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Abstract

The understanding of the spatial variability of soil heavy metals is an important precondition for suitably monitoring and eval-
uating eco-environment quality in a primary agricultural production zone. 100 topsoils were sampled from the Zhengding County
of the urban-rural transition zone in Taihang Piedmont Plain, China. The contents of eight heavy metals Cu, Zn, Cr, Ni, Pb, Cd, Hg
and As were tested for each soil sample, and their spatial patterns were analyzed by using the semivariogram approach of geostatis-
tics, with which the kriging method was used to estimate the unobserved points. Then GIS technology was employed to produce
spatial distribution maps of the 8 elements. The results showed that the concentration of Cd exceeded its background level. The
local pollution from Cd was attributed to the anthropogenic influence. The concentrations of the eight heavy metals are relatively
lower than the critical values of the national soil quality standard. The correlation distance of soil heavy metals ranged from 3.28
to 11.63 km, with the eight heavy metals having moderate spatial dependence. Cu, Cr, Ni, Pb and As were associated with and
controlled by parent material. The spherical model was fitted to the semivariograms of Cu, Cr, Cd, Hg, Pb and As, and the Zn and
Ni were fitted with the Gaussian model and the linear model, respectively. The results are helpful for improving agricultural and
forest ecosystem in the region. To cite this article: P.G. Yang et al., C. R. Biologies 332 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The evaluation of soil environmental quality can pro-
vide some scientific warranty for proper landuse, soil
contamination control and eco-environmental layout. Its
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precondition depends on considering the spatial distri-
bution of soil heavy metal contents. The problems asso-
ciated with the characterization of heavy metals in the
majority of sites are often due to multiple sources of pol-
lution. Soil heavy metal information has undoubtedly
implications for agriculture product and food safety
[1–3].

Soil heavy metals have been a very useful indicator
of environmental quality worldwide and been the sub-
ject of much attention because of their peculiar charac-
teristics. Suburban farmland is a spatial transition zone
between urban and rural, which plays an important role
in providing regional food security to urban and local
residents and protecting the environment or ecosystem;
it has experienced a more rapid growth of industrial-
ization than in rural areas in China. Soil heavy metals
in suburban farmland may have deposited and accumu-
lated as a result of the urban rapid industrial develop-
ment. Heavy metal contents are influenced by natural
and anthropogenic factors including parent materials,
land use, application of pesticides and fertilizers etc. It
can accumulate in crops and may lead to the damage and
alteration of animal or human physiological functions
by food chain [2–4]. Understanding the spatial distribu-
tion of suburb topsoil heavy metals is critical for envi-
ronmental management and agricultural production.

Geostatistics has successfully been applied in inves-
tigating and mapping soil heavy metals [5–12]. A main
contribution of semivariogram is to reveal the spatial
change properties of sampled values that belong to the
regional variables. The kriging interpolating can pro-
vide spatial distribution, which assumes that the dis-
tance or direction between sample points reflecting the
spatial correlation can be used to explain the variation
on a regional scale. Although there have been some
papers on the spatial distribution of soil heavy metals,
some conclusions were not always agreed on for differ-
ent sampling intervals [13–17].

The spatial variability of soil heavy metals is an im-
portant part of environmental supervision and ecosys-
tem evaluation. In the Taihang Piedmont Plain, a dom-
inating area for agricultural production of Hebei Prov-
ince, little attention has been paid to the spatial variabil-
ity of soil heavy metals. Zhengding County is the typi-
cal suburban farmland in the Taihang Piedmont Plain.
The spatial variability of heavy metals (Cu, Zn, Cr,
Ni, Pb, Cd, Hg and As) was investigated using statis-
tics, geostatistics and geographical information system
(GIS) techniques, in order to find out heavy metal scale
variability and spatial distribution maps and provide sat-
isfactory and efficient estimates for soil environmental
monitoring, and provide valuable information for the re-
gional soil quality management [18–20].

2. Materials and methods

2.1. Regional status

The study area, Zhengding County near the Shiji-
azhuang City of the Capital of Hebei Province, lies in
114◦22′–114◦45′E and latitude 38◦4′–38◦22′N, and oc-
cupies a 486 km2 of total area. The landform is flat with
an average elevation of 75 m. The Hutuo River runs
through the southern border of the County. Soils de-
velop on alluvial sediment material, and there are soil
types including drab soil, Chao soil and paddy soil. It
belongs to the continental monsoon climate area, and
the average annual temperature and rainfall are 12.2 ◦C
and 530 mm, respectively. Because locating at the tran-
sitional zone from urban to rural areas, the land was
affected intensely by human activities for agricultural
production. 62.6% of the land was used for agricultural
farming, 16.8% of the land was occupied by residen-
tial settlements, factories and roads (including railways,
highways), and the rest was occupied by forests, river-
ways and an airport. The samples came from agricul-
tural areas where winter wheat and summer maize are
the dominant crops. This county is also a major produc-
tion base for grain, vegetables, fruits and oil plants.

2.2. Sample collection

Considering on the complexity of the land use, a total
of 100 soil samples were collected in the simple ran-
dom sampling method, which whole sampling points
are an irregular grid that can represent cultivated ar-
eas and allow geostatistical treatment. Fig. 1 showed
the distribution of sampling points. Actually the density
of sampling varies within small limits due to difficult
sampling conditions in the study area. Each sample was
a mixture of 5 topsoil cores (0–20 cm in depth, ap-
proximately 200 g total weight) which were taken from
within a 20 × 20 m area; the central point position was
recorded with a GPS device.

2.3. Laboratory analysis

All soil samples were air-dried at room tempera-
ture and ground in an agate mortar to pass through a
100-mesh plastic sieve. The soil pH was measured by
a glass electrode in a 1:5 soil/water suspension. Cu,
Zn, Cr, Ni, and Pb were extracted by aqua regia di-
gestion (HNO3, HCl and H2O2) of the soil fraction in
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Fig. 1. The sketch map of geographical location and sampling points.

a microwave (Milestone Ethos 900 plus Mod. 44062)
in accordance with the ISO 11466 procedure (Interna-
tional Organization for Standardization, 1995), then the
total concentrations of Cu, Zn, Ni, Cr were measured
by flame atomic absorption spectrometry (AAS), and
Cd and Pb by graphite furnace AAS, as well as As and
Hg was determined by atomic fluorometry (Agricultural
Chemistry Committee of China 1983) [1].

2.4. Spatial structure analysis

Common descriptive statistics and histograms do not
incorporate the spatial locations of data into their defin-
ing computations. The four main operations of linear
geostatistics (variances of estimation and dispersion,
regularization and kriging) involve only the structural
function of the random function (covariance or vari-
ogram). Thus, every geostatistical study begins with the
construction of a model designed to characterize the
spatial structure of the regionalized variable studied.

Soil heavy metals are typical regionalized variables.
The presence of a spatial structure where observations
close to each other are more similar than those that are
far apart (spatial autocorrelation) is a prerequisite to
the application of geostatistics [20]. The experimental
semivariogram measures the average degree of dissim-
ilarity between sampled values and a nearby data value
[18–20], and thus can depict autocorrelation at various
distances.

Geostatistics uses the technique of semivariogram to
measure the spatial variability of a regionalized vari-
able, and provides the input parameters for the spatial
interpolation of kriging [21]. The value of the exper-
imental semivariogram for a separation distance of h

(referred to as the lag) is half the average squared dif-
ference between the value at Z(xi) and at Z(xi+h),

(1)γ (h) = 1

2
Var

[
Z(x + h) − Z(x)

]

(2)γ (h) = 1

2N(h)

N(h)∑

i=1

[
Z(xi) − Z(xi + h)

]2

where: N(h) is total number of pairs of sample points
separated by the lag distance h. For irregular sampling,
it is rare for the distance between the sample pairs to be
exactly equal to h, therefore, the lag distance h is often
represented by a distance band. Z(xi) is the measured
sample value at point i, Z(xi + h) is measured sam-
ple value at point i + h. The variogram model is chosen
from a set of mathematical functions that describe spa-
tial relationships. The appropriate model is chosen by
matching the shape of the curve of the experimental var-
iogram to the shape of the curve of the mathematical
function.

The fitted model provides information about the spa-
tial structure as well as the input parameters such as
nugget, sill and range for kriging interpolation. By
fitting the appropriate variogram model, the distance-
dependent coefficients can be estimated and graphically
interpreted. In this study, the fitted spherical model and
Gaussian model were selected.

Raw data were analyzed with different software
packages. The descriptive statistical parameters were
calculated with SPSS 11.0. The geostatistic analyses
and the probability calculation were carried out with
VarioWin 2.2. The maps of 8 elements spatial distribut-
ing pattern were produced using ArcGIS 8.3 software
by kriging interpolation.

3. Results and discussion

3.1. Statistic descriptive parameters and normality test

To evaluate the raw data, the descriptive statistical
parameters of soil heavy metals are presented in Table 1.
The results showed that Cu, Zn, Ni, As had passed the
Kolmogorov–Smirnov normality test (K-S p < 0.05),
but other variables such as Pb, Hg, Cr and Cd had not
passed. Since further geostatistic analysis need data to
follow a normal distribution. Data transformation was
carried out prior to the next analysis. Finally, all 8 heavy
metals followed a normal distribution or a lognormal
distribution.
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Table 1
Descriptive statistics parameters and test for normality of soil heavy metals.

Item Cu Zn Ni Pb Cr Hg As Cd

Mean 21.22 69.96 25.04 18.80 57.77 0.08 6.16 0.15
China mean 20.00 67.70 23.40 23.60 53.90 0.04 9.20 0.074
Background value 21.7 62.0 28.8 20.0 63.9 0.023 12.1 0.075
Guide value 35 100 40 35 90 0.15 15 0.20
Standard deviation 3.42 7.19 4.59 3.92 8.77 0.06 1.50 0.04
C.V. 0.16 0.10 0.18 0.21 0.15 0.75 0.24 0.27
Minimum 11.10 46.30 12.90 12.30 32.80 0.02 2.17 0.09
Maximum 33.20 88.00 36.50 40.90 88.60 0.37 9.91 0.29
Skewness 0.352 0.073 −0.185 0.790 0.762 0.692 −0.116 0.488
Kurtosis 1.403 0.430 −0.283 2.401 1.959 0.438 0.177 0.643
K-S p 0.05 0.12 0.14 0.01 0.00 0.00 0.20 0.00
Distribution normal normal normal lognormal lognormal lognormal normal lognormal

p < 0.05, n = 100.

Table 2
Pearson correlation coefficients of topsoil heavy metals.

Cu Zn Ni Pb Cr Hg As Cd

Cu 1
Zn 0.654* 1
Ni 0.358* 0.205* 1
Pb 0.267* 0.068 0.324* 1
Cr 0.363* 0.489* 0.435* 0.033 1
Hg 0.100 0.156 −0.331* 0.094 −0.243* 1
As 0.444* 0.183 0.037 0.161 0.197* 0.139 1
Cd 0.338* 0.514* 0.067 −0.010 0.254* −0.034 0.013 1

* p < 0.05, n = 100.
The maximum observation values of every heavy
metal except for Zn were more than double the mini-
mum values, which exhibited large spatial ranges. The
average content plus standard deviation of Cd is 0.15 ±
0.04 mg kg−1. The value is much higher than the back-
ground values that can be used to assess metal contam-
ination in soil, indicating possible pollution at a few
locations of the study area, which are probably caused
by anthropogenic activity such as fertilizers and pes-
ticides, vehicle exhausts and industrial fumes, burning
of coal. The Zn, Hg, Cu, Cr, Ni, Pb and As (mean ±
S.d.) exhibited lower contents than the background val-
ues that probably caused by weathering and lithogenic
of rich parent materials.

According to the Standard of Chinese Environmental
Quality for Soils (GB 15618–1995) (State Environmen-
tal Protection Administration of China, 1995) [19], the
study area soils are feebly alkaline with an average pH
value of 8.05. All heavy metal concentrations in the sur-
face soil are lower than the guidance values established
for cultivated areas, indicating that soil environmental
quality in the study area was of little threat in terms of
environment and human health.
The coefficient variation (C.V.) values of eight heavy
metals in the study ranges from 0.10 to 0.75 indicat-
ing that they had moderate variations. The C.V. of Hg
was 0.75, which is the highest of the 8 heavy metals,
suggesting that Hg has the greatest variation among the
soil samples and thus would have the highest possibil-
ity of being influenced by the extrinsic factors such as
human activities. The lowest C.V. of the 8 heavy metals
was Zn with a score of 0.1, suggests that Zn has a weak
variation and its content was almost constant across the
county (Table 1).

3.2. Correlation between soil heavy metals

Correlation measures the linear relationship between
random variables. The Pearson correlation coefficients
and their significance levels (p < 0.05) between all the
variables are presented (shown in Table 2).

Strong positive correlations were observed between
Cu and Zn, Ni, Pb, Cr, As, Cd except for Hg, indicating
that Cu and Zn, Ni, Pb, Cr, As, Cd are closely related
to each other, while Hg is poorly correlated with any
other metal. A significant correlation was also observed
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Fig. 2. Semivariograms model of topsoil heavy metals.
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between Zn and Ni, Cr, Cd. Ni had strong positive cor-
relation with Pb and Cr and negative correlation with
Hg. A positive significant correlation was also observed
between Cr and As, Cd and a negative significant cor-
relation was found between Cr and Hg. It can be spec-
ulated that seven heavy metals came from the same soil
parent material, climate and vegetation aside from Hg.

3.3. Spatial structure of soil heavy metals

Semivariograms were used to establish the degree
of spatial continuity and the range of spatial depen-
dence. The experimental semivariogram represents the
variance of the sample value at various separation dis-
tances. Each of the experimental semivariograms can be
described on three parameters: nugget, sill and range.
Experimental semivariograms suggested that the theo-
retical spherical model is in reasonable agreement with
the data. The Zn and Ni were fitted with the Gaussian
model and the linear model (Fig. 2), respectively.

The largest nugget effect of Cr (C0 = 39.29) indi-
cated a strong random variance at short distance. The
smallest nugget effect is Cd (C0 = 0.000696), which
showed relative variance and the sampling density is
adequate to reveal the spatial structures. All soil heavy
metals showed positive nugget, because of the sampling
error, shorter distance variability, and random and in-
herent variability. More attention has been paid to the
spatial correlation distance, as they play a more impor-
tant role in kriging estimation.

The range of heavy metal contents varied from 3.28
to 11.63 km. The As had the largest range 11.63 km,
which indicated that As was correlated and depended
on the soil parent material. The Cd had a smallest range
3.28 km, which implies that the length of the spatial
autocorrelation is much longer than the sampling inter-
val of 1.5 km. Therefore, the current sampling design
is appropriate for this study and it is expected that a
good spatial structure will be shown on the interpolated
map. These results are inconsistent with previous re-
ports [8–10] that the correlation length is from 6.27 to
85.75 km. These results may indicate that the range of
autocorrelation is influence by different study scales.

The C0/(C + C0) ratio (Table 3) can be regarded
as a criterion to classify the spatial dependence of soil
properties. If the ratio is less than 25%, the variable
has strong spatial dependence. If it is between 25%
and 75%, the variable has moderate spatial dependence.
With a ratio of greater than 75%, the variable shows
only weak spatial dependence [13–15]. Usually, strong
spatial dependence of soil properties can be attributed
to intrinsic factors (soil formation), and weak spatial
Table 3
Semivariogram models and parameters of topsoil heavy metals.

Heavy
metal

Model Nugget
(C0)

Sill
(C + C0)

C0/(C + C0)

(%)
Range
(km)

Cd Spherical 0.000696 0.0016 43.23 3.28
As Spherical 0.657 2.35 27.96 11.63
Cr Spherical 39.29 77.00 51.03 7.76
Cu Spherical 6.86 11.51 59.60 7.37
Hg Spherical 0.0021 0.0035 59.04 9.31
Ni Linear 10.71 21.00 51.00 10.08
Pb Spherical 8.48 15.41 55.03 3.42
Zn Gaussian 37.14 51.76 71.75 8.92

dependence can be attributed to extrinsic factors (soil
management practices) [17–23]. The C0/(C + C0) ra-
tio of eight heavy metals between 25% and 75%, have
moderate spatial dependence, indicating that the an-
thropogenic factors changed their spatial correlation
through industrial production, fertilization and other
soil management practices. The ratio of element As is
near 28%, which is lowest one, suggesting that As had
stronger spatial dependence due to the effects of natural
factors such as the parent materials and topography. The
ratio of element Zn is near 72%, which is the highest.

3.4. Spatial distribution maps of soil heavy metals

ArcGIS is a valuable tool for interpreting spatial vari-
ability and environmental monitor. Information gener-
ated through semivariogram (nugget, sill, range) was
used to calculate sample weighing factors for spatial in-
terpolation by the simple Point Kriging procedure, using
the nearest 8 sampling points and a maximum search-
ing distance equal to the range distance of the variable.
In particular, mapping the conditional probabilities of
a soil property is of importance for management deci-
sions, which are based on threshold values of this prop-
erty, such as delineating safe or hazardous areas and
identifying zones that are suitable for crop growth and
those that must be treated.

Fig. 3 is the spatial distribution map generated based
on the semivariograms of all heavy metals gathered
from the study area. The maps showed similar geo-
graphical trends, especially for Cu, Zn, Ni and Cd, with
both high contents at centre and northeast edge part of
the County. At the other place, their concentrations are
relatively low. Apart from the northwest and southeast
directions, Zn values are generally high. It is concluded
that the explanation for higher uncertainty is most likely
attributed to land use. Similar to the grade in Fig. 3, it
shows no risk of Pb in this study area. On the other hand,
a high content of Ni distribution was found on the top of
the study area. Hg is a dangerous metal, the higher soil
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Fig. 3. The spatial distribution maps of 8 heavy metal contents.
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Hg concentrations are found in the south edge of the
bottom and the highest Hg area is the smallest. Ni and
Hg exhibit apparent variance from north to south, while
Zn and As display most variance from the northeast to
southwest (Fig. 3).

Generally, anthropic inputs of Cr and Ni in fertiliz-
ers, limestone and manures are lower than the concen-
trations already present in the soil; Cu and Zn are com-
mon ingredients of some pesticides; Common sources
of Pb in soils are manures, sewage sledges, vehicle ex-
hausts and the burning of coal. Cd is a highly mobile and
toxic element. In addition, using coal for heating during
the winter period could have resulted in high Zn, Pb and
Hg from air fallout [19–23]. Cu, Zn, Pb, Cd, Hg and As
are mostly due to the different anthropic activities such
as industrial, agricultural and transport. The abnormity
with heavy metals mostly coincided with the industry
locations. All 8 heavy metals that contain less than the
threshold values can be regarded as safe for crop growth
in the study areas.

4. Conclusions

Using the soil samplings of a relatively small scale
in study area, an estimation of 8 heavy metal concen-
trations in suburban arable areas was tested. All data
followed normal or lognormal distribution. A signifi-
cant correlation was observed between Cu and Zn, Ni,
Pb, Cr, As, Cd except for Hg, indicating that they were
from the same origin as their soil parent materials and
of the same soil formation factors. The local anomaly
had been found with Cd, which is probably linked to
anthropic and industrial activity.

The study results demonstrated that the spatial vari-
ability of eight heavy metals in suburban arable was
apparent in the Zhengding County. Such studies could
help validate procedures of spatial predictions that have
limited measured data. This may be suitable for many
problems in soil monitoring where heavy metal changes
are relatively small and slow.

All heavy metal contents are less than the guidance
values. Thus, even these eight elements are unlikely to
exhibit a risk to the environment or a threat to human
health at present, but the results are helpful for improv-
ing agricultural and forest ecosystem in the region [4–9,
14–23].
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