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Abstract

The aim of this work is to develop and study a fully continuous individual-based model (IBM) for cancer tumor invasion into
a spatial environment of surrounding tissue. The IBM improves previous spatially discrete models, because it is continuous in all
variables (including spatial variables), and thus not constrained to lattice frameworks. The IBM includes four types of individual
elements: tumor cells, extracellular macromolecules (MM), a matrix degradative enzyme (MDE), and oxygen. The algorithm
underlying the IBM is based on the dynamic interaction of these four elements in the spatial environment, with special consideration
of mutation phenotypes. A set of stochastic differential equations is formulated to describe the evolution of the IBM in an equivalent
way. The IBM is scaled up to a system of partial differential equations (PDE) representing the limiting behavior of the IBM as
the number of cells and molecules approaches infinity. Both models (IBM and PDE) are numerically simulated with two kinds of
initial conditions: homogeneous MM distribution and heterogeneous MM distribution. With both kinds of initial MM distributions
spatial fingering patterns appear in the tumor growth. The output of both simulations is quite similar. To cite this article: P. Gómez-
Mourelo et al., C. R. Biologies 331 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we construct and analyze a fully contin-
uous individual-based model (IBM) for cancer invasion.
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There have been many recent studies of tumor
growth in spatial settings, including [1–11]. In our
model of spatial tumor growth our aim is two-fold:
first we construct an IBM founded on stochastic events,
which yields readily interpreted graphical visualizations
of tumor growth. Second, we transform the IBM to a
system of partial differential equations (PDE) for the
continuum densities of the IBM elements (in the limit of
large numbers of particles). Then we obtain the numeri-
cal solution of the PDE, and this solution is qualitatively
compared to the IBM output, in order to validate the
IBM approach.

Individual-based models in mathematical biology
have been used extensively recently, because increased
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computational capability allows the possibility of emu-
lating in virtual worlds the huge variability of individual
behavior. The consideration of different kinds of indi-
viduals is natural in IBM technology, with heterogeneity
of individuals embedded in object-oriented program-
ming. A frequent assumption in differential equations
models of population dynamics is the so-called mean-
field description, which assumes that individuals are
homogeneous in a spatial context. In such models the
influence of environment and the interactions between
individuals are averaged throughout space, and spatial
dependence is simplified or omitted. For many biologi-
cal processes, however, spatial heterogeneity of individ-
uals is an essential feature in understanding population
behavior, and IBM approaches are advantageous for in-
clusion of spatial heterogeneity (a basic reference for
IBM is [12]).

Although the visual aspect of IBM simulations are
appealing to non-experts, IBMs still lack a general the-
oretical framework to interpret their output, which are
different every run. In order to bridge the gap between
computer simulation and mathematical description of
our tumor invasion IBM, we use a set of scaling tech-
niques to derive large-scale descriptions from the in-
dividual behavior. General references for this approach
are [13] and [14], and the seminal paper [15].

The biological aims of our study are to develop a
mathematical description of tumor growth with empha-
sis on spatial invasion into surrounding extracellular
matrix. The biological complexity of this process in-
vokes multi-scale levels – sub-cellular, cellular, and tis-
sue. Mathematical frameworks provide a medium for
the biological understanding of tumor growth through
integration of these levels. The larger biological aim of
our study is to develop a reliable predictor of tumor
growth amenable to computer simulations specific to in-
dividual patients.

In this paper we focus on a hybrid discrete-continu-
ous model recently presented by A. Anderson in [16],
which we use as starting point. Related developments
and numerical treatments can be found in [17]. We refer
the reader to these references for the biological consid-
erations and features of the model. We build and study
an improved model for the same phenomenon. The im-
provements to Anderson’s model are:

(1) Our model does not have a rigid discrete lattice
spatial structure, but instead provides a more bio-
logically realistic continuum spatial setting for cell
growth and proliferation;

(2) Our model includes a cell age structure connected
to a PDE formulation to describe individual cell
behavior, and in particular allows inclusion of the
phases of the cell cycle correspondent to cell age;

(3) Our model is convertible to a completely PDE
formulation (the model in [16] was only partially
convertible) and is advantageous for computational
simulations;

(4) Our model can be analyzed theoretically and the
significance of the parameters can be quantified.

As in [16], we analyze conditions under which tumor
growth exhibits fingering, and in order to study this phe-
nomena, design simulations with different initial MM
distributions: homogeneous and heterogeneous.

With the aim of validating the individual-based ap-
proach, we scale-up the IBM (Lagrangian framework)
to obtain a density-based Eulerian procedure. We con-
struct a set of PDEs equivalent to a large number of runs
of the computer simulations. We obtain numerically the
solutions to these PDEs and qualitatively compare the
results of both approaches with special interest on fin-
gering patterns. We have made extensive numerical sim-
ulations, which strongly indicate that both approaches
show very similar results. A formal validation of the
equivalence of the two approaches will be explored in
future work.

The organization of the paper is as follows: Section 2
contains a brief description of the biological features
which are taken into account for the construction of the
model; in Sections 3 and 4 we describe the tumor in-
vasion IBM and its equivalent formulation in terms of
PDEs. Section 5 focuses on the numerical analysis of
the PDE model. Section 6 concludes with a discussion
of results and conclusions.

2. Biological background

Tumors develop as mutations occurring in key regu-
latory genes of cell proliferation. According to [16,18],
one of the most important mutations involves the p53
gene, the so-called Guardian of Genome, which is found
in mutated form in over half of all cancers. The p53
protein controls three cellular functions: proliferation,
death and DNA repair, so that a loss of p53 function
due to mutation allows for the propagation of damaged
DNA to other cells.

The aim of this paper is to develop a model for
the growth of a generic solid tumor for which we will
assume a blood supply has been established. We are
especially interested in the influence of cell adhesion
(i.e., cell–cell and cell–matrix adhesion) in the tumor
shape, as this is a key question in the invasive process.
Molecules in charge of cell adhesion not only regulate
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cell migration, but proliferation and differentiation as
well.

Following [16], we restrict the model to the behavior
of four principal elements: tumor cells (both prolifer-
ating and quiescent, and classified by mutation pheno-
type), extracellular matrix macromolecules (MM), ma-
trix degradative enzymes (MDE) (which break down the
MM), and oxygen (which supplies essential nutrients
from the surrounding vasculature). Tumor cells prolif-
erate, enter quiescence, or die according to the concen-
tration of nutrients provided by the capillary network,
which is simulated by the diffusion of oxygen. Prolif-
erating cells have the ability to migrate, but quiescent
cells do not and there is experimental evidence that cells
move towards high MM concentrations. Some regions
may become more nutrient deficient, until eventually
cells can no longer survive, degenerating into necrotic
regions. Macromolecules disappear progressively with
time as they are degraded by tumor cells, the dimin-
ishing rate being proportional to the MDE concentra-
tion. MM are non-diffusible since they are bound within
the surrounding tissue. Matrix degradative enzymes un-
dergo several processes, and such enzymes facilitate
degradation of extracellular matrix allowing adhesion
and attachment of tumor cells. They are produced by
cells, diffuse, and decay naturally. Finally, oxygen dif-
fuses, is produced by MM, is consumed by cells and
decays naturally.

3. Description of the IBM for tumor invasion

In this section we describe the way in which the be-
havior of the four kinds of particles that we consider
in our model have been taken into account to built the
IBM. For simplicity we assume the tumor is contained
in a 2-dimensional spatial region, although our methods
are applicable to the 3-dimensional case.

3.1. Description of the particles

3.1.1. Tumor cells
The tumor consists of populations of proliferating

and quiescent cells. Proliferating cells are capable of
growing, dividing, entering quiescence and becoming
necrotic. We consider the possibility for a cell to mu-
tate only at division, and the probability of mutation is
taken to be tm. We consider four types of mutations, so
the number of actual phenotypes is five with the wild-
type is also taken into account. This scheme of mutation
is a simplified treatment (as in [16] and [17]). Our sim-
plified framework of proliferating mutation classes is
readily adapted to a greatly expanded number of phe-
notypes, but with greatly increased computational cost.
Nonetheless, we believe this simplification to be repre-
sentative of the effects of mutations.

We track progress through the cell cycle with cell
age, and newly divided cells start with cell age 0. The
scheme of mutation is linear, so a mutation results in a
passage to the next mutation phase. The higher the mu-
tation phenotype, the higher the cell’s aggressiveness.
This aggressiveness is due to the possibility of higher
motility, lower proliferation age, higher oxygen uptake
and greater MDE production.

Proliferating cells divide through a distribution of
ages, and the probability for a cell to divide at a given
age depends both on its age and the oxygen concentra-
tion nearby. Based on [17] we choose the proliferation
rate in the IBM as:

(1)

pr(a, c) =
{

10ce−10(a−1)(2a − 1)5 if 0.5 < a < 6
0 otherwise

where c := c(x, y) stands for oxygen concentration at
position (x, y), and a stands for cell age. The form
of pr(a, c) is taken to be roughly proportional to oxy-
gen concentration c, and roughly bell-shaped on age a.
The intention was to develop an adequate mathemati-
cal function shape rather than to choose the exact real
parameter values.

An absence of oxygen can also lead cells to the qui-
escence state, and the return to the proliferating state
is only achieved if sufficient oxygen becomes avail-
able again. In the IBM, both changes are modelled with
transition rates tpq (from proliferation to quiescence)
and tqp (vice versa). As such, the transition rate tpq is
assumed to roughly decay with oxygen concentration c,
whilst tqp behaves the opposite way. With these ideas in
mind, and using the formulas from [17]:

tpq(c) = 10 max(1.0 − c,0.0)

(2)tqp(c) = 2c

Experiments show that cells have random motility.
A Brownian motion seems suitable to reproduce this
movement and the uncertainty inherent in the process
of modeling, as explained in [19]. In the IBM, at every
time step, each cell jumps in a random direction. The
jump length is distributed as a Gaussian with mean zero
and standard deviation:

σ = Dc(i/2 + 1)
√

dt

where i = 0, . . . ,4 is the mutation type, Dc(i/2 + 1)

is the Brownian intensity for the corresponding muta-
tion, and dt is the time step. In this way, the Brownian
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motion intensity is assumed to grow with mutation, pro-
portionally to (i/2 + 1) with the constant Dc > 0 as the
intensity of the wild-type i = 0 Brownian motion. The
term

√
dt is introduced due to technical reasons in or-

der to reproduce a Wiener process (the interested reader
can refer to [20]).

Cells are attracted by high MM concentrations, in a
phenomenon called haptotaxis in which the intensity of
this attraction is assumed to be proportional to the con-
centration gradient. Haptotaxis is, from the mathemati-
cal side, similar to chemotaxis (see [21]) and, in general,
equivalent to any motion whose speed is proportional
to the gradient of concentration of any substance, par-
ticle or individual type. In our model the intensity of
the haptotaxis is described by a corresponding coeffi-
cient ρ(i/2 + 1). As before, i = 0, . . . ,4 is the mutation
type, and ρ(i/2 + 1) stands for the haptotaxis intensity
for the corresponding mutation, assumed to grow with
the mutation type. The constant ρ > 0 is the intensity of
the wild-type haptotaxis. In the IBM, at every time step,
each cell jumps a length

l(x, y) = ρ(i/2 + 1)
∥∥∇f (x, y)

∥∥dt

in the direction of ∇f (x, y), where f (x, y) is the MM
density at the position (x, y) and ‖ · ‖ is the usual Eu-
clidean norm. Finally, we assume the main cause of cell
death is a low concentration of oxygen. Accordingly,
the IBM computes at every time step, a death probabil-
ity rate given by (see [17]):

(3)μ∗(c) = max(1.0 − c,0.0)

3.1.2. Macromolecules (MM)
Macromolecules form the tissue surrounding tumor

cells and are crucial in our model, since they induce
the haptotaxis phenomenon resulting in tumor fingering.
In particular, their initial spatial distribution determines
the evolution of the tumor spatial pattern. Following
[16,18], we will consider different types of initial MM
spatial distributions, homogeneous and heterogeneous
as explained below.

MMs undergo degradation produced by the MDE
particles, and the intensity of their degradation is pro-
portional to the product of concentrations of MDE and
MM. This will produce a so-called reaction term in the
equivalent PDE formulation (see [22,23]). To reproduce
this phenomenon in the IBM, the probability for a MM
particle to disappear at any time step is taken to be pro-
portional to the concentration of MDE nearby. Another
way to model this process is by considering the num-
ber of collisions per time unit between MDE and MM
particles. We believe both ways are equivalent for suffi-
ciently small time steps. More precisely, the probability
for an MM particle at position (x, y) to disappear at
any small enough time step dt is ηmdt , where η > 0
is a constant related to the intensity of the reaction and
m := m(x,y) is the concentration of MDE. MM parti-
cles are assumed bound, and thus have no motion at all,
at least in comparison to tumor cells.

3.1.3. Matrix-degradative enzymes (MDE)
MDE have a natural tendency to spread through-

out the tumor environment and experimentally exhibit a
random motion. As for cells, a Brownian motion is im-
plemented for MDE particles in our IBM. The deploy-
ment of this motion is exactly the same as with cells, the
intensity coefficient now called Dm > 0. MDE are gen-
erated by cells, and the production rate is assumed to
be proportional to cell concentration. To properly em-
ulate this in the IBM, at each time step the probability
for an MDE particle to be created is proportional to the
surrounding cell concentration, more precisely the prob-
ability is taken to be

P(new MDE particle)

(4)=
[
κ(i/2 + 1)

4∑
i=0

(nip + niq)

]
dt

where nip , niq stand for the density of mutation type i,
proliferating and quiescent cells, respectively and κ > 0
is a proportionality constant. MDE also decays naturally
at a fixed rate σ ∗ > 0, so a constant death probabil-
ity σ ∗ dt is considered at any time step for every MDE
particle.

3.1.4. Oxygen
Oxygen spreads throughout the environment, is pro-

duced at rates proportional to the MM concentration,
is consumed by cell uptake, and decays naturally. All
these processes are incorporated in the IBM in the previ-
ously described manner. The Brownian motion intensity
is called Do > 0, cell uptake rate is ω(i/2 + 1), with
ω > 0 a constant, the constant decay rate is φ > 0 and
the constant production rate is ν > 0.

3.2. IBM computational scheme

We model the tissue as a S := [0,10]×[0,10] square
(we allow the particles to move outside this square,
but we will focus on the inner region). Summing up,
we model the evolution of 4 types of individuals: cells,
MM, MDE and oxygen. We consider 5 phenotypes for
cells: wild-type plus mutation types 1, 2, 3 and 4 and
consider a linear mutation scheme, so each mutation
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Table 1
The IBM computational scheme

Phenotype Oxygen
uptake

MDE
production

Brownian
coefficient

Haptotaxis
coefficient

Wild type ω κ D ρ

Mutation 1 3ω/2 3κ/2 3D/2 3ρ/2
Mutation 2 2ω 2κ 2D 2ρ

Mutation 3 5ω/2 5κ/2 5D/2 5ρ/2
Mutation 4 3ω 3κ 3D 3ρ

Fig. 1. Summarized flowchart of the IBM algorithm.

makes a cell increasingly aggressive, according to the
values given in Table 1.

As the cells evolve through mutations, they be-
came increasingly aggressive, due to stronger motility,
stronger oxygen uptake and stronger MDE production.
We remark that our scheme is space continuous, avoid-
ing limitations of discrete approaches. We think this is
important in order to connect the discrete simulation to
the PDE approach. See Fig. 1 for a schematic flow chart
of the IBM algorithm.

3.2.1. Initialization stage
We are interested in the development of tumor fin-

gers, which form as a consequence of the attraction cells
experience for macromolecules. To discern the influ-
ence of initial MM spatial distributions on the devel-
opment of tumor patterns, we carry out two different
experiments, one with MM homogeneously distributed
and the other heterogeneously distributed.

Cells. In both experiments all cells are initially spa-
tially distributed according to the density formula:

5G
(
μ = (5.0, 5.0); σ = 1.0

)
where G(μ := (μx,μy);σ) is a 2D isotropic Gaussian
(by isotropic we mean the standard deviation σ is equal
in any direction, so the Gaussian is completely sym-
metric) centered at μ with standard deviation σ , whose
density at (x, y) is given by:

1

2πσ 2
exp

{
− 1

2σ 2

[
(x − μx)

2 + (y − μy)
2]}

In this way, we model a pre-invasive stage, where
cells are initially present in the neighbourhood of the
domain center, with lower densities along any radius
starting at the tumor center. Initially we assume that
about 100 cells are present. Also, we assume that all
cells are initially proliferating with an age distribution
between 0 and 2 days.

Macromolecules. As we previously indicated, we will
carry out two experiments corresponding to homoge-
neous and heterogeneous MM distributions, respec-
tively:

(A) Macromolecules homogeneously distributed along
the [0,10] × [0,10] domain at t = 0 with a fixed
density of 0.3;

(B) Macromolecules intentionally heterogeneously dis-
tributed over the same domain at t = 0. This hetero-
geneous distribution has two maximum peaks in the
upper-right and the lower-left zones, more exactly
at points (2.5,2.5) and (7.5,7.5). We choose this
distribution to intensify the expected consequences
of haptotaxis. The density is

0.2 + 0.3G
(
(2.5, 2.5); 1.0

)
+ 0.3G

(
(7.5, 7.5); 1.0

)
Matrix-degradative enzymes. The density of MDE is
taken to be half the proliferating cells density in both
experiments.

Oxygen. The density of oxygen is taken to be 10 times
the MM density in both experiments.

Remark. Our parameters are chosen for mathematical
illustration as well as for biological realism (as in [17]).
Biological validation of these choices requires the ex-
perimental support of current efforts [24]. Simulations
were run from t = 0 through t = 20. In order to be
reasonably sure that the qualitative results of our sim-
ulations were representative, we run the simulation 200
times. The results of these simulations were quite simi-
lar.
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3.3. Routine to compute local densities and gradients

The local densities and gradients of oxygen, cells,
MDE and MM are computed in several subroutines of
the IBM code. In order to measure these quantities, we
assume that particles have a limited perception of the
surrounding neighbourhood, so they can measure, at
least roughly, the local densities and gradients. We as-
sume this perception to be limited to a rectangle whose
axis lengths are 
x,
y units in x and y, respectively.
This concept of limited perception is quite usual for
IBMs in mathematical biology, [25], due to their de-
scription of local interactions.

For each particle k, which may be a cell, MM, MDE
or an oxygen particle, let P k(t) := (xk(t), yk(t)) be its
position in the 2D space. For example, let Fk

R denote the
number of MM particles, perceived by individual k on
its right side, i.e., inside the rectangle[
xk(t), xk(t) + 
x

] × [
yk(t) − 
y,y

k(t) + 
y

]
and by Fk

L the number of MM particles perceived by
individual k on its left side, i.e., inside the rectangle[
xk(t) − 
x,y

k(t)
] × [

yk(t) − 
y,y
k(t) + 
y

]
We define the discrete approximations of the density and
gradient respectively as:

Dk(t) := Fk
L + Fk

R

4
x
y

Gk(t) := Fk
R − Fk

L


x

These approximations are assumed to represent the lo-
cal densities and gradients for large numbers of par-
ticles, as happens in our simulation. These equations
also hold for computing the densities of MDE, cells and
oxygen, and analogous formulae are used to compute
vertical gradients.

Several values of 
x and 
y were tested, but in the
end we found the value 
x = 
y = 1

8 to be reason-
able, because this value is large enough to include a
high number of particles inside, and low enough to be
small as compared to the whole square. The choice is
a trade-off between both circumstances. The high num-
ber of particles considered slows down the computation
loop, because the previous measure of gradients and
concentrations must consider each particle individually.
The execution of our simulations took about 24 hours
on a Pentium III processor. The results of the simula-
tions can be seen in the figures. The interested reader
can also check some videos (.avi format) of the simula-
tions on http://dmaii.etsii.upm.es/~cells.
4. Continuous PDE formulation for the IBM

In order to describe the algorithm underlying the
IBM in mathematical language, we will adapt the
stochastic approach described in [26] and [15]: the evo-
lution of each particle can be written as a stochastic
differential equation for the motion together with Pois-
son processes for the birth and death. Then, under some
assumptions, a passage to the limit when the number of
particles tends to infinity leads to a PDE for the density
of each kind of particles. We also refer to [14] and [27].

4.1. General description of the procedure

When dealing mathematically with the IBM, we
must distinguish two kind of processes: motion and
demography. Motion processes are only related to the
spatial evolution of IBM particles, while demographic
processes include births, deaths and transitions between
different types of particles. Roughly speaking, motion
processes will include transport and Brownian phenom-
ena and will be described by stochastic differential
equations (SDE), while demographic phenomena will
be described by Poisson processes with certain inten-
sity rates key to the model. For a detailed explanation on
SDEs and Poisson processes we refer the reader to [28]
and [29].

We describe the general procedure in two steps:

Step 1. First of all we consider a general IBM where
only two-dimensional motion takes place and only one
kind of particle appears. The position of the kth individ-
ual at time t is given by

P k(t) := (
xk(t), yk(t)

)
, k = 1, . . . ,N

and we assume that the following SDE system is satis-
fied:

dxk = a1(x, y, t) dt + b1(x, y, t) dWk
x (t)

dyk = a2(x, y, t) dt + b2(x, y, t) dWk
y (t)

where ai , bi , i = 1,2, are given functions, and Wk
x (t),

Wk
y (t) are the components of independent 2D Brownian

motions Wk , k = 1, . . . ,N .
We define the empirical measure of the system by:

PN(t) := 1

N

N∑
k=1

δP k(t)

where δa is the Dirac’s delta at point a. The main point
consists of assuming that as N → ∞, the empirical pro-
cess PN(t) tends to a deterministic process with density

http://dmaii.etsii.upm.es/~cells
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a ρ(x, t), i.e.,

lim
N→∞

〈
PN(t), f (·, t)〉 = ∫

R2

f (x, t)ρ(x, t) dx

for any function test f (see [13,15,27] for the details).
Then, it can be shown that the density ρ(x, t) satisfies
(in a weak sense) the so-called Kolmogorov or Fokker–
Planck PDE:

∂ρ

∂t
= 1

2

∂2

∂x2

(
b2

1ρ
) + 1

2

∂2

∂y2

(
b2

2ρ
)

− ∂

∂x
(a1ρ) − ∂

∂y
(a2ρ)

Step 2. Now we consider R different classes of parti-
cles and we denote by Ni the number of particles in
class i, i = 1, . . . ,R. The equations of movement for
each particle are as above. In addition, we assume that
each particle of the class i can

• die, at a rate given by di(P, t, ), where P denotes
the position of the particle;

• give birth to a new particle of the class q , at a rate
given by biq(P, t);

• pass to a different class particle, at a rate given by
tiq(P, t), for i = q , with tii = 0.

The rates di, biq, tiq represent the intensity of Poisson
random processes, and can be understood as the proba-
bilities of death, birth and transition in a small time step.

We define an empirical measure

Pi,Ni
(t) := 1

Ni

Ni∑
k=1

δP k
i (t)

for each class i of particles, i = 1, . . . ,R. As before, we
assume that, as the numbers of particles of each fam-
ily Ni tends to infinity, the empirical process PiNi

(t)

tends to a deterministic process with density ρi(x, t).
Then it can be shown that (see [15]) the densities ρi sat-
isfy the system of PDEs:

∂ρi

∂t
= 1

2

∂2

∂x2

(
b2

1iρi

) + 1

2

∂2

∂y2

(
b2

2iρi

)
− ∂

∂x
(a1iρi) − ∂

∂y
(a2iρi)

+
(

−
R∑

q=1, q=i

tqi +
R∑

q=1, q=i

tiq

+
R∑

q=1

biq −
R∑

q=1

di

)
ρi

i = 1, . . . ,R.
4.2. SDEs of the IBM

We start with a few words about what we mean by
a Poisson process with variable intensity [30]. Let N(t)

be an integer-valued stochastic process defined for every
time t � 0. By saying N(t) is distributed as a Poisson
process with variable intensity λ(t) we mean its proba-
bility density is given by

P
(
N(t) = j

) := 1

j !

( t∫
0

λ(u)du

)
e− ∫ t

0 λ(u)du

j = 0,1, . . .

In our model we are only concerned by a much more
restricted case, as long as only one jump is considered,
its probability given by

P
(
N(t) = 1

) =
( t∫

0

λ(u)du

)
e− ∫ t

0 λ(u)du

We do not consider further jumps (j = 2,3, . . .), be-
cause we use Poisson processes as stopping-time alarm-
clocks, which determine the instants for discontinuous
changes (either births, deaths or transitions) to occur.
For example, let us consider a certain cell born at
time t0, whose death intensity is given by d(t) for each
time t > t0. Then, the probability for this cell to suffer
death in the interval [t0, t] is given by

P(death) =
( t∫

t0

d(σ )dσ

)
e
− ∫ t

t0
d(σ )dσ

Thus, the Poisson process is only used as an alarm-
clock: when the clock goes off, that is, when the Poisson
process take the value N(t) = 1, the cell dies. Birth and
transition processes are modelled in exactly the same
way.

Remark. Combining the motion and the demographic
processes:

• Every SDE for motion of a particle is valid during
the lifetime of that particle and only during its life-
time;

• Each lifetime of a particle is a time interval whose
start and end are determined as consequence of
the relevant birth, death and transition Poisson pro-
cesses.

We assume, for sake of simplicity, that each inte-
ger number k is used only once throughout the simu-
lation; this means any newborn particle will be assigned
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an unused index k, which will not be used again after
its death. As such, each particle k will have a unique
lifetime interval. The convenience of this assumption
is notation-related and will be apparent in subsequent
paragraphs. In the next section we will explain the SDEs
which describe the evolution of the four types of parti-
cles considered in the IBM, in terms of the correspond-
ing Poisson processes.

4.2.1. Cells
• Motion. The position and age of the kth cell at

time t are represented by P k(t) = (xk(t), yk(t),

ak(t)) where xk is the horizontal position, yk is the
vertical position, and ak is the age. According to the
explanation given before in Section 3.1.1, we have:

dP k(t) =
(

ρ

(
1 + i

2

)
∂f

∂x
,ρ

(
1 + i

2

)
∂f

∂y
,1

)
dt

+ Dc

(
1 + i

2

)
dWk

where Wk are independent Brownian motions for
each cell k. The components ρ(i/2 + 1)(∂f/∂x),

ρ(i/2 + 1)(∂f/∂y) represent the haptotaxis, i.e., a
displacement proportional to the gradient of MM
concentration, while the third component is the ag-
ing speed, equal to one per time unit. Dc(i/2+1) is
a term storing the intensity of the Brownian motion,
which increases with the mutation type.

• Demography. The model includes the following
Poisson processes:
– Transition from proliferating state to quiescent

state, and from quiescent state to proliferating
state, at rates tpq and tqp , respectively, given
by (2);

– Proliferation with rate given by (1);
– Death, with rate given by (3).

4.2.2. MM
• Motion. MM particles experience no motion, so

their position remains fixed throughout the simu-
lation and neither transport nor Brownian effects
appear.

• Demography. Only one death Poisson process ap-
pears: degradation at a rate given by ηm (see Sec-
tion 3.1.2).

4.2.3. MDE
• Motion. MDE particles experience Brownian mo-

tion, so the motion of the kth particle is given by

dP k(t) := Dm dWk
where Dm > 0 stands for the diffusion coefficient
and Wk are independent Brownian motions for each
MDE particle k.

• Demography. We consider the following Poisson
processes:
– Production: MDE particles are produced by cells

at a rate given by (4);
– Decay: MDE particles disappear at a constant

rate σ ∗ > 0.

4.2.4. Oxygen
• Motion. Oxygen particles experience Brownian

motion given by

dP k(t) := Do dWk

• Demography. We consider the following Poisson
processes (see Section 3.1.4):
– Production: oxygen particles are produced by

MM particles at constant rate ν > 0.
– Uptake: oxygen particles are uptaken by cells of

type i at a rate ω(i/2 + 1).
– Decay: oxygen particles disappear naturally at a

constant rate φ > 0.

4.3. Obtaining the PDE system for the IBM

As explained in Section 4.1, we develop the follow-
ing limiting PDE system for the IBM:

• Cells.
– Proliferating state:

∂nip

∂t
+ ∂nip

∂a

= Dc

(
i

2
+ 1

)

nip − ρ

(
i

2
+ 1

)
∇(nip∇f )

− μ∗(c)nip − pr(a, c)nip + tqp(c)niq

– Quiescent state:

∂niq

∂t
+ ∂niq

∂a
= −μ∗(c)niq + pr(a, c)tpq(c)nip

− tqp(c)niq

– Boundary conditions:

nip(a = 0)

= 2

aM∫
0

nippr(a, c)
(
1 − tpq(c)

)
(1 − tm) da

+ 2

aM∫
ni−1,ppr(a, c)

(
1 − tpq(c)

)
tm da
0
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Fig. 2. Snapshots of the evolution of the IBM (homogeneous MM initial distribution). For clarity of representation, quiescent cells are not repre-
sented. The color indicates the mutation (blue = wild-type, cyan = type 1, green = type 2, orange = type 3, red = type 4).
i = 0,1,2,3,4. The boundary conditions appear
naturally from the fact that a proliferating cell
gives birth to two daughters, whose mutation
type can be either the same (in case no recent
mutation has occurred) or the next sequential
type (in case the last division led to a new mu-
tation). In our simulation we have taken tm = 0.1
as in [16].

• MM.
∂f

∂t
= −ηmf

• MDE.
∂m

∂t
= Dm
m + κ

∑
(ni,p + ni,q) − σm
i

• Oxygen.

∂c

∂t
= Dc
c + νf − ω

∑
i

(ni,p + ni,q) − φc

5. Numerical analysis of the PDE

To analyze this model computationally we used a fi-
nite difference discretization in space that for the range
of parameters of this work, allows large time steps. For
the 2D version, we use 
x = 
y = 1/8 and 
t = 0.01,
in the domain S = [0,10] × [0,10].

The results of the simulations can be seen in the
figures. The interested reader can also check some
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Fig. 3. Snapshots of the evolution of the IBM (heterogeneous MM initial distribution). As in Fig. 2, for the sake of clarity, only proliferating cells
are represented. The color indicates the mutation with the same code (blue = wild-type, cyan = type-1, green = type-2, orange = type-3, red =
type-4).

Fig. 4. The three boxes represent the oxygen, MM, and MDE density profile, respectively, at a representative stage of the simulation.
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Fig. 5. Snapshots of the type-4 cells density evolution, as provided by
the numerical solution of the PDE (case of homogeneous MM initial
distribution). Only type-4 cells are taken into account in order to make
the figure interpretation easier.

videos (.avi format) of the numerical resolution on
http://dmaii.etsii.upm.es/~cells.

A fully implicit scheme is far too expensive for prac-
tical calculations. We succeeded in using an improved
predictor-corrector scheme with a double purpose: to
test the convergence of our straightforward explicit dis-
cretization in time and space and to develop a robust
general method for accurately solving the system given
in Section 4.3. Discretization of the age variable does
not suffer the difficulties mentioned in [17] because our
methods are not semi-discrete.

In order to obtain a more complete picture of the
process, we have started extending the two-dimensional
work to three space dimensions. The experiments reveal
Fig. 6. Snapshots of the type-4 cells density evolution, as provided
by the numerical solution of the PDE (case of heterogeneous MM
initial distribution). As in Fig. 5, only the most aggressive (type-4)
cell density is represented.

that the general morphology is similar to that of the 2D
version. As a significative (though preliminary) exam-
ple, Fig. 8 shows a 3D shell of type-4 cells, with an
inner necrotic core represented as an area void of cells.
In the 3D case, we have been able to efficiently com-
pute different tumors with 
x = 
y = 
z = 1/12 and

t = 0.005. Moreover, the finite-difference procedures
are well-suited for parallel implementation.

We are presently developing a splitting procedure
and different approximations of the div-grad operator
to allow the accurate modeling of morphologic insta-
bilities, and in particular, more intricate and irregular
tumor boundary evolution and satellite tumors around
the main tumor mass.

http://dmaii.etsii.upm.es/~cells
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Fig. 7. Finger patterns appear due to MM density fluctuations, not only in the heterogeneous case (right), but in the homogeneous case (left) as
well.
6. Conclusion

In this work we have studied the invasion of tumor
cells into surrounding tissue by using two approaches:
one, a computational individual-based perspective; the
other, a partial differential equations perspective repro-
ducing the same phenomena. Two computer experi-
ments were carried out for both approaches: (a) one
starting with an initially homogeneous MM density (ho-
mogeneous case); and the other (b) starting with an ini-
tially heterogeneous MM density (heterogeneous case).
We considered four types of cell phenotypes evolved by
sequential mutation from the wild-type. The higher the
mutation type in the sequence, the higher the cell’s ag-
gressiveness in the invasion.

Simulations show the expansion of increasingly ag-
gressive cell phenotypes, as can be observed in Figs. 2
and 3. In the homogeneous MM case, cells evolve in a
ring-shaped fashion (Fig. 2). We note that quiescent and
necrotic cells are not drawn in the figures and the inner
zone of the ring contains only quiescent and necrotic
cells. Proliferating cells advance outwards, attracted by
MM. In the heterogeneous case, cells do not form a
ring, but advance toward higher concentration of MM
(Fig. 3).

An important biological feature of tumor invasion is
fingering patterns (Fig. 7). Our simulations systemati-
cally reproduce such patterns, both in the homogeneous
case (Fig. 2) and the heterogeneous case (Fig. 3). Fin-
gering was less evident in the homogeneous case, nev-
ertheless it appears even under fairly uniform densities
of MM. We conclude that very slight oscillations of MM
density may be enough to induce finger patterns. We hy-
pothesize that in vivo MM concentrations may present
slight density heterogeneities, which are eventually re-
sponsible for fingering patterns.

Our simulations are the results of spatially explicit,
fully continuous, individual based computation, whose
building blocks are tokens for cells, MM, MDE ele-
ments and oxygen particles (Fig. 4). We derived an
equivalent (in a mathematical sense) PDE model to de-
scribe the same behavior. The PDE numerical simu-
lations match remarkably well those of the IBM. The
homogeneous case develops a crown-shaped cell den-
sity (Fig. 5), with inner zone density close to zero, as
corresponding to the quiescent and necrotic zone. In the
heterogeneous case (Fig. 6), two main directions of in-
vasion appear, as a consequence of the initial spatial
configuration of the MM density. The concordance of
the IBM and PDE approaches is evident in Figs. 2 and 5
and Figs. 3 and 6.

IBM computational simulations are accessible and
intuitive. They do not require deep mathematical knowl-
edge and can be very helpful for non-experts. However,
high computation costs appear when dealing with many
particles; in particular, the computation of interactions
between N particles increases (roughly) with Nα , with
α � 2 making such simulations hardly feasible for very
large values of N . As a consequence, it is important to
acquire a correspondent PDE approach that reliably re-
produces equivalent – at least in the mathematical sense
of Section 4 – results. We believe IBM modeling to be
valuable, but its practical limitations must be known and
appreciated.
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Fig. 8. A picture of a 3D simulation of the IBM. The inner core is
quiescent and necrotic.

From a paradigmatic point of view, it seems to us
more natural to model large tumor cell populations
as continuous mathematical densities rather than as
frameworks of discrete units, even taking into account
the variable nature of individual cells. Furthermore,
we believe the continuous approach in an IBM over-
comes some limitations of the discrete one, bridging
the gap between many-particle systems and differential
equations-based models. We find it particularly relevant
and fruitful to establish comparisons between compu-
tational and PDE approaches. Not only can such com-
parisons give insight into complex population behavior
in general (not only tumors), but can as well be tools
to test models. The scheme in Section 4 to establish the
comparison between IBMs and PDEs remains valid in
general cases, and can be used by computational mod-
elers seeking mathematical validation.

As for future work, we plan to extend our work to
three dimensions. In fact, we have already run tentative
3D simulations, which showed similar results to the 2D
case. Fig. 8 is a snapshot of a 3D simulation display-
ing a quasi-spherical tumor with a necrotic inner core.
Fingering patterns were also observed in our 3D simu-
lations, which are still under development.
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