometry: coexistence of two predators on one prey, Theor.
Pop. Biol. 65 (2004) 1–15.

[35] R. MacArthur, R. Levins, Competition, habitat selection, and
character displacement in a patchy environment, Proc. Natl
Acad. Sci. USA 51 (1964) 1207–1210.

[36] R. McGehee, R.A. Armstrong, Mathematical problems concern-
ing the ecological principle of competitive exclusion, J. Differ.
Equat. 23 (1977) 30–92.

[37] S. Muratori, S. Rinaldi, Remarks on Competition coexistence,
SIAM J. Appl. Math. 49 (1989) 1462–1472.

[38] S.E. Park, L.R. Benjamin, A.R. Watkinson, The theory and ap-
plication of plant competition models: an agronomic perspective,
Ann. Bot. 92 (2003) 741–748.

[39] S. Ruan, X. He, Global stability in chemostat-type competition
models with nutrient recycling, SIAM J. Appl. Math. 58 (1998)
170–192; Erratum, SIAM J. Appl. Math. 66 (2006) 2204–2205.

[40] G.T. Skalski, J.E. Gilliam, Functional responses with predator
interference: Viable alternatives to the Holling type II model,
Ecology 82 (2001) 3083–3092.

[41] H.L. Smith, The interaction of steady state and Hopf bifurca-
tions in a two-predator–one-prey competition model, SIAM J.
Appl. Math. 42 (1982) 27–43.

[42] J.H. Steele, E.W. Henderson, The role of predation in plankton
models, J. Plankton Res. 14 (1992) 157–172.

[43] H.R. Thieme, Uniform persistence and permanence for non-
autonomous semiflows in population biology, Math. Biosci. 166
(2000) 173–201.

[44] D. Tilman, Resource Competition and Community Structure,
Princeton University Press, Princeton, 1982.

[45] R.R. Vance, Interference competition and the coexistence of two
competitors on a single limiting resource, Ecology 65 (1984)
1349–1357.

[46] R.R. Vance, The stable coexistence of two competitors for one
resource, Am. Nat. 126 (1985) 72–86.

[47] V. Volterra, Variations and fluctuations of the number of indi-
viduals in animal species living together, J. Cons. Int. Explor.
Mer. 3 (1928) 3–51.

[48] F. Yang, S. Ruan, A generalization of the Butler–McGehee
Lemma and its applications in persistence theory, Differ. Integral
Equat. 9 (1996) 1321–1330.

[49] K. Yoda, T. Kira, H. Ogawa, K. Hozumi, Self-thinning in over-
crowded pure stands under cultivated and natural conditions
(intraspecific competition among higher plants XI), J. Biol.
Osaka City Univ. 14 (1963) 107–129.


	Coexistence in competition models with density-dependent mortality
	Introduction
	Mathematical analysis
	General functional responses
	Holling II functional responses

	Simulations and discussion
	Acknowledgements
	References


