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Abstract

Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-
Markovian limit. This finding leads us to derive a Schrödinger–Langevin equation for this kind of system within the framework of
stochastic quantization. The Planck’s constant is shown to be relevant to the Lagrangian action at the level of a single ion channel.
This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of
the selectivity filter. To cite this article: S. Roy, R. Llinás, C. R. Biologies 332 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La pertinance de la mécanique quantique sur quelques aspects des functions des canaux ioniques. Un modèle mathéma-
tique de la diffusion ionique au long des canaux de potassium propose que la diffusion est oscillatoire à la limite non-markovique
faible. Ce résultat nous a mené à dériver l’équation Schrödinger–Langevin pour cette sorte de système à travers le contexte de la
quantification stochastique. Nous démontrons que la constant de Planck est pertinante dans le statut de l’action Lagrange au niveau
d’un seul canal ionique. Ceci nous donne de nouveaux aspects sur l’application des formalismes quantiques sur la dynamique des
canaux ioniques et sur les contraintes physiques du filtre sélectif. Pour citer cet article : S. Roy, R. Llinás, C. R. Biologies 332
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Ion channels are transmembrane protein structures
that selectively allow given ion species to travel across
the cell membrane. Zhou et al. [1] demonstrate that
the channel protein transiently stabilize three K+ states,
two within the selectivity filter and one within the wa-
y Elsevier Masson SAS. All rights reserved.
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ter basket towards the intracellular side of the selectiv-
ity filter. Experimental evidence indicates that the se-
lectivity filter is devoid of water molecules other than
single water molecule between K ions [2]. By con-
trast, the basket is water molecule rich. We propose a
Generalized Langevin Equation (GLE) that combines
Markovian and non-Markovian processes at different
time scales to describe the dynamics of ionic flow in
K ion channels. This approach affords the development
of an algorithm that describes oscillatory ionic diffu-
sion along the selectivity filter. The resulting oscillatory
functional behavior, with exponential decay, is obtained
at the weak non-Markovian limit with two distinct time
scales. They correspond to the processes of ionic dif-
fusion and ionic drift. This oscillatory motion can be
viewed as a time reversible stochastic process where
the oscillatory time scale is very small compared to
the diffusional time scale. The non-Markovian behav-
ior, having a memory kernel associated with the fric-
tional forces is due to the shear viscosity of water in the
basket, considered as glue-like compared with ordinary
water, due to the change in length scale [3]. Indeed, it
is found in the recent experiments that the viscosity of
water increases when the inner lining of nano-cavity is
hydrophilic as well as hydrophobic [4]. However, the
viscosity increases dramatically in case of hydrophilic
surface. As a result of this spatial arrangements of water
molecules, at the selectivity filter, ion movement may be
considered a time reversible Markovian while at the wa-
ter basket, it would behave in a non-Markovian regime.

Recent developments concerning quantum processes
[5] demonstrate that there exists time reversible Markov
process corresponding to Schrödinger’s equation (at
least in the non-relativistic domain) known as stochas-
tic or Nelson’s mechanics. Here, the diffusion constant
has been shown to be related to Planck’s constant. This
framework has been extended [6–9] to address the dis-
sipative forces i.e. velocity dependent forces in terms
of quantum dynamics. Following Nelson’s framework,
a non-linear Schrödinger–Langevin equation has been
derived for dissipative forces where the diffusion con-
stant has been assumed to be related to Planck’s con-
stant. Recently, Bernroider and Roy [10] estimated the
Lagrangian action at the level of a single ion channel us-
ing dimensional arguments. By considering empirically
established conduction properties, the action is shown to
be of the order of Planck’s constant. This finding lead us
to construct a non-linear Schrödinger–Langevin equa-
tion corresponding to this admixture of Markovian and
non-Markovian processes for K ion channel dynamics.
Moreover, the existence of a time reversible Markovian
process associated with K ions in the selectivity filter at
a relatively shorter time scale sheds new light on the ap-
plicability of quantum theory in the biological domain,
at least in case of K ion channel.

The present Note will discuss: results on oscillatory
ion flow in Section 2, stochastic quantization for dis-
sipative forces in Section 3, the Schrödinger–Langevin
equation approach to ion channel permeability in Sec-
tion 4 and finally, conclusions and implications in Sec-
tion 5.

2. Oscillatory ionic sequences

The generalized Langevin equation [11] for n = N

interacting ions is given by

v̇i = −
t∫

t0

dt ′ Θ(q, t − t ′)v(t ′) − V ′(q) + fi + dW,

i = 1, . . . ,N (1)

where W and f are random and systematic forces acting
on the ions and〈
W(t)

〉 = 0

and〈
W(t1)W(t2)

〉 = min(t1, t2).

The Wiener process W is the 3-dimensional Gaus-
sian process of which first moment is zero vector
and second moment is a diagonal matrix whose ele-
ment is minimum time between two Wiener processes.
The memory kernel Θ(q, t − t ′) describes the gener-
alized viscosity. Brownian motion triggers a Wiener
process that distinguishes the SDE (Stochastic Differ-
ential Equation) from the ODE (Ordinary Differential
Equation), so the term associated to the random force is
referred to as the diffusion term.

We have integrated Eq. (1) numerically using the Eu-
ler scheme. In Eq. (1) the frictional force depends on the
previous velocities through the integral over the kernel
Θ(q, t − t ′), which is quantified by the fluctuation dis-
sipation theorem as〈
Wi(t

′)Wj (t)
〉 = βkT Θ(q, t − t ′)δij ,

where β = 6πaη
m

for an ion with mass m and with spheri-
cal shape of radius a, η being the coefficient of viscosity
of the surrounding water, k and T are Boltzmann con-
stant and the absolute temperature, respectively.

Here, we attempt to construct a classical description
of the invariant measures of 2D Navier Stokes equa-
tion including the Stochastic effects. The existence of an
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invariant measure may be used to represent the asymp-
totic behavior of the system. If this invariant measure is
unique, there is the possibility that the law of the pro-
cess solution will converge to it. Therefore, when this
holds true, this unique invariant measure describes the
equilibrium to which the system tends. In fact, a unique
invariant measure has been constructed by Li and Wag-
ner [12] and the convergence has been shown when the
2D Navier–Stokes equations are perturbed by a white
noise (not degenerate in space) with no limitations on
phase space modes. In general, without constraints on
the Reynolds number, the deterministic Navier–Stokes
equations have many stationary solutions. However,
while there is no information about the long time behav-
ior of such deterministic processes, they can be viewed
as invariant measures for the Navier–Stokes equations
without the noise. Based on their findings, our result in-
dicates that, given a sufficiently distributed random per-
turbation noise, just one invariant measure exists. The
noise effect results in the generation of mixed system
dynamics, allowing a unique asymptotic behavior.

At low flow rates, the diffusion term introduces the
fluctuation into the ensemble averaged stress tensor,
which appears as unwanted noise which severely lim-
its our ability to calculate low flow rate viscosity, where
the signal to noise ratio becomes very small. However,
it can be reduced by variance reduction method. In the
case of simple shear flow, the velocity field is time de-
pendent, along with the dependence on shear rate and
the fluctuating viscosity. At the inception of shear flow,
the system is initially at equilibrium and the stress ten-
sor vanishes. For time t � 0, a constant shear rate is ap-
plied and the stresses grow until they reach their steady
state values, where the elongation rate is indeed time
dependent. Note that, as we make no approximations
here, in regards to the relative strength of the solvent
molecules in comparison to the ions, and consequently
no simplification can be made. The crux here is our as-
sumption that the memory kernel Θ(q, t − t ′) can be
written as

Θ(q, t − t ′) = a0δ(t − t ′) + a1

τ1
e
− |t−t ′ |

τ1 − a2

τ2
e
− |t−t ′ |

τ2 (2)

where, τ1 and τ2 denote the characteristic time scales.
Eq. (2) contains both Markovian and non-Markovian

contributions that allows a continuous change from
Markovian to non-Markovian dynamics and enables
identification of both the terms. The non-Markovian
process has two time scales whose contributions are
dominated by the parameters a1, a2 respectively. It is
clear from the form of kernel that in the limit of weak
non Markovian process (a1,2 � a0),
〈
vi(t0)vj (t)

〉 = kT e(−a0t) (3)

with a relaxation time constant a0
−1 which can be de-

termined from experiments using the Einstein relation.
Similarly, in the limit of weak non-Markovian noise, the
spectral density can be evaluated as

S(ω) = 2kT ω2

(1 + τ 2
1 ω2)(1 + τ 2

2 ω2)
(4)

with ω as the frequency. This produced the spectrum
limits for τ1,2 → 0 which give us color noise combina-
tion.

Now we shall consider the existence of glue-like vis-
cous properties [3,4] which are quite different from the
water dynamics outside the channel. Doyle et al. [2]
justified the existence of one water molecule only be-
tween the two K ions in the selectivity filter studying the
strong electron density peak in the experimental map.
Recently, Saparov and Pohl [13] claimed that the two
ions in selectivity filter does not leave enough room
to accommodate a vaporized water molecule (within
the framework of water-vapor oscillation hypothesis).
In fact, it is now known that the distance between two
such water molecules exceeds the filter length [13]. The
selectivity filter is about 12 Å long, whereas the remain-
der of the pore is wider and has a hydrophobic lining [2],
contains water molecules. Thus, given that the selectiv-
ity filter is almost devoid of water and that the water in
the basket is glue-like, we propose that such change in
length scale at the interface gives rise to shear viscos-
ity and hence to non-Markovian processes with mem-
ory. Further more, recent experiments suggest [4] that
the viscosity of water becomes even more glue-like in
hydrophilic nanoscale constraints, and that a hydropho-
bic surface resulting in a milder constraint [14]. This
gives us the possibility to add a simple viscous term to
our simulation. The most challenging aspect of simu-
lation of ion channels has been the implementation of
particle coupling and boundary conditions. In Brown-
ian Dynamic (BD) simulations it is particularly difficult
to maintain the correct particle concentrations and be-
havior that occur under extreme conditions in channel
simulations. Here we use a simple algorithm in order to
solve, the GLE.

We can use the second order Runge–Kutta method
by discretizing the above GLE and approximating the
potential as

∫ t+	t

t
V (x(s))ds = V (x(t)	t). We need n

Gaussian random numbers to be picked at each step for
the algorithm. Integrations of noise can be simulated
by linear combinations of 3 normal Gaussian random
numbers. The matrix elements of the coefficients are
evaluated by the auto and cross-correlations of the noise
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integrations. We have used a set of algorithms that allow
a comparison between the time scales of diffusion and
shift performed along a selectivity filter in a model K-
channel. The model describes two time scales for atomic
ionic movement along the channel’s length. This results
in an oscillatory flow in the selectivity filter where the
velocity autocorrelation exhibit an exponential decay.
The Brownian simulation for GLE has been performed
by subdividing the charge of the particle and increas-
ing the number of particles by the same factor. We have
obtained the velocity distributions corresponding to dif-
ferent limits of the processes and is explicit that oscil-
lations dominate at the limit of weak non-Markovian
process.

The time evolution of the kernel makes it clear that a
phase transition of the shear viscosity within the chan-
nels may give an important clue as regards the rise of
memory effects and the evolution of flip flop motion
within ionic channels. It is apparent from the above
analysis that using different time scales results oscil-
latory behavior within selectivity filter. Since this can
occur at the weak non-Markovian limit (defined above),
this oscillatory behavior can be described in terms of
a time-reversible stochastic process. The diffusion co-
efficient for stochastic process is related to the action
relevant to the scale of the occurrence of this process. It
is important to estimate the action relevant at the scale
of ionic diffusion.

2.1. Appropriate action at the level of ion channel

It is well known from Dimensional analysis that the
mechanical action can be written as

[action] = [mass].[length]2.[time]−1.

The action can also be expressed in terms of energy,
mass and length. Hodgkin and Huxley [15] discussed
two type of processes i.e. permeation of ions and gating
associated with the abrupt changes in resting transmem-
brane electric field. The recent observations of Mackin-
non et al. [1] clearly indicated that it is possible to have
data at the level of atomic resolution down to 0.2 nm
Bragg spacing. It is clear that the channels can pass
at least 1 pA current corresponding to 108 monovalent
ions per second. 3 × 10−26 kg mass is involved in the
process of single charge transfer extending up to the
range of 4 × 10−9 m and time of 10−8 s. From such ob-
servation it is possible to estimate the numerical order
of the action [10] using the above formulas as

A = 0.48 × 10−34Lh̄.
Thus, the ion permeation process occurs at the scale
where the relevant action is Planck action. Our simula-
tion results indicate that at certain time scales, one can
associate a time reversible stochastic process with the
oscillatory ionic sequence where the relevant parame-
ter is the Planck action. Thus at this scale, the diffusion
coefficient can be related to Planck’s constant and phys-
ical realization of Nelson process is possible at least
in the biological domain. The process associated with
GLE is an admixture of Markov and non-Markov pro-
cesses. The dissipative force arises due to the viscosity
of glue like water in the channel. It gives rise to a possi-
bility of describing this velocity dependent dissipative
force using the stochastic quantization introduced by
Nelson [5]. Before going into details, let us briefly dis-
cuss the procedure of describing the velocity dependent
force using the tools of stochastic mechanics.

3. Stochastic quantization and dissipative forces

Stochastic mechanics provides a deeper understand-
ing to treat velocity dependent forces in terms of quan-
tum theory. Let us consider that the position of a particle
x(t) executes a stochastic process and the quantization
rule is given by

E
[
dx(t)dx(t)

] = 2D dt (5)

with D as diffusion constant. Here

D = h̄

m
;

h being the Planck’s constant and m be the mass of the
particle. E(.) indicates the conditional expectation val-
ues. The above stochastic process is a Markov process
of the Weiner type. If the particle is subjected to a con-
servative force i.e.

F = − ∂

∂x
φ(x) (6)

with φ(x) as potential function in 1-D. Now the dynam-
ical equations can be derived for the stochastic process
in terms of current velocity v(x, t) and the stochastic
velocity u(x, t),

F = m

[
∂v

∂t
+

(
∂v

∂x
v − ∂u

∂x
u + D

∂2u

∂x2

)]
(7)

and

∂u

∂t
+ D

∂2v

∂x2
+ ∂v

∂x
u = 0. (8)

Using the following complex function

ψ(x, t) = exp
(
R(x, t)

)
e(i

S(x,t)
2mD

) (9)
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and assuming

mv(x, t) = ∂S(x, t)

∂x
(10)

one can show that ψ(x, t) satisfies the Schrödinger
equation

ih
∂ψ(x, t)

∂t
= − h2

2m

∂2ψ(x, t)

∂x2
+ φ(x)ψ(x, t). (11)

The function R(x, t) is related to the density lnρ =
2R(x, t). Using this approach Nelson proved that there
exists a time reversible Markov process corresponding
to Schrödinger’s equation by assuming the diffusion
constant as related to Planck’s constant. This framework
has been extended to incorporate the velocity dependent
forces and hence for dissipative forces as mentioned be
various authors [6–9]. From a physical point of view,
this means that if the dynamic system interacts with its
chaotic (thermal) environment, it is possible to extend
the above framework as introduced by Nelson. In classi-
cal paradigm, the dynamical behavior of an open system
can be described by Langevin equation

mq̇ = −βq̇ − ∇φ
(
q(t), t

) + A(t),

q(t), q(t)1, . . . , q(t)n (12)

be the reduced coordinate variables of the open system
and A(t) be a Gaussian white noise with mean 0 and
variance[
Ai(t)Aj (t ′)

] = 2Dδij δ(t − t ′)

and the diffusion coefficient

D = βkT .

k is the Boltzmann constant and T is the temperature of
the thermal environment.

The quantum mechanical behavior of an open system
can be derived by the quantum mechanical version of
Langevin equation. Since there is no well defined pro-
cedure to construct a Lagrangian or Hamiltonian for any
open system in general, it will be more attractive to use
stochastic quantization as proposed by Nelson. Here,
there is no need to start from Lagrangian or Hamil-
tonian but one can begin with Newtonian equation in
a more generalized sense. The first basic assumption
of stochastic quantization is the following: The quan-
tum mechanical behavior of the coordinate variable q(t)

for open dynamical system can be represented by an
n-dimensional diffusion process described by the fol-
lowing stochastic differential equation.

dq(t) = b
(
q(t), t

)
dt + dW(t) (13)
where b(q, t) is drift vector and W(t) an n-dimensional
Wiener process. dW(t) is n-dimensional Wiener pro-
cess with mean zero and variance

E
[
dW(t)dW(t)

] = h̄

m
dt. (14)

The probability density ρ(q, t) satisfies Fokker–Planck
equation.

The second basic assumption is that the Langevin
equation can be expressed in terms of mean velocity
and mean acceleration. After some algebraic calcula-
tions, one gets quantum mechanical wave equation for
the open system:

ih
∂ψ(q, t)

∂t
=

[
− h̄2

2m
∇.∇ + V (q, t) − q.A(t)

+ iβ

2m
h̄ ln

ψ∗(q, t)

ψ(q, t)

]
ψ(q, t) (15)

where

ψ(q, t) = [
ρ(q, t)

]1/2
eiS(q,t).

Now we shall consider the GLE and the quantum
mechanical wave equation for the velocity dependent
forces considered in GLE.

4. Potassium channel and Schrödinger–Langevin
equation

The Generalized Langevin Equation (GLE) used for
the description of K ion channel is written as

mq̈(t) = −m

t∫
0

Θ(t − t ′)q̇(t ′)dt ′−∇q(t) + fR(t) (16)

where fR be the random force and

q̇ = dq

dt
,

Θ(t − t ′) = a0δ(t − t ′) + a1

τ1
e
− |t−t ′ |

τ1 − a2

τ2
e
− |t−t ′ |

τ2 .

In the weak non-Markovian limit i.e.

a1, a2 � a0,
〈
vi(0)vj (t)

〉 = kT exp−a0t δij . (17)

Following the rule of stochastic quantization as de-
scribed in the previous section, we get

ih̄
∂ψ

∂t
= h̄2

2m

∂2ψ

∂x2
+ V ψ + a0h̄

2i
ln

[
ψ(x, t)

ψ ∗ (x, t)

]
ψ(x, t)

+ h̄

2i

[
a1

τ1

t∫
exp

− −|t−t ′ |
τ1 dt ′
0



522 S. Roy, R. Llinás / C. R. Biologies 332 (2009) 517–522
− a2

τ2

t∫
0

exp
− −|t−t ′ |

τ2 dt ′
]

ln
ψ(x, t ′)

ψ ∗ (x, t ′)
ψ(x, t).

(18)

Let us discuss the different non-linear terms due to
various physical situations. The first nonlinear term is
associated with Markov process taking delta function in
the memory kernel. The velocity correlation is given by〈
vi(0)vj (t)

〉 = kT exp−a0t δij .

The first part of the second non-linear term contains
a characteristic time scale τ1. Recent experimental ob-
servations [4] showed that water exhibits very different
properties when it is confined to nano channels. Thus
the velocity may be taken as almost constant through-
out the integration and this part of the 2nd term can be
written as(

a1

τ1

t∫
0

exp
− |t−t ′ |

τ1 dt ′
)

S(x, t). (19)

As the second part remains unchanged, the quantum
mechanical wave equation can be written as

−h̄
∂ψ

∂t

= − h̄2

2m

∂2ψ

∂x2
+ V ψ + a0h̄

2i

[
ln

ψ(x, t)

ψ ∗ (x, t)

]
ψ(x, t)

+ h̄

2i

[(
a1

τ1

) t∫
0

exp
− |t−t ′ |

τ1 dt ′
(

ln
ψ(x, t)

ψ ∗ (x, t)

)

− a2

τ2

t∫
0

exp
− −|t−t ′ |

τ2 dt ′
(

ln
ψ(x, t ′)

ψ ∗ (x, t ′)

)]
ψ(x, t).

(20)

It seems evident, from channels characteristics, that
the weak non-Markovian approximation may be valid
for the selectivity filter. In this approximation a1, a2 �
a0 and hence the contribution from the second non-
linear term will be negligible leading to oscillatory ionic
sequence.

5. Possible implications

The oscillatory ionic dynamics in Kion channels
is proposed to occur at the limit of the weak non-
Markovian approximation associated with a time re-
versible Markov process, at the selectivity filter. This
reversible stochastic process belongs to a different time
scale to that governing diffusion across the rest of the
channel, which is determined by the glue-like proper-
ties of water at the water basket. The framework of
stochastic mechanics provides a model for such dis-
sipative force in terms of quantum theory. That chan-
nel ionic permeation can be associated with non-linear
Schrödinger equation which addresses the issue of de-
coherence and time scale considerations. At this point
it is worth mentioning that the Nelson process (the time
reversible Markov process associated with Schrödinger
equation) can, indeed, be considered an intermediate be-
tween quantum and classical time reversible processes,
at least in the realm of ionic channel permeation.
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